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Abstract� The self�organizingmap �SOM� of Kohonen is one of the most successful models
of unsupervised learning� Its popularity is partially due to the visualization �topography
preservation� of relations among clusters in high�dimensional input space� SOM learns
slowly� especially in the initial phase� and the preservation of topography by SOM maps is
not based on any quantitative criteria� We have obtained the best possible two�dimensional
representation of simplexes in spaces of up to �� dimensions� minimizing the error func�
tion measuring the unavoidable distortion of the original input space topography� This
two�dimensional representation is used to select neurons during initialization of the SOM
network� After such initialization in the learning phase a small radius of the neighborhood
function is su	cient to obtain quick convergence with minimal topological distortions�

� Introduction

The self�organizing mapping �SOM� algorithm ��� is usually presented as a particular type of arti�cial
neural network	 The network is �rst trained on the high�dimensional input vectors until the weight vectors
of the array of neurons in the output layer tend to approximate the probability density function of the
high�dimensional data	 This iterative learning process is unsupervised
 or self�organizing
 de�ning the
mapping from the high�dimensional input data space to the low�dimensional target space	 The mapping
is well ordered if the topographical relations of the input vectors are preserved in the topographical
relations in the target space	

Kohonen worked on pattern recognition �especially speech recognition� when he developed the SOM
algorithm
 and his intentions were the following ���� The SOM 			 is a clustering
 visualization
 and
abstraction method	 Anybody wishing to implement decision and classi�cation processes should use
LVQ �Learning Vector Quantization� instead of SOM	� Despite this warning SOM is used quite frequently
as a network for classi�cation �cf	 the book ��� or full bibliography on SOM stored in the ftp archive
cochlea�hut�fi in the �pub�ref� catalog
 �le references�bib�Z�	 Undoubtedly the most interesting
aspect of SOM is the topography preservation or the ability to visualize the high�dimensional data	
Unfortunately the method does not provide any measures of the quality of this visualization	

The multidimensional scaling �MDS� technique is a statistical clusterization method almost unknown
outside of the mathematical psychology �eld	 It has foundations in the work of Torgerson ��� and in the
Coombs theory of data ���	 Computer programs and applications of MDS have been developed
 among
others
 by Kruskal ��� at the Bell Laboratories
 by Lingoes
 Roskam and Borg ��� in Ann Arbor
 and by
Shepard ��� in Palo Alto ���	 MDS was used by experts in mathematical psychology who wanted to obtain
a lower�dimensional representation of psychological data	 These data are related to perception �perceived
nearness of objects
 preferences
 feature intensity or a�nity� and are obtained by subjective evaluation of
similarities or dissimilarities between di�erent items
 characterizing a small part of human psychological
spaces	 MDS techniques were developed to provide a two or three�dimensional image of the observed
data
 reducing their complexity and allowing their analysis by a human expert	 MDS was rediscovered
under the name of nonlinear mapping by Sammon ���� and as quantitative measure for topographical
distortions in SOM by Duch ����	

Since MDS guarantees the best preservation of topography it is interesting to compare the results of this
procedure with maps obtained by SOM in a few simple cases	 We have performed such a comparison
���� using as an example the points on a surface of a sphere and the corners of hypercubes	 SOM maps
are far from optimal
 leading to signi�cantly larger values of the measures of topographical distortion	
Unfortunately MDS is computationally even more intensive than SOM
 requiring for n input data vectors
global minimization of a function of n�n� ���� variables	 It is de�nitely not suited for large amount of
data or for on�line learning	



There are several options leading to optimal topographical mappings	 First we will give describe the
multidimensional scaling and the self�organizing map algorithms
 then we will present simplexes in ����
dimensional spaces mapped by the MDS procedure onto a two�dimensional target space	 In the �fth
section one of the simplest approaches to create topographical mappings using simplex results for initial�
ization of SOM networks is introduced and in the last section other ways of creating good topographical
maps are discussed	

� Multidimensional scaling

MDS techniques emerged from the need to visualize in a two� or three�dimensional space high dimensional
objects described by some measure of their similarities or dissimilarities	 Although the problem may be
de�ned in a very general way in non�metric spaces here we are interested only in the simpler case when
similarity measures are distances de�ned by some metric in the input space	 The problem is to �nd
the coordinates of points representing the multidimensional data vectors in the two or three�dimensional
space in such a manner that the distances among points in the low�dimensional target space are as close
as possible to the original distances	 MDS takes as input a symmetric matrix of the distances �similarities
or dissimilarities� between objects	 If there are n input vectors there are n�n � ���� distances between
these vectors	 MDS does not deal directly with values of vector components in the input space
 as SOM
does	 SOM algorithm needs n � N input values
 where N is the dimension of the input vectors	 If the
number of input vectors n � �N � � Kohonen map uses less information than MDS
 therefore SOM is
better suited for large number of input data	

