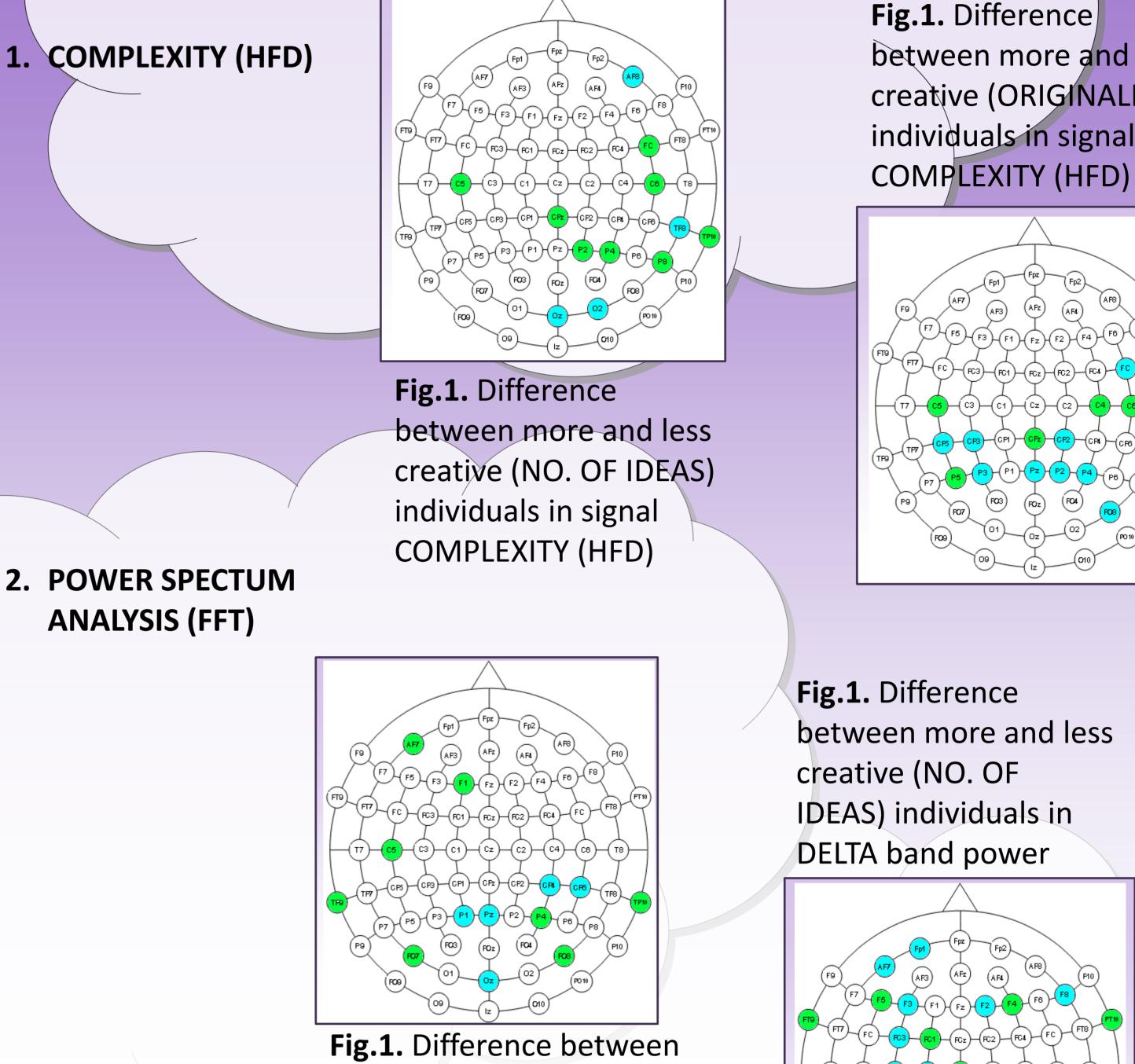
# **Creative** thinking in computerized Alternative Uses Task – an EEG pilot study

