
Constrained Learning Vector Quantization
or Relaxed k-Separability

Marek Grochowski and Włodzisław Duch

Department of Informatics, Nicolaus Copernicus University, Toruń, Poland,
grochu@is.umk.pl; Google: W Duch

Abstract. Neural networks and other sophisticated machine learning algorithms
frequently miss simple solutions that can be discovered by a more constrained
learning methods. Transition from a single neuron solving linearly separable
problems, to multithreshold neuron solving k-separable problems, to neurons
implementing prototypes solving q-separable problems, is investigated. Using
Learning Vector Quantization (LVQ) approach this transition is presented as go-
ing from two prototypes defining a single hyperplane, to many co-linear proto-
types defining parallel hyperplanes, to unconstrained prototypes defining Voronoi
tesselation. For most datasets relaxing the co-linearity condition improves accu-
racy increasing complexity of the model, but for data with inherent logical struc-
ture LVQ algorithms with constraints significantly outperforms original LVQ and
many other algorithms.

1 Introduction

Problems with Complex logical structure are difficult to solve with feedforward neu-
ral networks, such as the Multilayer Perceptrons (MLPs), the basis set expansion (Ra-
dial Basis Function, RBF) networks, or Support Vector Machines (SVMs). The k-
separability index [1] breaks the class of non-separable classification problems into
subclasses that require at least k intervals for separation of data after a single linear
projection (equivalent to k parallel hyperplanes). Such problems are called k-separable,
with k = 2 for linear separability. High values of k characterize problems that are dif-
ficult to learn for feedforward neural networks and kernel classifiers [1], although in
principle they may be solved by a single multi-threshold neuron. For example, the d-bit
parity problem is very difficult because it is d + 1-separable [1], with vectors forming
compact clusters only after suitable projection, not before. Many problems in bioinfor-
matics, text analysis and other fields have inherent complex logic that makes learning
difficult. Changing the cost function from a typical error function evaluating separa-
bility [2] to function that rewards discovery of interesting patterns in the data helps to
create good internal representations. For k-separable problems reward for creation of
large clusters of pure vectors after projection to the hidden space creates features that
greatly simplify the learning process [3].

Direct use of linear projections is not always the best idea. For example, image seg-
mentation requires distinguishing complex shapes defined in two- or three-dimensional
space. This type of difficulty is solved by using localized kernels to project original

Duch
Tekst maszynowy
Lecture Notes in Computer Science Vol. 5768: 151-160

Duch
Tekst maszynowy

Duch
Tekst maszynowy

Duch
Tekst maszynowy

2 Marek Grochowski and Włodzisław Duch

data to the high-dimensional space [4], providing flexible decision borders in the orig-
inal space. However, for highly non-separable problems with non-compact distribution
of data clusters, as is the case of Boole’an functions, flexible decision borders are not
sufficient, and significant simplifications may be achieved if instead of linearly separa-
ble k-separable learning target is defined [1]. Such approach may discover simple and
comprehensible data models, but needs to be extended if simple solutions do not exist.

In this paper systematic increase of model complexity is investigated, from the sim-
plest, single neuron perceptron that solves separable problems, through k-separable
projections equivalent to constrained vector quantization methods, to unconstrained
prototype-based LVQ solutions. This is achieved by investigating relations between
projection-based and distance-based solutions. In the first case constructive neural net-
works with perceptron-type nodes may be used [5, 6], while in the second case localized
function networks, or learning vector quantization methods, provide prototype-based
rules [7]. In the next section some drawbacks of existing systems are briefly pointed out
and relations between k-separable solutions and constrained Learning Vector Quanti-
zation (cLVQ) approaches explored. Section three describes two such cLVQ algorithms
that are tested on some benchmark datasets in section four.

