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Abstract: Dominant Internet search engines use keywords 
and therefore are not suited for exploration of new domains 
of knowledge, when the user does not know specific vocabu-
lary. Browsing through articles in a large encyclopedia, each 
presenting a small fragment of knowledge, it is hard to map 
the whole domain, see relevant concepts and their relations. 
In Wikipedia for example some highly relevant articles are 
not linked with each other. Static links do not express the 
need to show dynamic subsets of interconnected concepts 
that reflect particular interest of the user. Using neurocogni-
tive inspirations to understand information representation 
based on natural language we have developed various ways 
for dynamic representation of relevant information. Prelimi-
nary experiments with Wikipedia articles are used to demon-
strate this approach. 
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I. Introduction 

 
Rapid growth of information resources in the Internet 

makes the extraction and management of useful information 
increasingly difficult. On the one hand specific information 
based on specialized keywords unique for a given field 
makes it relatively easy to find specialized articles on that 
subject, provided that the user knows these keywords. Bio-
medical applications of natural language processing (NLP) 
are based on such specialized vocabulary stored in standard-
ized ontologies, and therefore are relatively easy to imple-
ment. The Unified Medical Language System (UMLS) is a 
huge collection of medical ontologies [1] and indexing terms 
selected for Medical Subject Headings (MeSH) ontology are 
at the foundation of information retrieval in Medline, the 
biggest repository of medical articles. Commonsense 
knowledge is much more difficult to verbalize; human abil-
ity to describe well-known objects using words is rather 
poor. For example, there are more than 400 breeds of dogs 
that we can distinguish visually, but it is almost impossible 
to describe such images using keywords in sufficient details 
to identify a particular breed.  

Despite continuous improvements of search engines, re-
trieval and management of textual information is getting 
increasingly difficult. The quality of information in the In-
ternet is degraded by a large number of spam pages with 
advertisement, poor quality, copies of the same information, 
making the search for relevant information increasingly dif-
ficult. Semantic Internet [2][1][3] is still far from realization 
and will not help to avoid information clutter, it may actual-
ly make the situation even worse. Definitions of word mean-
ing added to HTML text using XML (eXtended Markup 
Language) or RDF (Resource Description Framework) 
markup tags for describing information and resources on the 
web can easily be copied also on spam pages. Searching for 
more information about the breaking news returns hundreds 
of essentially identical copies provided by numerous news 
services, and adding semantic description will not change it.  

We have already commented on the problems of semantic 
web [4] and proposed to use a query-based approach based 
on neurocognitive inspirations to create semantic memory 
model [5]-[11], asking minimum number of questions to 
define the subject of the query more precisely. Precisiation 
of natural language concepts has also been addressed from 
the fuzzy logic perspective [12], but with the focus on un-
derstanding quantitative concepts only, like “most”, or “usu-
ally”. This is interesting but rather limited approach that is 
important only in relatively rare situations.  

In this paper another aspect of information management, 
not covered by the semantic web, is addressed: browsing for 
information in new domains, where the user does not know 
precise keywords or specific vocabulary. In such cases a 
good place to start is from systematic knowledge sources, 
such as articles in specialized journals, or articles in a large 
encyclopedia, each presenting a small fragment of 
knowledge. Connections of relevant concepts or papers for 
further reading are captured by links that are manually added 
either by the authors of the information or the editors of 
journals or databases. For example, PubMed library provides 
many kinds of links for each article, and Wikipedia, Schol-
arpedia and many other encyclopedic and library resources 
available in the Internet include internal links to other arti-
cles within each resource, and additional links to the external 
sources. Whole domains of knowledge may be visually 
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Fig.  4. SOM map generated for semantic network of 50 animals 

Fig.  5. SOM map generated for 50 animals, weighted by keyword “beak” and words 
correlated with this keyword: bird, fly and eggs. 
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Further separation depicted in Fig. 6 is achieved if „fly” is 
used as a keyword. This feature is correlated with eggs, beak, 
bird with coefficients 0.621, 0.7362, 0.8466. Most birds are 
now in one cluster, with domestic birds in another and spar-
row (much smaller than all other birds) in a separate cluster, 
while turtle and frog are shifted to a big cluster.  
 