Ratajczak E.<sup>1, 2</sup>, Wojciechowski J.<sup>2, 3</sup>, Szczypiński J.<sup>2, 3</sup>, Nikadon J.<sup>2, 3</sup>, Bałaj B.<sup>2, 3</sup>, Dreszer-Drogorób J.<sup>2, 3</sup>, Duch W.<sup>1, 2</sup>

1 - Department of Physics, Astronomy and Applied Informatics, Nicolaus Copernicus University, Toruń, Poland 2 - Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland 3 – Faculty of Humanities, Nicolaus Copernicus University, Toruń, Poland


# Introduction

#### **Creativity:**

- Creativity as an elusive concept and an ill-defined problem
- Guilford as the first to propose creativity studies and evaluation using a pencil-and-paper psychometric approach<sup>1</sup>
- Divergent thinking as a reliable indicator of creative potential<sup>2</sup>
- Novelty (or originality) as a crucial constituent and metric of creativity; measured by statistical originality<sup>3</sup>

# Results

#### **1. COMPLEXITY (HFD)**



between more and less creative (ORIGINALITY) individuals in signal

**OWOCZESNYCH** 

TECHNOLOGII

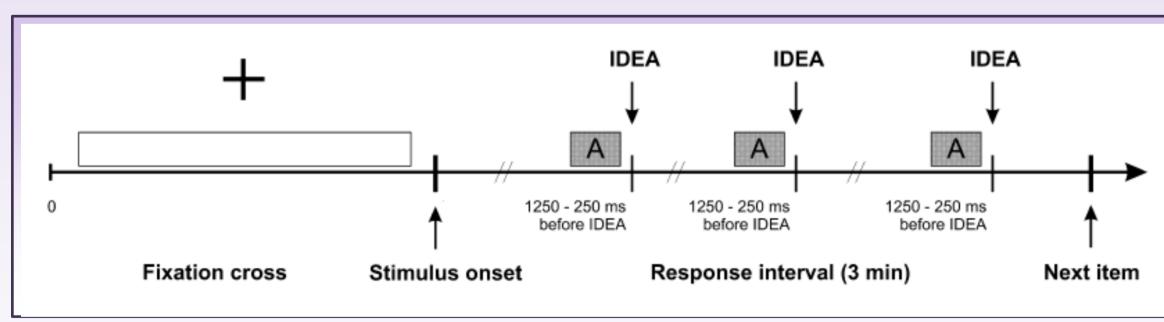
- More responses = more novel responses and higher average novelty score<sup>3</sup>
- Bounded Ideation Theory: positive s-curve ideation function; no. of good ideas increases with better understanding of the problem and decreases as participants get exhausted<sup>4</sup>

#### **EEG studies**:

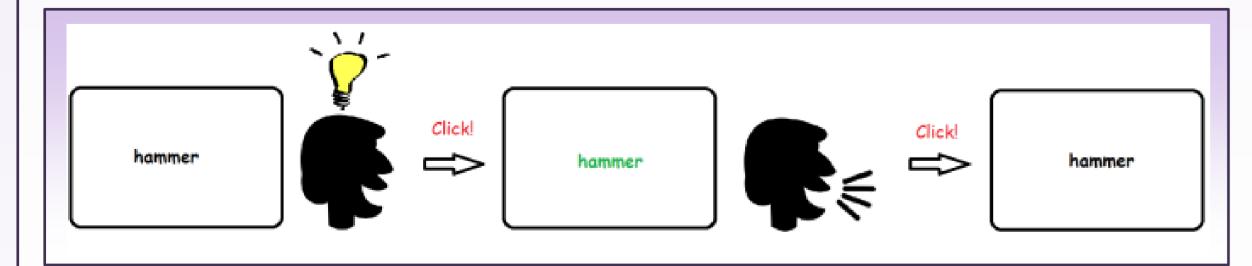
Increased frontal alpha power and synchrony, temporal and parietal alpha synchrony<sup>5</sup>