2 k-separability and prototypes

There is a growing evidence that existing algorithms easily miss simple solutions for
various datasets. Consider the Australian Credit dataset [8] that has been used in the
Statlog project [9]. 690 cases of credit card applications are characterized using 6 nu-
merical and 8 categorical attributes, with some missing values. All attribute names and
values have been changed to meaningless symbols to protect confidentiality of the data.
Almost the same number of approval (55.5%) as disapproval cases (44.5%) has been se-
lected. In the Statlog project [9] over 20 classifiers have been applied to this data, with
the best results reached in 10-fold crossvalidation by the Cal5 decision trees, around
87±4% accuracy with an average of about 6 nodes per tree. Other trees showed an
average of about 85.5% and lower, with as many as 70 nodes. Radial Basis Function
(RBF) networks gave also about 85.5%, and MLP about 1% lower, while linear SVM
gives 85.2±3.0%, with over 190 support vectors. Optimized Gaussian-kernel SVM is
slightly better, with 86.2±4.1%, for optimized C = 0.1, σ = 0.01, leaving over 460
support vectors 1. LVQ gives here even worse results at the 80% accuracy level. Unfor-
tunately all these learning methods missed the simplest rule that has Acc=85.5±4.0%
accuracy, based on a single binary feature: if A8=True then Yes, if A8=False then No.
This solution is statistically not worse than the best results for this dataset, and much
more comprehensible than those provided by alternative methods. Regularization in
neural networks [2] does not provide bias towards this type of simple solutions, prefer-
ring many small weights instead of binarized weights.

All learning methods mentioned above also fail when sharp decision borders are
needed. On most data for which logical rules gave good results [10] neural networks,
LVQ, SVM and the nearest neighbor methods are much worse than decision trees. For

1 calculations performed with the Ghostminer package, www.fqs.pl/ghostminer

Grochowski & Duch: Constrained Learning Vector Quantization ... 3

example, the Thyroid Disease data set [8], with 3772 examples for learning (primary
hypothyroid, compensated hypothyroid, normal, 2.47%, 5.06%, 92.47% respectively),
and 3428 for testing (similar class distribution) has 21 attributes (15 binary, 6 continu-
ous). Rules based on 4 continuous and 2 logical features give 99.36% accuracy on the
test set, while the best neural approaches are not better than 98.5% and SVM with op-
timized Gaussian kernel achieves only 96.1%. Results on complex Boolean problems
are even worse, but in this case also decision trees fail completely [5, 6].

Thus in a number of relatively simple problems popular machine learning methods
are not able to find good models. One may of course develop a methodology that would
start from simple rules [10], for example highly pruned decision trees, and proceed
to more complex learning algorithms testing different methods. However, it would be
better to have a model that could deal with such problems directly. To this aim relations
between projection and distance-based methods are explored below.

A linearly separable data is divided by a hyperplane into two distinct classes. The
w vector is perpendicular to this hyperplane and defines a direction for the projec-
tion z(x) = w · x/||w|| of d-dimensional data points x, mapping all points from
one class on z < θ, and from the other class on z > θ. The conditional probabil-
ity densities p(z|C)p(C) after projection of the training data may be used to draw a
histogram and estimate probability distributions (Fig. 1). Identical solution is obtained
using two prototypes ti, i = 1, 2 placed on the w line symmetrically around the thresh-
old θ = |z(t1)− z(t2)|/2 = |z1 − z2|/2, each associated with its class Ci, and a rule:
choose C1 if |z(x) − z1| < |z(x) − z2|, else choose C2. However, the interpretation
of such prototypes may be problematic, as their placement is not unique and cannot in
general match both probability density peaks. To facilitate arbitrary placements each
prototype should have its own threshold θi, with z1 + θ1 = θ = z2 − θ2. Then the de-
cision rule becomes: C1 if z(x) < z1 + θ1, or C2 if z(x) < z2 − θ2. Using two instead
of one threshold allows also to define a confidence margin around θ where probability
densities may overlap decreasing reliability of predictions.

Some non-separable problems are k-separable; a projection exists that gives k pure
clusters of vectors that belong to different classes. It requires only d+k−1 parameters,
one direction w and k − 1 intervals. Most Boole’an problems for d-bit strings have
k ∼ n/2 with maximum k probably equal to d + 1 [1]. This is equivalent to k co-
linear LVQ prototypes ti, i = 1..k. For example, in d-bit parity problem projection on
the direction of the main diagonal w = [1, 1, ...1] creates clusters for alternating odd
and even-parity classes containing strings with 0, 1, 2 ... d bits equal to 1, separated
from each other by

√
n/(n + 1). The decision rule says: if z(x) ∈ [θi−1,i, θi,i+1]

than x belongs to the class associated with zi prototype, where θi−1,i is the Bayesian
threshold calculated from probability distributions for z(x) for vectors that fall into
adjacent clusters. Prototypes zi = z(ti; w) may fall at any point in this interval.