Let n be the number of input vectors in the high�dimensional space
 X�� X�� ���� Xn
 and let Rij be the
observed similarities between vectors Xi
 equivalent to distances Rij � kXi �Xjk in metric spaces	 Let
Yi be the low dimensional target space point representing the input vector Xi and let rij be the distance
between Yi and Yj 	 We have to place the points fYi� i � �� ���� ng in the target space in such a way that
the distances rij are as close as possible to the original distances Rij	 A sum�of�squared error function
can be used as a criterion to decide whether a given con�guration of image points is better than another	
There are two commonly used criteria�
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In this paper we use the following measure ���� of preservation of topography�
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these measures may also be used to compare the quality of di�erent SOM maps	 The best con�guration
of points in the target space is found iteratively�

�	 De�ne a starting con�guration for the points Yi randomly or by a principal components analysis

While the criterion function signi�cantly decreases
 do� �	 Compute the distances rij	
�	 Compute the value of the criterion functions S
 K or D	
�	 Find a new con�guration of the points Yi by a gradient�descent procedure such as Kruskal�s linear
regression or Guttman�s rank�image permutation	 To be sure that global minimum is found we use here
the simulated annealing procedure	

Other quantitative measures of the preservation of topography between the high�dimensional input and
low�dimensional target spaces may be introduced
 for example�
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where y
�l�
i are components of Yi objects in the k�dimensional target space and the reduction in the number

of the degrees of freedom going from N dimensions to k dimensions is taken into account by setting all



components of Y� � � and k � � components of Y� to zero
 y
�l�
� � �� l � ���k � �	 For this measure we

may obtain the best representation by solving a set of non�linear equations ���� instead of minimization�
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Unfortunately it is as hard to solve this system of nonlinear equations as it is to minimize the stress
function	

� Self�organizing maps

The SOM algorithm allows to perform in an unsupervised manner a visualization of high�dimensional
input data
 usually in a target space of one
 two or three�dimensions	 We will assume here a two�
dimensional array of nodes	 SOM seems to preserve the topography of the input data	 This means that
if some of the high�dimensional data points are grouped in clusters their representations in the map are
also grouped in clusters and the relative distances between clusters are to some degree preserved	 The
SOM network takes as input a set of labeled sample vectors and gives as output an array of network
nodes with the input vector labels attached to these nodes	 Let N be the dimension and n the number
of sample vectors X �t� � �N � t � �� �� ���� n
 where each sample vector X �t� is identi�ed by a label	 The
two�dimensional output layer contains i � �� ���� xdim� ydim nodes Wi
 each serving as a codebook vector
of dimension N 	 The training of the weight �codebook� vectors of the map�s nodes is realized by the
following algorithm� For a given number of iterations do�

�	 Pick up randomly one sample vector X �t�
�	 Find the nearest weight vector Wc� kX �Wck � minj fkX �Wjkg
�	 Update the weights Wi according to the rule�

Wi �t� �� � Wi �t� � hci�t� � �X �t��Wi �t�� ���

where hci�t� is the neighborhood function that can be of type�

� bubble�� hci�t� � ��t� if kWc �Wik � r�t� and
hci�t� � � if kWc �Wik � r�t��

� gaussian�� hci�t� � ��t� � exp
(
�kWc�Wik

����t�

)

Only the neurons within the neighborhood hci�t� are moved near to X�t�	 The learning rate ��t� � ��� ��
decreases monotonicallywith time
 ��t� and r�t� are neighborhood radiuses decreasing also monotonically	
Although one�dimensional Kohonen maps have been analyzed in some details little is known about the
self�organization process in two or three dimensions ���	 The main problem is the lack of quantitative
measure to determine what exactly the good map� is	 Such a measure is provided by MDS
 therefore
we will use MDS maps of simplexes to improve the quality of SOM mappings	

� Mapping of simplexes

Minimization in MDS is usually done via gradient procedures	 Since we are looking for a global minimum
we have also used simulated annealing method for minimization
 although it requires much more extensive
computations	 N �dimensional simplex has N � � corners and the distances between any two corners are
all equal to one	 Con�guration of points obtained by mapping corners of simplexes in ���� dimensions
by MDS is shown in Figures ���	 For comparison a typical SOM map is for �� dimensions	 For all MDS
maps the �nal values of D measure of topography preservation is given	

The MDS con�gurations in the target space are highly symmetric and we are rather con�dent that they
really represent absolute minima	 Up to � dimensions the best con�gurations consists of equally spaced
points on a circle	 In higher dimensional spaces the points on the outer circle are also equally spaced but
additional points appear	 In ��� dimensions one point in the middle of the circle appears
 in �� dimensions
this point is replaced by the inner circle with two points
 in ����� dimensions with three points
 �����
with four points
 and in �� and �� dimensions there are � points on the middle circle	 In �� dimensions
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the best MDS con�guration has one point in the middle of the circle
 an inner circle with � point and an
outer circle with �� points	

High symmetry of these structures suggests that one should compare the error measures of perfectly
symmetric con�gurations
 which one can do minimizing in one dimension �radius of the mapped circle�
or three dimensions �scales of two circles and an angle of mutual rotation�	

