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Application of the neural network methods to problems in physics and chemistry has rapidly
gained popularity in recent years� We show here that for many applications the standard methods
of data 	tting and approximation techniques are much better than neural networks in the sense
of giving more accurate results with a lower number of adjustable parameters� Learning in neu

ral networks is identi	ed with the reconstruction of hypersurfaces based on a knowledge of sample
points and generalization with interpolation� Neural networks use sigmoidal functions for these re

constructions� giving for most physics and chemistry problems results far from optimal� An arbitrary
data 	tting problem may be solved using a single
layer network architecture provided that there
is no restriction on the type of functions performed by the processing elements� A simple example
illustrating unreliability of interpolation and extrapolation by the typical backpropagation neural
network learning of a smooth function is presented� Some results from approximation theory are
quoted giving a rigorous foundation to applications requiring correlation of numerical results with
a set of parameters�
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I� INTRODUCTION

Neural computing and the �eld of neural network mo�
deling has become very fashionable in the last decade�
Availability of general neural network simulators ��� has
encouraged many scientists to try these new techniques
for solving their physics and chemistry problems� There�
fore it is of great importance to understand what neural
networks can do and when their application may lead
to new results	 hard to obtain with standard methods�
A number of good books and review articles on neural
network models �
� have appeared in recent years	 unfor�
tunately rarely giving a good mathematical perspective
of relevant theories	 such as the theory of statistical de�
cisions or approximation theory�

Arti�cial neural networks �ANNs� are networks of sim�
ple processing elements �called neurons�� operating on
their local data and communicating with other elements�
Thanks to this global communication the ANN has stable
states consistent with the current input and output va�
lues� The design of ANNs was motivated by the structure
of a real brain	 but the processing elements and the archi�
tectures used in arti�cial neural networks frequently have
nothing in common with their biological inspiration� The
weights of connections between the elements are adjusta�
ble parameters� Their modi�cation allows the network to
realize a variety of functions� In the typical case of a su�
pervised learning a set of input and output patterns is
shown to the network and the weights are adjusted �this
is called learning� or adaptation�� until the outputs
given by the network are identical to the desired ones�
In principle ANN has the power of a universal compu�

ter	 i�e� it can realize an arbitrary mapping of one vec�
tor space to another vector space� Since physicists and
chemists deal with such problems quite often one of the
applications of ANNs in these �elds is to correlate pa�
rameters with some numerical results in hope that the
network	 given a set of examples	 or a statistical sample
of data points	 will somehow acquire an idea of what the
global mapping looks like� One of the goals of this paper
is to investigate whether such a hope is justi�ed�
ANNs are especially suitable for problems where a high

error rate is acceptable	 the conditions are ill�de�ned and
the problemmathematically ill�posed� The brain has evo�
lved to process the data from the senses and works much
better at solving problems requiring perception and pat�
tern recognition than problems involving logical steps
and data manipulation� Most ANN architectures share
this quality with real brains� They are not suited for the
tasks that the sequential computer programs can do well	
such as the manipulation of symbols	 logical analysis or
solving numerical problems�

The most common architecture of ANNs is of the mul�
tilayered feedforward type� The signals are propagated
from the input to the output layer	 each processing ele�
ment being responsible for integration of the signals co�
ming from the lower layer and in�uencing all processing

elements of the next layer to which it is connected� If all
possible connections between the consecutive layers are
allowed the network is called fully connected�� In some
cases it is better to use ANN that is not fully connected�
reduction of the number of adjustable weights may im�
prove not only the timing of computations for training
the network but also the accuracy of learning�
Backpropagation of errors �BP� is the most commonly

used algorithm to train such an ANNs ��� �for classi�ca�
tion problems feedforward learning vector quantization
and counterpropagation networks are most commonly
used� �
�� Although the BP learning rule is rather uni�
versal and can be applied to a number of di�erent ar�
chitectures of neural nets a term backpropagation net�
is commonly used to designate those nets that are tra�
ined using the BP algorithm�This learning rule compares
the desired output with the achieved output and error si�
gnals �di�erences between desired and achieved outputs�
are propagated layer by layer from the output back to the
input layer� The weights are changed using a gradient de�
scent or some other minimization method in such a way	
that the error should be reduced after the next presen�
tation of the same input� Although the BP algorithm is
rather slow and requires many iterations it enables the
learning of arbitrary mappings and therefore it is widely
used� Over �� other learning rules for di�erent network
architectures exist and new rules are still being discove�
red �
��
ANNs are interesting to the physicists as an exam�

