Differentiation of French phonemes, that are not present in polish language by monolingual Polish individuals -EEG study

This study is part of the grant "NeuroPerKog: rozwój słuchu fonematycznego i pamięci roboczej u niemowląt i dzieci" led by prof. Włodzisław Duch.

Jakub Wojciechowski Maria Czarnecka Joanna Dołżycka Jan Szczypiński Bibianna Bałaj Joanna Dreszer

Introduction

Ability to learn language is strongly linked with age. When we get older learning foreign languages becomes more tough. That is due to phenomenon known as sensitive period of language acquisition.

Fig 1. Huge gap exists between infants and adults, especially seniors in terms of capabilities of learning and processing new languages.

Theoretical basis of the study

Fig 2. (from: Marek Wiśniewski, Zarys fonetyki i fonologii współczesnego języka polskiego, Uniwersytet Mikołaja Kopernika, Toruń 2001, p. 70) – Scheme of articulation areas in Polish language.

Theoretical basis of the study

Fig 3. From Fougeron & Smith (1993:73). Collocation of vowels in french language.

Electroencephalography (EEG)

Noninvasive, painless, commonly used method of measuring bioelectrical activity of the brain with the use of electrodes placed on the scalp.

Fig 4. (from: Luck 2005 - An Introduction to the Event-Related Potential Technique ; 30p.) The origin of electrical potentials recorded via EEG is summation of electrical potentials generated by neural cells communicating with each other, coming mostly from surface (gyruses and sulcuses) of the cortex.

Event-related Potentials (ERP)

Electrical potencial which is evoked by brains processing of sitmulus, this response is obtained multiple times and averaged to one general response of individual.

One of the ERPs is Mismatch Negativity - MMN

Fig 5. Example of single-trial responses and averaged EEG wave

Mismatch Negativity (MMN)

A component of EEG signal, which is being evoked by different, distinguishible stimulus in a sequence of stimuli. It appears 100 to 250 milliseconds after exposition to such stimulus.

Fig 6. (From: Wikipedia) – Illustration of neural generators of **Mismatch Negativity** component, from left: 1) supratemporal gyrus (bilaterally active); 2) frontal lobes (right hemisphere is more active).

Mismatch Negativity (MMN)

A component of EEG signal, which is being evoked by different, distinguishible stimulus in a sequence of stimuli. It appears 100 to 250 milliseconds after exposition to such stimulus.

Fig 7. (From: Näätänen 2007) – Illustration of **Mismatch Negativity** component composed of ERP waveforms for two types of stimuli (black bar with "S" symbol): frequent (black line) and rare (turquoise).

MMN in auditory processing and language studies

Clinical Neurophysiology 118 (2007) 2544-2590

Invited review

The mismatch negativity (MMN) in basic research of central auditory processing: A review

R. Näätänen ^{a,b,c,*}, P. Paavilainen ^{a,d}, T. Rinne ^d, K. Alho ^d

^a Cognitive Brain Research Unit, Department of Psychology, ^b Department of Psychology, University of Helsinki, Helsinki, Finland ^c Helsinki Brain Research Centre, ^d Department of Psychology, University of Helsinki, Helsinki, Finland

> Accepted 28 April 2007 Available online 10 October 2007

progress in Veurobiolog

Progress in Neurobiology 79 (2006) 49-71

www.elsevier.com/locate/pneurobio

Language outside the focus of attention: The mismatch negativity as a tool for studying higher cognitive processes

Friedemann Pulvermüller*, Yury Shtyrov

Medical Research Council, Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 2EF, UK Received 20 June 2005; received in revised form 18 November 2005; accepted 4 April 2006

MMN in auditory processing and language studies

Psychophysiology, *36* (1999), 638–642. Cambridge University Press. Printed in the USA. Copyright © 1999 Society for Psychophysiological Research

