

An EEG study of creativity and fluid intelligence

Ewa Ratajczak^{1,2}, Jan Szczypiński^{2,3}, Jakub Wojciechowski^{2,3}, Julita Fojutowska^{2,3}, Piotr Szczęsny², Bibianna Bałaj^{2,3}, Joanna Dreszer^{2,3}, Włodzisław Duch^{1,2}

1 - Department of Physics, Astronomy and Applied Informatics, Nicolaus Copernicus University, Toruń, Poland
 2 - Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
 3 - Faculty of Humanities, Nicolaus Copernicus University, Toruń, Poland

Introduction

Creativity:

- Guilford's pioneer **psychometric approach** to creativity studies¹
- **Divergent thinking** as a reliable indicator of creative potential²
- Novelty/originality as a crucial constituent and metric of creativity measured by statistical originality³
- More responses = more novel responses and higher average novelty score³
- Campbell's "Blind Variation Selective Retention" theory: neuronal noise and stochastic resonance appear crucial for creative processes⁴

Creativity vs. Intelligence:

- More creative participants form remote associations more readily than the less creative when primed with a:
 - helpful prime before close associations
 - neutral primes (information noise) before far associations

Results

Participants divided into groups with respect to **fluid intelligence** (higher/lower RPM score), and creativity (higher/lower ORI.T score)

"Easy" task condition

1. CREATIVITY ANALYSIS

2. CREATIVITY vs. FLUID INTELLIGENCE

- lower creativity (OR.1)
 - lower creativity (OR.1)

"Hard" task condition

Fig.2. The effect of interaction between fluid intelligence and total creativity on the number of ideas ; task condition:

• No relationship with intelligence⁵

Aim of the Study/Hypotheses

- Reveal neuronal ccorrelates of divergent thinking
- Expected higher complexity of EEG in more creative individuals
- Expected inreractions between fluid intelligence and creativity visible in task performance

Methods

Participants:

• N = 29 (F = 19, 65.5%), age 19-31 (M = 21.7, SD = 2.9)

Raven's Progressive Matrices - advanced (RPM):

• Measure of fluid intelligence

Alternative Uses Task (AUT):

- A computerized version of Guilford's Alternative Uses Task⁶
- "List as many alternative uses for the item presented as you can think of in 3 minutes"
- 5 items (umbrella, shoe, soap, pen, brick)

Idea button to eliminate speech artifacts from EEG recordings
EEG epochs of -1250 to 0 ms prior to the reported idea

 $(r = 0.390, R^2 = 0.153, "easy" (left) p= 0.177; "hard" (right) p= 0.010. p = 0.004)$

3. CREATIVITY vs. HFD COMPLEXITY ANALYSIS

Fig.3. Definition of ROIs: frontal left (pink) and right (blue) areas

Fig.4. The effect of interaction between fluid intelligence and
 creativtiy (NO) in the "hard" task condition on frontal ROI
 HFD: left ROI (left) p= 0.011; right ROI (right) p= 0.006.

Conclusions

- Number of ideas correlates with their originality, however they are not the same thing, therefore a total creativity index was introduced: ORI.T, encompassing both NO and ORI.
- The preliminary results suggest that when the tasks becomes more difficult ("hard" condition) individuals characterized by higher fluid intelligece and higher creativity give more answers than participants with higher creativity but lower fluid intelligence. There is no such difference in the "easy" task condition.
- HFD analysis revealed that exclusively in the "hard" task condition the complexity of the EEG bioelectric signal is lateralized depending on the level of both fluid intelligence and creativity.

Acknowledgements

- Responses evaluated on number (NO), mean weighed originality (ORI) and total originality (ORI.T = NO*ORI/100)
- ECG recorded upon the AUT task and prior resting-state

EEG signal analysis:

- Higuchi's fractal dimension (HFD) analysis of the EEG signal measures the complexity of time series⁷; due to HFD's particular sensitivity to signal fluctuations it is an excellent tool for estimating brain function complexity dynamics
- Local activity in the gamma band (neuronal noise) (planned)

Task (word) difficulty assessment:

- **Emergent artificial intelligence** software: cathegorisation (planned)
- Total /mean amount of responses the two extremes
- the word with **most** responses : the **"easy"** task condition
- the word with least responses : the "hard" task condition

I would like to thank dr hab. Jerzy Łukaszewicz, prof. UMK, director of CMIT, NCU for enabling the execution of this project. Many thanks to all the Students who took part in data acquisition and analysis. This study is part of a research project funded by the Polish National Science Centre with a Preludium 9 grant no. 2015/17/N/HS6/02864

Literature

1. Sternberg, R.J. and Lubart, T.I., 1999. The Concept of Creativity: Prospects and Paradigms in Handbook of Creativitity, R.J. Sternberg, Editor., Cambridge University Press, New York.

2. Runco, M. & Acar, S., 2012. Divergent Thinking as an Indicator of Creative Potential. Creativity Research Journal, 24 (1), pp. 66-75.

 Dippo C. Evaluating The Alternative Uses Test of Creativity, Proceedings of the National Conference On Undergraduate Research (NCUR) 2013, University of Wisconsin La Crosse, WI, April 11 – 13, 2013
 Simonton, D. K., 2010, 'Creative thought as blind-variation and selective-retention: combinatorial models of exceptional creativity'. Physics of Life Reviews, vol. 7, no. 2, pp. 190–4.

5. Gruszka, A., Nęcka, E., 2002, 'Priming and Acceptance of Close and Remote Associations by Creative and Less Creative People', Creativity Research Journal, vol. 14, no. 2, pp. 193–205

6. Fink, A., Grabner, R.H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., Neuper, C., Ebner, F., Neubauer, A.C., 2009a. The creative brain: investigation of brain activity during creative problemsolving by means of EEG and fMRI. Hum. Brain Mapp. 30, 734–748. Fink 2006

7. T. Higuchi. Approach to an irregular time series on the basis of the fractal theory, Physica D: Nonlinear Phenomena, 31 (2)