ple of complex systems that are more general than the
Ising or the spin glass models� From this point of view	
as interesting dynamical systems	 their evolution is inve�
stigated and the methods of statistical physics applied to
such problems as network capacity	 e�ciency of various
learning rules or chaotic behavior ���� ANNs are also in�
teresting as models of various sensory subsystems and as
simpli�ed models of the nervous system�
In this paper we are concerned only with applications

of neural networks as tools that can help to solve real
physical problems� The number of papers in the section
neural networks� in Physics Abstracts has approxima�
tely doubled comparing the ���
 and ���� entries� This
is a re�ection of the enthusiasm with which ANNs are
received by the scienti�c community� Is this enthusiasm
well founded� Since the �eld is not well known among
physicists and chemists	 in this paper we are going to
set neural networks applications in the perspective of a
better established mathematical theories�
In the next section we critically analyze a few recent

applications of ANNs to the problems in chemical physics
in which various parameters are correlated with output
data� We are going to summarize the idea behind such ap�
plications and in the third section elucidate what ANNs
are really doing� In the fourth section we describe some
alternative approaches and give an illustrative example
of learning a simple functional dependence by a backpro�
pagation ANN� In the last section we present a general
discussion on the use and misuse of neural networks in






physics and chemistry�

II� ASSOCIATIONS USING NEURAL

NETWORKS

The typical architecture of a neural network is presen�
ted in Fig� �� The input signals xi are received by the �rst
layer of processing elements �called neurons��	 the input
layer� The results are obtained from the output layer	 in
Fig� � consisting of only one neuron� Between the input
and the output layers there are a number of hidden� lay�
ers� in case of Fig�� only one such layer is present� These
hidden layers of neurons are not directly accessible to
the user who gives the inputs and sees the outputs from
the network� Connections are allowed only between the
layers	 not within the layers� The input signals are propa�
gated in one direction	 from the input layer to the output
layer	 hence such an architecture is called a feedforward
network�	 in contrast to the recurrent networks� with
feedback connections between the layers and within the
layers� If all possible connections between the layers are
allowed the network is called fully connected�� For a
large number of neurons	 to avoid an excessive number
of connections	 partial connectivity is assumed �if each
neuron in the brain was connected with all others the
brain would have to be about �� km in diameter��
The strength of the connections between the neuron

number i and number j is a variable parameter Wij	 cor�
responding to the strength of the synaptic connections
in real nervous tissue	 called the weight� of the connec�
tion� Adjustment of these weights allows the network to
perform a variety of mappings of input to output signals�
Each neuron performs a weighted sum of the incoming
signals

Xi �
X
j

Wij�j ���

and processes the result via a function �� Because of
the biological motivations most of the feedforward ne�
tworks assume for an output function of a neuron a sig�
moidal function

��X� � ��X� �
�

� � e��X����T
�
�

where T is a global parameter	 usually �xed for all pro�
cessing elements �neurons� of the network	 determining
the degree of the non�linearity of neurons	 and � is called
the threshold and is usually also �xed for all processing
elements� Thus the number of parameters adjusted du�
ring the adaptation of a network to a given set of data is
equal to the number of network weights�

This short introduction should be su�cient to under�
stand the applications described below� One of the pio�
neers in the �eld of neural modeling	 T� Kohonen	 wrote
in his ���� book on associative memory ����

��� arithmetic problems are seldom solved in biological
tasks��� Any attempts to build neural models for the ad�
der	 subtractor	 multiplier	 and other computing circuits	
or even analog�to�digital converters are therefore based
on immature reasoning��
Unfortunately many applications in physics and chemi�

stry are of this type� Here we shall write only about ap�
plications that use neural networks in the most proper�
way	 to form associations between the input and the out�
put values� The papers of Darsy et�al ��� and Androsiuk
et�al � � are rather typical in this regard� The neural ne�
twork is taught solutions of the Schr!odinger equation i�e�
correlation between the parameters of some Hamiltonian
and the energy� In case of the two papers quoted above
a two�dimensional harmonic oscillator Hamiltonian was
used� The potential is quadratic and the lowest eigenvalue
of this Hamiltonian is linear in both frequency parame�
ters�

V �x� y��x� �y� �
�
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E��x� �y� � A��x � �y� ���

���

where A � "h�
 is constant� A set of training data for
di�erent ��x� �y�	 consisting of values of V �x� y��x� �y�
at a rectangular �x� y� mesh taken as inputs and the cor�
responding energy values E taken as outputs are given to
the network� The backpropagation algorithm is used to
change the weights of the ANN bringing the responses of
the net	 identi�ed with the E values	 for the given input
V �xi� yi� �x� �y�	 as close as possible to the desired E�
Perfect agreement is usually not possible or even not

desirable from the point of view of a generalization� or
prediction of the unknown E values corresponding to the
new ��x� �y� parameters� When �tting the data one ra�
rely requires that the approximation function should pass
exactly through the given data points	 because this may
lead to the over�tting� or oscillatory behavior� The ac�
curacy and the speed of learning depends on the number
of hidden neurons and the architecture of the ANN� After
the training phase is �nished a number of new parame�
ters ��x� �y� are selected and values of the V �x� y��x� �y�
taken as a test data to check the ability of the trained
network to guess the new values of E� The accuracy in
learning and testing phases does not exceed a few per�
cent�
In the paper of Darsy et�al a fully connected network

with �� hidden neurons was used	 �� values of V �x� y� on
 �  mesh were given	 the number of data sets for tra�
ining was �� and the maximumerror for the training data
was around �#� Slightly better results were obtained by
Androsiuk et�al � � with a backpropagation network that
was not fully connected� only � hidden neurons	 � output
and �� input neurons �one for each point on potential
surface� were used	 the number of the data sets for tra�
ining was also ��	 and the maximumerror for the training
data was about 
��#� The extrapolation of the results to
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other values of ��x� �y� gives errors gradually increasing
as the parameter values move outside the test range�
Interpolation and extrapolation is discussed in these

papers in terms of generalization of acquired know�
ledge�� One may be easily misled by the use of such
concepts� For example	 the authors of the papers quoted
above conclude ��� that� neural networks can be used to
investigate the more perplexing questions related to basic
issues of physics and chemistry� and � � claim� ��� we pre�
sented studies of a neural network capable of performing
the transformations generated by the Schr!odinger equ�
ation required to �nd eigenenergies of a two�dimensional
harmonic oscillator�� In fact in both papers the authors
have trained a network to recognize points on a plane
in � dimensions ��x� �y� E�	 and tested whether the ne�
twork can interpolate the data� Certainly such ability
has nothing to do with the basic issues of physics and
chemistry� or with transformations generated by the
Schr!odinger equation�	 but rather with the data interpo�
lation and extrapolation techniques�

A conceptually very similar	 although computationally
more ambitious	 example of using backpropagation ANNs
for correlation of data is found in a series of papers of
Sumpter et�al ���� Internal energy �ow in molecular sys�
tems was studied using the data frommolecular dynamics
calculations� The ANN was taught the relationship be�
tween phase�space points along a classical trajectory and
energies for stretch	 bend and torsion vibrations� The ne�
twork used after some experimentation had �� nodes in
� layers	 with a total of ���� connections� The input vec�
tors were 
��dimensional �coordinates and momenta for
� atoms� and the output was ��dimensional �energies of �
modes�� The accuracy of energy prediction after training
on 
��� examples of data points was between ��
�#� The
authors conclude that a trained neural network is able
to carry out qualitative mode�energy calculation for a
variety of tetratomic systems��
Many other examples of this sort may be found in the

literature� Although super�cially they are similar to the
papers quoted below there is a crucial di�erence that we
will point out in the summary�

Peterson has used a BP network for classi�cation of
atomic levels in Cm I	 Cm II and Pu I ions ��� according
to their electronic con�guration� Each level was descri�
bed by � numbers� energy	 angular momentum	 g factor
and isotope shift	 that should be correlated with a small
number �� to �� of electronic con�gurations� The network
used had less than ��� neurons and the accuracy of clas�
si�cation was between �� and ���#�

Many papers have been published on applications of
neural networks to various problems in protein chemistry
����� The ANNs are used here for classi�cation purposes
to �nd the correlation between the �D structure and the
sequence of aminoacids� Since an average protein has a
few hundred aminoacids ANNs used in this case have
tens of thousands processing elements and hundreds of
thousands of weights and their simulation requires a large
amount of supercomputer resources�

The time to train a fully connected feedforward ne�
twork is very long �thousands or hundreds of thousands
iterations may be necessary� and selection of the archi�
tecture for networks that are not fully connected is a long
trial�and�error procedure� However	 once the feedforward
network has been trained it gives the answers very qu�
ickly	 in one iteration	 since computation is reduced to
optimized function evaluation�

III� WHAT ARTIFICIAL NEURAL NETWORKS

REALLY DO�

Comments in this section are relevant mainly for the
most commonly used feedforward ANNs of the backpro�
pagation type� Applications of ANNs to various problems
in physics and chemistry are frequently not based on solid
mathematical foundations	 but rather on the availability
of the software to simulate neural networks� In the appli�
cations mentioned in the previous section the ability of
neural networks for learning from examples	 associating
a set of parameters with the output values �cf� ���� �����
and subsequently generalizing to new values	 was used�
Accuracy of interpolation did not exceed a few percent
and the number of adjustable parameters �weights of the
network� was in most cases quite high	 ranging from ��
to almost ����
The quotations from the papers reviewed in the pre�

vious section may mislead some readers into believing
that neural networks really solve physical problems or
carry out transformations of the Schr!odinger equation	
i�e� do something intelligent� Therefore we should stress
that the problem of learning associations between para�
meters and output values is equivalent to the data �t�
ting	 i�e� to the problem of approximation of an unknown
input�output mapping� Vice versa	 all data �tting pro�
blems may be presented in the ANN form� Therefore the
question one should ask is� are neural networks e�cient
in �tting the data and what is the functional form they
are using�
The general approximation problem is stated as fol�

lows ����� if f�X� is continuous function de�ned for
X � �x�� ��xn� � X 	 FW �X� is continuous approxima�
ting function of X and some parameters W � W	 then
�nding the best approximation amounts to �nding "W
such that the distance jjF �W �X� � f�X�jj is the smallest
for all W in the parameter space W�
Consider the linear expansion FW �X� in a set of ba�

sis functions �i�X�	 approximating an unknown function
f�X� of many variables X�

FW �X� �
mX
i

Wi�i�X� ���

Given a set of sample points �Xk� fk � f�Xk�� our task
is to �nd the best possible expansion coe�cients Wi� We
may imagine a network realization of the approximation
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problem in several ways	 for example	 a single�layer ne�
twork that solves the problem is shown in Fig� 
	 with
m hidden nodes �m � � in this example�	 a single input
and single output node� Each input node is connected
with the weight equal to � to the hidden node and with
the weight equal to Wi to the output node� The input
node sends unmodi�ed signals to the hidden nodes that
have output functions equal to �i�X� and the output
node performs the summation of all weighted contribu�
tions� Any linear or iterative method of data �tting may
be used as a learning algorithm to �nd the best we�
ights� or expansion coe�cients Wi� This scheme covers
many approximation methods	 including Fourier trans�
forms	 spline interpolations and polynomial �ts� Genera�
lization for vector functions �many�components� requires
many output neurons and realizes a general mapping be�
tween two vector spaces�
Most of the feedforward networks assume for an output

function of a neuron a sigmoidal function Eq� �
�� Since
this function has as an argument xi	 a weighted sum of
all signals �j received by a given neuron i from neurons
j that are connected to its inputs

xi �
X
j

Wij�j ���

the number of parameters adjusted during learning is
equal to the number of non�zero connections of the ne�
twork� In the examples presented in the previous section
the ANNs had hundreds of adjustable parameters� The
task required from these networks during training was to
�t the available �training� data to some functional form
by adjusting these parameters� Although one may think
that in using ANNs no functional form is a priori as�
sumed this is obviously not true� How does an explicit
function realized by the backpropagation network look�
It is usually presented in the recursive way