In �gures ��� all corners of the simplexes are connected by lines	 All these lines are of unit length in the
input space but obviously it is impossible to preserve such topography in two dimensions	 SOM tries to
use all neurons and places many codebook vectors at the boarders
 missing the best con�guration even
in the three dimensional case	 Perhaps with in�nitely slow learning �i	e	 decreasing the neighborhood
function hci�t� to zero in�nitely slowly� it would be possible to avoid freezing� wrong con�gurations

but even repeating ����� times the presentation of � data points in three dimensions �or �� data points
in �� dimensions� were not su�cient to bring SOM maps closer to MDS results	 SOM results could be
much better if instead of a rectangular network a circular one was used but it is impossible to say a priori
what shape should the network layer have	
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� Simplexes for initialization of SOM

The results obtained in the previous section may be used to improve the convergence and to reduce the
topographical distortions of SOM method	 In the preparation phase MDS is performed for simplexes
in spaces of growing dimensionality	 The sets of two�dimensional images of the corners of simplexes are
stored	 This step is done once and the data is stored in tables or computed from analytical functions	
We will provide such data in computer�readable form soon	

SOM network should be placed in the target space in such a way that each neuron has coordinates that
are close to images of the simplex corners	 All weights of SOM neurons are initialized to zero	 The
algorithm may be summarized as follows�


� First scan through the data� The coordinate system is placed in the middle of N �� dimensional
simplex in such a way that each corner is at a unit distance and lies on a sphere	 All N �dimensional input
vectors X � �X�� X�� ���� XN� are extended by adding an additional dimension V � �X�

√
�� jjXjj��	

These vectors are normalized to one and de�ne a point on the N � � dimensional sphere	 Information
about the magnitude of the input vectors is explicitly added as the last component of the extended
vectors	

The input data vectors are read and the three nearest simplex corners C�� C�� C� for each V vector are
identi�ed	 The image v of the input vector is found by triangulation based on the images c�� c�� c� of the

three simplex corners in the target space	 First the scale factor is de�ned
 s � d�c��c��
D�C��C��

where d��� �� is

the target space metric and D��� �� is the input space metric	 The distance R� � D�V�C�� between the
input vector V and the nearest simplex corner is mapped to r� � sR�
 de�ning a radius of a circle around
c�	 The second circle de�ned around c� has radius r� � sD�V�C��	 The two intersections of these circles
de�ne two possible images of the V vector	 The distance from the C� simplex corner is used to select the
�nal position of v	

The neuron in the SOM network that is closest to the image of the target vector is selected as a winner	
If the neuron has not been used before its weights become equal to the input vector	 If it has been used
a normal iterative updating of the weights of neighboring neurons is performed	

Subsequent data scans� usual SOM procedure is performed	 To avoid global reorganization of the
map the neighborhood radius is always kept small relatively to the distances between images of simplex
corners	 To increase the accuracy of the data representation �decrease the quantization error� the density
of neurons should be high	 Signi�cant computational costs savings are obtained if the identi�cation of a
winning neuron
 requiring comparison of new data vector with weights of all Nnet neurons in the network
is replaced by identi�cation base on comparison with N corners of the simplex
 as described above	

As a result after a single scanning of the input data the map has the best topographical structure and
only the tuning of the weights is needed in the �nal learning steps	

� Summary and conclusions

We have presented here a simple and computationally inexpensive method for creation of SOM networks
that are optimal from the point of view of topographical distortions of the relations among the origi�
nal data vectors	 In contrast to the Kohonen�s SOM procedure some neurons after learning may have



zero weights and could be removed from the map	 Large and dense initial networks may be used for
higher accuracy since the cost of the method is proportional to the number of active neurons only	 The
procedure requires availability of the MDS mappings of simplex corners	 Although we have discussed
two�dimensional target spaces only there is no reason why three or higher�dimensional target spaces could
not be used in the same way	

In the input spaces of perhaps up to �� dimensions one could also use corners of hypercubes
 but already
for �� dimensions there are ���� hypercube corners and only �� simplex corners	 Since in the �rst pass
through data distances to all corners are computed simplexes have de�nite advantage	

Several other ways of creating near�optimal topographical representations
 based on MDS and SOM
 are
possible�

�	 Use MDS map of a simplex for reference	 Store only the images �coordinates in the target space�
of the input data that di�er on more than a speci�ed threshold	 This method should be useful for
visualization
 dimensionality reduction and classi�cation	

�	 Introduce an adaptive coordinate mesh in the MDS target space	 Each node has a local coordinate
system associate with it
 parametrized by scaling factors and angles between the axes	 Adaptive
parameters are trained in supervised way to reduce classi�cation or approximation error	

�	 Combine the term coming from gradient minimization of stress measure with local adaptation of weights
by the winning neuron	 The learning in this case would be even slower than in SOM but maps should
preserve global character	
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