### **Complexity studies**

No creativity studies applying complexity analysis up to date


# **Aim of the Study/Hypotheses**

- Investigate the neuronal correlates of creative processes
- Replicate previous findings in power spectra analysis
- Expect higher complexity in more creative individuals


# **Materials and Methods**

### **Participants:**

- Creativity task: 15 (8 F, 53.33%) , age 22-36 (M = 26.00, SD = 3.87)
- EEG pilot study: 11 (6 F, 54.55%) , age 22-36 (M = 25.91, SD = 4.13) **Alternative Uses Task:**
- A computerized version of Guilford's Alternative Uses Task (AUT)<sup>6</sup>
- "List as many alternative uses for the item presented as you can think of in 3 minutes"
- 5 items (umbrella, shoe, soap, pen, brick)



Idea button to eliminate speech artifacts from EEG recordings Analyzed epochs of -1250 to -250 ms prior to the reported idea

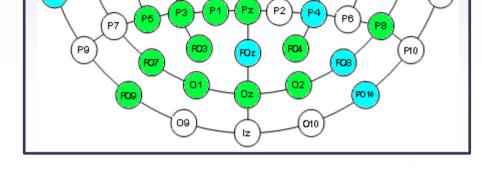


#### GAMMA band power

OF IDEAS) individuals in

more and less creative (NO.

- Green-marked electrodes: p < 0.05
- Blue-marked electrodes: p < 0.1


# Conclusions

- More creative individuals (both concerning originality and number of iseas) exhibit higher complexity and therefore lower regularity of the EEG signal obtained during divergent thinking task. This possibly depicts higher complexity of neuronal processes involved in creative thinking.
- Moreover, higher power in gamma and delta bands of the spectrum were present in the more creative individuals, who produced more ideas.
- No difference in alpha band power was found between the groups.

# Acknowledgements

I would like to thank dr hab. Jerzy Łukaszewicz, prof. UMK, director of ICNT, UMK for enabling the execution of this project, carried out as part of Interdisciplinary Doctoral Studies in Mathematics and Natural Scienceses

### Literature



Responses evaluated on originality, fluency, flexibility and elaboration<sup>3</sup>

# Signal analysis:

1. **Spectral analysis**: power spectrum in separate frequency bands 2. Nonlinear fractal dimension for analysis: complexity measurements

- Higuchi's fractal dimension (HFD) measures the complexity of time series<sup>7</sup>
- HFD of the EEG signal estimates brain function complexity dynamics, due to the particular sensitivity to signal fluctuations exhibited by this method

1. Sternberg, R.J. and Lubart, T.I., 1999. The Concept of Creativity: Prospects and Paradigms in Handbook of Creativitity, R.J. Sternberg, Editor., Cambridge University Press, New York. 2. Runco, M. & Acar, S., 2012. Divergent Thinking as an Indicator of Creative Potential. Creativity Research Journal, 24 (1), pp. 66-75.

3. Dippo C. Evaluating The Alternative Uses Test of Creativity, Proceedings of the National Conference On Undergraduate Research (NCUR) 2013, University of Wisconsin La Crosse, WI, April 11 – 13, 2013 4. Reinig, B.A., R.O. Briggs, and J.F. Nunamaker., 2007. On the measurement of ideation quality. Journal of Management Information Systems, 23 (4), pp. 143-161.

5.Fink, A., Grabner, R.H., Benedek, M., Neubauer, A.C., 2006. Divergent thinking training is related to frontal electroencephalogram alpha synchronization. Eur. J. Neurosci. 23, 2241–2246.

6.Fink, A., Grabner, R.H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., Neuper, C., Ebner, F., Neubauer, A.C., 2009a. The creative brain: investigation of brain activity during creative problemsolving by means of EEG and fMRI. Hum. Brain Mapp. 30, 734–748. Fink 2006

7. T. Higuchi. Approach to an irregular time series on the basis of the fractal theory, Physica D: Nonlinear Phenomena, 31 (2)