FW �X� � ��
X
i�

W
���
i�

��
X
i�

W
���
i�

������
X
ik

W
�k�
ik

xik�������

� �

where � is the sigmoidal output function of the node
and the upper indices ���k refer to the network layer� For
a network with 
 active layers �Fig� �� the explicit output
function is not di�cult to write�

FW �X� � ��
X
i

W
���
i ��

X
j

W
���
ij xj�� ���

� �

�X
i

W
���
i

�

� � exp��PjW
���
ij xj�T �

�

�
�

� � exp��PiW
���
i

�

��exp��
P

j
W

���
ij

xj�T �
�T �

The formulas for the backpropagation of errors training
algorithm ��� may easily be obtained by computing the

gradient of this function with respect to the weights �ap�
proximation errors are proportional to this gradient�� If
the signals xi are small and T is large we can expand the
exponential function and the geometrical series leaving
the linear approximation�

FW �x�� ��� xn� �
X
i

Wi��xi� ���

which has the same form as Eq� � with ��xi� as the
basis functions for the expansion� However	 in the usual
case the dependence on the parameters W is non�linear�
In general sigmoidal functions can approximate any

continuous multivariate function ��
�	 although high qu�
ality of this approximation requires in most cases a rather
large number of parameters W � Conditions for conver�
gence of such expansions have been found only recently
����� Neural networks may therefore serve as the universal
approximators� Many other neuron output functions lead
to networks that may serve as the universal approxima�
tors� Radial basis functions ����	 and even more general
kernel basis functions ���� can be used for uniform appro�
ximation by neural networks� In fact many other types
of function may be used	 for example rational functions
���� for some approximation problems lead to networks
of lower complexity �smaller number of parameters	 i�e�
faster convergence� than the networks based on sigmoidal
or radial functions�
For many problems linear approximation is the most

appropriate method and an attempt to use neural ne�
tworks or any other nonlinear approximators will lead to
low accuracy and lengthy computations� Periodic func�
tions �covering the prediction of time series in physics	
chemistry	 economics and other �elds� are much better
represented via Fourier	 wavelet �� � or similar expansions
rather than by sigmoidal functions� Many other functions
useful in physics are of gaussian type� Why should we
hope that the ANN based on the sigmoidal functions will
give us better results than the �tting procedures�
The training algorithmmodi�es the weights �or logical

functions of the nodes in case of logical networks �����	
slowly changing the landscape of the FW �X� function re�
alized by the net until it will approximately give in the
N sample points the same values as the f�X� function�
Since the initial form of the mapping depends on the ran�
dom set of weights W at the start of the training period	
the �nal form of the function F �W after training is to a
large degree arbitrary	 except for the close neighborhood
of the N training points� Hoping that the ANN will �nd
an approximation far from the sample points �Xi� f�Xi��
is unreasonable� At most the accuracy that one may ob�
tain is equal to that of a �t with Wij parameters using
sigmoidal functions�
Fitting a set of data points to a linear combination

of basis functions by the least�squares procedure	 in case
when the function is smooth	 is not di�cult� Formulated
as a neural network learning problem with just one out�
put neuron such an approach is known as the functional
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link neural network ����� Nonlinear �tting problems are
di�cult and neural network approach is not an exception	
in fact even quite simple networks lead to NP�complete
problems �
��� A very interesting solution to this problem
is based on the idea of growing and shrinking networks	
allocating resources to new data and constructing the
approximating function incrementally �
���

The problem of �tting non�smooth functions in many
dimensions	 as in the clustering analysis	 is also di�cult�
Fitting in a multidimensional space is much harder than
in one or two dimensions and it remains to be seen if neu�
ral networks can compete with least squares �ts to expan�
sions in some basis set� Comparison of various nonlinear
approaches to classi�cation for real world data shows that
the accuracy of neural networks is similar to nonlinear re�
gression and tree�induction statistical methods �

��

IV� EXAMPLE OF ANN BEHAVIOR

From the point of view of the approximation theory
physical and chemical problems treated in the literature
by ANNs are in some cases trivial� Consider for example
the results of ��� and � �� we do not need �� sample data
points to conclude that the dependence of E on ��x� �y�
is linear� If there is no way of guessing the functional de�
pendence or if there is no global �t that will give small
errors we may try to use various spline functions to get
the correct local behavior and glue them together to get
a global description of the data� However	 functional de�
pendencies for most physical problems are known �in con�
trast to problems in pattern recognition to which ANNs
are applied with some success	 for example in high�energy
physics �
���� They result from the underlying simpli�ed
physical models� parametrization of functions and data
�tting is a well�established and highly accurate method
for creating mathematical models�

Perhaps an explicit example will clarify the need for
rigorous methods in the reconstruction of functional de�
pendencies from sample data� In Fig� � we have pre�
sented a function f�x� � sin�

p

x� sin�
x� and various

�ts and approximations based on the �� sample po�
ints taken every 
���� in the ��� 
�� region� The ori�
ginal function f�x� is left for comparison on all dra�
wings �thin line�� Polynomial �ts of at least ��th order
have to be used to give a su�cient number of minima
and maxima and such polynomials lead to large oscil�
lations between the sample points� Fig� �a� shows the
original function and its approximation by a Fourier se�
ries based on an ���parameter expansion in the functions
�� sin�x�� cos�x�� ��� sin��x�� cos��x�� It is a global �t	 good
for interpolation in the whole ��� 
�� region but comple�
tely failing outside of it� In the second drawing we see the
�t based on the highly non�linear local sigmoidal func�
tions with T������ It has the following form�

F �x� �
��X
i��

Wi��x� xi� ����

Results that one can obtain with this type of �tting
function represent the limit that an ANN of any archi�
tecture with �� linearly adjustable parameters and sig�
moidal output functions of neurons may achieve �nume�
rical experiments with other	 multi�layer networks with
non�linear parameters	 always gave worse results�� Varia�
ble thresholds for individual neurons	 equivalent to the
centering of sigmoidal functions around the data points	
are a necessary prerequisite for a good local approxima�
tion in this case� For T � ���� the non�linearity of the
sigmoidal functions in the range of ���� is rather strong
and the overall �t is poor� In Fig� �b� one can see how
the approximating function is combined from steep sig�
moids � the shape of the sigmoid functions is also shown
in this �gure� Networks with high non�linearities are sim�
ply not capable of a smooth modeling of the data in this
example�
The behavior of the approximating function for para�

meters outside the training range strongly depends on
the value of T � This is illustrated by the next two dra�
wings	 Fig� �c� and d�	 obtained with local sigmoidal �ts
for T � ��� and T � �� The accuracy of these �ts is even
better than that of the Fourier series �t$ In this case the
sigmoidal functions	 shown in these �gures	 could be re�
placed by the semi�linear functions	 and the approxima�
ting function by the semi�linear spline function� In our
experience it is hard to �nd a function f�x� for which
this would not be the case�
The last drawing shows the results obtained by a back�

propagation network with �� non�zero weights trained
on the �� input points and tested on ��� points in the
���� ��� range� The curve gives an overall idea of the qu�
ality of the ANNs approximation � the results can vary	
depending on the randomly set starting weights and the
parameter T � Fig� �e� shows the best results we could �nd
after many experiments with di�erent network architec�
tures	 hundreds of thousands of iterations and essentially
forcing the network to learn some points �giving the va�
lues of these points more frequently than the others�� The
network learned the values of the �� training points to a
very high precision ��������
Although the trained network is useful for interpola�

tion of the data the extrapolation properties of this ne�
twork are completely unreliable� A simple way to improve
the extrapolation is to use auto�regression	 i�e� instead of
using pairs of points �xi� yi� for �tting or network training
one may use a set of yi� yi��� ��� points� The use of autore�
gression does not change the overall conclusion concering
the �tting procedures and the network behavior�
The strength of ANNs for some problems where

non�linear relations make it hard to �nd a global ap�
proximation lies in the local description of the appro�
ximated function around the training data vectors� The
accuracy of such a description is rather low� Looking at
the function realized by the untrained net	 starting with
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random weights	 with the net outputting one real num�
ber for n�dimensional input vector	 we get a hypersurface
in n � � dimensions	 rather smooth but irregular� Lear�
ning input�output associations changes this hypersurface
to reproduce the output values around the training input
values	 but most of the random structure of the initial hy�
persurface	 including local minima and regions far from
the input data	 remain unchanged� It is instructive to
look at this function during training	 and to notice how
the model of the data that the network has is changing�

V� ALTERNATIVES TO ANNS

Approximation theory leads to regularization of func�
tions	 a very important concept �
�� especially for appli�
cations with noisy data �as usually obtained from expe�
riments�� In essence regularization takes into account ad�
ditional information in form of constraints that should be
ful�lled by the approximating function	 de�ning a func�
tional�

H�f � �
NX
i��

�yi � f�Xi��
� � 	jj %Pf jj� ����

where �Xi� yi� are know data points	 %P is the constraint
operator and 	 is a real parameter determining how im�
portant the constraints should be� This functional is mi�
nimized over all functions f�X� belonging to some class
of trial functions� The approximation in the least�square
sense follows for 	 � � �no regularization�� Elegant so�
lutions are know for many constraint operators	 allowing
the avoidance of data over�tting� e�ects in case of noisy
data inputs� For example	 to smooth the approximating
function by minimizing the rapid variation of its curva�
ture %P should include second derivatives�

jj %Pf jj� �
NX
i��

��
�

nX
j��

�

�f�Xi�


x�j

��
��
	 ��
�

Regularization may also be applied to the backpropa�
gation ANNs �
�� and can be implemented by ANNs with
one hidden layer �
��� Poggio and Girosi �
�� show how
regularization theory may be extended to what they call
theory of Hyper Basis Functions�	 containing the Radial
Basis Function �RBF� method ���� as a special case� The
RBF approach allows for multivariate interpolation in a
way that is better for most chemistry and physics pro�
blems than the ANN interpolation with sigmoidal func�
tions� The RBF method assumes the following functional
form to the approximate function f�X� given the value

at N points Xi � �x
�i�
� � x

�i�
� � ��x

�i�
n ��

F �X� �
NX
i��

Cih�jjX �Xijj� �
mX
i��

Dipi�X� ����

where h is a continuous function centered at Xi and pi
is a polynomial of some low order �in particular a con�
stant�� Some of the h functions used with very good re�
sults for problems in physics �
 � include linear and Gaus�
sian functions�

r � jjX �Xijj� h�r� � r ����

h�r� �
�

�c� � r���
� � � �

h�r� � �c� � r��� � � �  � �

h�r� � e��r�c�
�

Another branch of mathematics in which the appro�
ximation of multidimensional functions may be based is
the statistical decision theory �cf� ��� and references the�
rein�	 probabilistic Bayesian classi�ers �
�� and regres�
sion theory �
��� These approaches should be preferred
for classi�cation problems ���	 ���� and if the data cluste�
ring is rather strong� The best known programs based on
this theory are variants of the Learning Vector Quanti�
zation �LVQ� algorithm of Kohonen ����� Other relevant
methods were developed by the high energy and plasma
physics communities and are known as function parame�
trization methods �����
A recent comparison of various non�linear appro�

aches to classi�cation and data modeling	 such as neu�
ral networks	 statistical pattern recognition	 MARS and
BRUTO �

� shows that all these methods have their
weak and strong points	 depending on particular appli�
cations� Fuzzy sets theory ��
� and local coordinate trans�
formation methods based on di�erential geometry are
also strong competitors of ANN algorithms ���� o�ering a
well�de�ned mathematical background for local data ap�
proximation� ANNs are but one family of systems among
many types of adaptive systems reconstructing hypersur�
faces from the sample data by adjusting internal parame�
ters�

VI� SUMMARY

From the preceding sections it is clear that there are
many alternatives to the use of neural networks for
complex approximation problems� There are obvious ca�
ses when the use of neural networks is quite inappro�
priate� whenever linear methods are su�cient or whene�
ver least�squares �ts in some basis functions works well�
Given a su�cient number of network parameters �weights
and processing functions� and a su�cient number of data
points an approximation to an arbitrary mapping may be
obtained ��
�� For some problems approximation via sig�
moidal functions	 especially with strong non�linearity	 is
slowly converging � a re�ection of the fact that no physi�
cal insight is used in the construction of the approxima�
ting mapping of parameters on the results� The number
of adjustable parameters �weights� in an ANN is usually
quite large� Time for training the ANN	 tedious selection