Wikipedia. The same approach may be used to search and 
organize larger database of articles. English Wikipedia has 
now (May 2010) over 3.2 million articles (in 2006 it had 
only 1.4 million articles), and several times more in a large 
number of other languages; 5 largest collections are in Eng-
lish, German, French, Polish, and Japanese. While there are 
many attempts to create peer-review reliable encyclopedic 
resources none is at such large scale as Wikipedia. Semantic 
map of the whole 2005 collection of articles has been creat-
ed [27] showing clusters corresponding to manually de-
signed categories. These categories have been designed 
manually, in a hierarchical and logical way, but at quite dif-

ferent ontological level, form rather large branches to indi-
vidual and specialized topics. Fixed categories will never be 
sufficiently flexible to express all points of view of interest 
to the users. For example, selecting neuroscience articles 
that are relevant to human, related to computational models, 
or to molecular neuroscience, or to combination of such cat-
egories, cannot be done by browsing through categories.  

In this series of experiments we have used different repre-
sentation of similarity between articles, based on co-citations. 
This type of representation has been used before with good 
results for analysis of the whole branches of science [28], 
but here the purpose is quite different, searching for specific 
visual representation (as in Fig. 1) of articles that are related 
to each other from a specific point of view. Articles about 17 
philosophers interested in the philosophy of art have been 
selected. There were 660 citations in all these articles, so 
similarity between these philosophers may be evaluated in 
this space. It is well known that reduction of dimensionality 
by the Principal Component Analysis (called in natural lan-
guage processing “Latent Semantic Analysis”) leads to more 

Fig.  6. Adding features correlated with "fly" separates birds from other animals. 
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IV. Discussion and future developments 
 
We have identified several problems that have not been 

addressed by the semantic web approach and it does not 
seem likely that these problems will be addresses in the near 
future. Creating dynamical maps that show information 
maps restricted to what is interesting at a given moment is a 
novel concept that should help to avoid information clutter 
created by current visualization methods. Semantic similari-
ty should help to avoid problems with missing links and 
incomplete relational information. The algorithm presented 
here may use similarity evaluation based on concepts found 
in the documents, existing links between documents, and 
common citations.  

There are many sophisticated methods for evaluation of 
similarity and clustering of documents. Although SOM has 
been used here the final results are frequently better repre-
sented by maps linking similar documents that are clustered 
in a few adjacent SOM nodes. One way to represent such 
concepts is by using minimum spanning trees [29]. Another 
way is to present keywords from major PCA components on 
a radar plot, showing interesting directions (such visualiza-
tion has been used to show major components in clusters 
[30]). A combination of semantic similarity with search di-
rections represented in radar plots may also be an interesting 
way to define suitable perspective for visualization. We have 
used linear correlation between concepts to rescale a group 
of related features in vector representation of documents, but 
in the Interspace project [31] a sophisticated system for 
guided navigation in the space of concepts has been de-
scribed. Several ways of initial query expansion have been 
described in the literature [32]-[34].  

Combining overall similarity with filtering based on key-
words simplifies browsing through new domains. Visual 
representation of linked documents or web pages has been 
used for some times but did not gain large popularity, de-
spite such interfaces as TheBrain4 that should linked notes 
and webpages in form of a big graph. Adding the ability to 
create semantic links and filtering such links through specif-
ic lens defined by keywords should make them much more 
useful.  

Such approach will be useful in many information man-
agement platforms. For example, Neurocommons5 is an open 
source knowledge management platform for neuroscience 
research that “seeks to make all scientific research materials 
- research articles, knowledge bases, research data, physical 
materials - as available and as usable as they can be. […] 
We want knowledge sources to combine easily and mean-
ingfully, enabling semantically precise queries that span 
multiple information sources.” 

International Neuroinformatics Coordinating Facility 
(INCF)6 (with headquarters based in Sweden) has similar 

                                                           
4 http://www.thebrain.com 
5 http://neurocommons.org 
6 http://incf.org 

goals and tries to rely on the semantic web techniques, inte-
gration and management of text data and other symbolic 
information. Such national neuroinformatics platforms are 
being developed in collaboration with INCF in many coun-
tries. Some projects are focused on specific subfields, for 
example the Visome project is concerned integration of ex-
perimental databases, software for data analysis, models of 
neural processes and relevant literature for color vision [35]. 
Educational resources sharing educational material, such as 
Connections7 contain thousands of modules that are quite 
hard to browse, as the amount of information is overwhelm-
ing and there are no good tools for viewing it. The need for 
better search and browsing tools is indeed great and there-
fore development of good tools along the lines sketched in 
this paper is highly desirable. 
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