Brain responses reveal the learning of foreign language phonemets

ISTVÁN WINKLER,^{a,b} TEIJA KUJALA,^b HANNU TIITINEN,^b PÄIVI SIVONEN,^b PAAVO ALKU,^c ANNE LEHTOKOSKI,^b ISTVÁN CZIGLER,^a VALÉRIA CSÉPE,^a RISTO J. ILMONIEMI,^d AND RISTO NÄÄTÄNEN^{b,d}

^aInstitute for Psychology, Hungarian Academy of Sciences, Budapest, Hungary

^bCognitive Brain Research Unit, Department of Psychology, University of Helsinki, Finland

^cDepartment of Applied Physics, Electronics and Information Technology, University of Turku, Finland

^dBioMag Laboratory, Medical Engineering Centre, Helsinki University Central Hospital, Finland

Motivation and Hypothesis

The goal of this study was to investigate if monolingual Polish individuals distinguish French syllables, different only on the second phoneme. The indicator of differentiation is a MMN wave in EEG signal. For that we have stated following hypothesis:

Monolingual native Polish speakers cannot differentiate between French /é/ and /ê/ phonemes on neurophysiological level during passive stimulation task.

Methodology - Participants

In this study 26 individuals (19-26 years old – 21,9 on average) participated. None of them have ever learned French. We took 21 individuals that were right-handed to further analysis (9 males and 12 females).

Fig 8. Photo of participant from our study during EEG cap adjustment.

Methodology - EEG

For this study a passive oddball with two deviants (different from one another) was used.

- passive paradigm: while participants have been watching the movie, stimuli were presented through the headphones
- in the stimuli sequence there was 10% of first deviant and 10% of second deviant
- duration of the stimulus was 350 ms
- the intervals between stimuli were 1,2 1,6 seconds
- intensity of stimuli 75 dB
- duration of a EEG session: 45 minutes

Methodology - Stimuli

The frequent stimulus was fé, rare stimuli were syllables
feu (easy to differentiate*) and
fê (difficult to differentiate*).

*for Polish natives

Methodology - Stimuli Syllables were different only in first formant of a vowel.

fé

feu

fê

Methodology - Preprocesing

The signal analysis was performed in Matlab, with a toolbox: EEGLAB.

Digital filter	1 to 25 Hz
Resampling	255 Hz
Epochs analysied	- 200 to 500 miliseconds before stimulus
Baseline removal	- 200 to 0 miliseconds before stimulus
Signal re-reference	mastoids

Fig 9. EEG preprocessing important paramaeters.

Results

The Figure presents averaged responses from all participants to three different stimuli measured from centrally placed electrode "Cz" (also known as vertex):

1) standard: 80% of occurance – black line

2) deviant (easy to differentiate from standard): 10% of occurance - red line

3) deviant (difficult to differentiate from standard) 10% of occurance - blue line. Vertical, dashed line represents the moment of appeariens of target phoneme.

Results

Fig 10. Box chart of average brain's response for all paricipants from 100-200ms window after difference in stimuli, measured in μV . Significant (p < 0.01) difference between both standart and hard deviant vs easy deviant, and no significant difference between response for standard and hard deviant stimuli was observed.

For the hard to differentiate pair, the MMN component was absent thus confirming the hypothesis.

The next step will be performing the experiment on a group of French native speakers to investigate their response for the same set of stimuli.

Bibliography

S. J. Luck, An Introduction to the Event-Related Potential Technique, The MIT Press (2005).

S. J. Luck, E. S. Kappenmann, The Oxford Handbook of Event-Related Potentials Components, Oxford University Press (2012).

R. Näätänen, et al., The mismatch negativity (MMN) in basic research of central auditory processing: A review, Clinical Neurophysiology 118 (2007) 2544–2590.

F. Pulvermüller, Y. Shtyrov, Language outside the focus of attention: The mismatch negativity as a tool for studying higher cognitive processes, Progress in Neurobiology 79 (2006) 49–71.

I. Winkler, et al., Brain responses reveal the learning of foreign language phonemes, Psychophysiology, 36 (1999) 638 – 642.

M. Wiśniewski, Zarys fonetyki i fonologii współczesnego języka polskiego, Uniwersytet Mikołaja Kopernika (2001)