 



of network architecture	 neuron output function and glo�
bal learning parameters plus the dependence of results
on the initial state of the network make the use of neural
networks for solving physical problems a very unreliable
method�

Recently Bishop �
�� proposed a fast curve �tting pro�
cedure based on neural networks� A trained ANN is used
to give quickly an approximation to the non�linear para�
meters of the iterative �tting procedure� It has already
been suggested in the context of Adaptive Logical Ne�
tworks ���� that after training the ALN net the function
that it has learned should be extracted� isn&t it better
to construct such approximating functions directly� Al�
ternative approaches	 based on the approximation theory
and theory of statistical decisions have more rigorous ma�
thematical foundation and properly applied should lead
to better results with a smaller number of parameters�
Consider for example theoretical molecular physics and

quantum chemistry� We are trying to associate	 using
some complicated computational machinery	 certain pa�
rameters	 such as geometric or one�electron basis set in�
formation	 with the values of energy and other properties�
Does a global function of these parameters giving energy
E�p�� ��pn� and other properties exist� Can we create an
approximating function containing a large number of ad�
justable parameters from computational results plus the
empirical data that will allow us to guess new values�
If good empirical or ab initio data is available for con�
struction of such a mapping it is to some degree possible
and this approach has been used for many years to obtain
reliable molecular �and more recently also solid state� po�
tential energy surfaces ����� The results of such mapping
based on physical models for underlying expansions are
much more reliable than the results one may obtain using
ANNs �����

Will the neural networks have signi�cant impact on the
methods of solving the physics and chemistry problems�
Our conclusion is that using feedforward neural networks

to solve some of these problems is a rather ine�cient way
of �tting the data to a speci�c functional form� However	
if there is no approximate theory but the data is not com�
pletely chaotic � as for example in the case of proteins
����	 QSAR and other problems in physics and chemistry
���� or time series forecasting in economics or physics ����	
�� � � any data modeling tools are worth using	 including
neural networks� There is no need to insist on sigmo�
idal processing functions	 usually more accurate results
are obtained with a smaller number of parameters using
approximating functions based on gaussian or other lo�
calized functions ����� Moreover	 various methods such as
resource allocating neural networks and other construc�
tive algorithms �
�� automatically adding more network
nodes to describe the data with higher accuracy may be
more convenient for data modeling� Another case when
neural network methods may have strong advantages is
when a large amount of data coming from experiment or
computations should be processed� Neural networks le�
arning algorithms lead to small changes of the network

parameters for each input data item presented	 while glo�
bal �tting methods require access to all data�
Approximation theory and statistical decision theory	

especially if approximate functional dependencies are
known	 give a �rm mathematical background to the
treatment of many problems to which neural network
techniques are applied in an ad hoc manner� Instead
of backpropagation neural networks	 applications based
on explicit	 well�controlled construction of approximate
mappings should be preferred� Papers on applications of
ANNs to problems of physics and chemistry should at
least compare the results with the results obtained using
statistical methods and data �tting procedures�
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FIG� �� The typical architecture of a feedforward neural
network� An input layer I� and output layer with a single
neuron� and a hidden layer �� with two sets of weights� be

tween the input and hidden layer and between the hidden
and output layer� This network performs the function given
explicitly in Eq� � in the text�

FIG� �� A neural network architecture for 	tting the data
to a set of basis functions ��

FIG� �� An example of e�ectiveness of various interpola

tion and extrapolation techniques for f�x�  sin�

p
�x� sin��x�

function� shown in a thin line on all drawings� with �� uni

formly spaced �x�f�x�� data points taken from ��� ��� as the
training data� Approximations by� a� Fourier series� �
th or

der 	t� b� 	t using �� strongly non
linear sigmoidal functions
centered on the data points� T ����� c� as above� but with
much lower non
linearity� T ���� d� as above� with T ����
equivalent to linear splines� e� the best back
propagation neu

ral network with one input� one output and �� hidden neurons
��� non
zero weights� we have found�
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