Even though a single projection may sometimes be sufficient for correct classifica-
tion a larger number of good projections may be useful for building a robust predictor.
This may be achieved by sequential constructive network algorithms using projection
pursuit based on the Quality of Projected Clusters (QPC) [5, 6]. Note that solutions pro-
vided by MLP, RBF or SVM classifiers for k-separable problems are much more com-
plex and cannot generalize well. If not all data samples are separated by projections

4 Marek Grochowski and Włodzisław Duch

extraction of information based on similarity should be tried. One of the simplest such
transformations is done by finding prototypes in the original data space, for example
by the Learning Vector Quantization (LVQ) algorithm [11, 12], and then use distances
to these prototypes as new dimensions. The number of dimensions is then equal to the
number of prototypes. LVQ algorithm may also be used to look for optimal projections,
but there are two problems with this solution. First, k unconstrained prototypes require
kd parameters, while for k-separable problems models d + k − 1 parameters are suffi-
cient. Second, it is very difficult to find good unconstrained solution for problems that
are highly-nonseparable. Even in the Australian Credit problem LVQ has failed to find
binary feature that separates the data fairly well. Finding optimal scaling factors for fea-
tures used in the distance function is quite hard, therefore all distance-based methods,
including LVQ, easily miss it.

In the spirit of the structural risk minimization approach [13] data models of pro-
gressively increasing complexity will be created by adding prototypes and relaxing con-
straints. The simplest model searches for separable solutions starting from testing pro-
jections on each of the input features xi. A line wij = mi − vmj connecting means
mi of vectors for each class for Gaussian distributions gives optimal solution for pair-
wise class discrimination. This requires d parameters for w plus one parameter for the
threshold. In general optimal direction may be found using the QPC criterion [5]. Fix-
ing the reference point at m1 mean similar direction w ∼ m1− t1 should be found by
the LVQ optimization of a single prototype t1. k-separable solutions are only slightly
more complex, defining along z(x) projection line k intervals and requiring d + k − 1
parameters. This is equivalent to k co-linear prototypes ti, with one prototype per re-
sulting cluster. LVQ algorithm should find similar solution if a prototype t1 is adapted
without contraints, providing direction w ∼ m1 − t1. The remaining k − 1 prototypes
are placed on this line, adapting only their positions zi = w · ti.

Decision borders created by co-linear prototypes divide whole feature space with
parallel hyperplanes. If this solution is not sufficient constraints should be relaxed to
allow for LVQ adaptation of all prototypes. This creates Voronoi tessellation using kd
parameters. Allowing for adaptation of the scaling factors and the type of distance func-
tions creates even more complex decision regions [14, 15], but we shall not investigate
it here. Starting from one prototype, adding more prototypes with constraints, and fi-
nally allowing for full LVQ adaptation, should systematically explore different biases
leading to progressively more complex models. Constraints of this type are a form of
regularization [2] that should help to find solutions that are not easy to discover.

3 Constrained Learning Vector Quantization (cLVQ)

The constructive cLVQ algorithm combines (non-local) projection pursuit scheme and
(local) LVQ learning. Learning starts from the simplest classification model (in terms
of k-separability), defined by a single projection and a single prototype per class. For
two-class linearly separable problems this is sufficient. If this is not the case the number
of parameters of the model is increased until results will show no significant improve-
ment. Complexity of the model may be increased in two ways: by adding consecutive
projections, or by increasing the number of prototypes for each projection.

Grochowski & Duch: Constrained Learning Vector Quantization ... 5

The cLVQ model may take the form of a two layer feedforward neural network. Let
W = {wi}, i = 1, . . . , h denote weights of connections between the d input and the h
hidden nodes, performing linear projectionsWx, scaling and combining input features.
Let T = {tj}, j = 1, . . . , k denote connection between hidden to the k output nodes,
one per class, with each weight tjl coding positions of prototypes tj after projection
wl. Classification is done using the winner takes all (WTA) rule, where for a given
input x the network returns class label associated with prototype tr most similar to x:
r = arg minj ||Wx− tj ||. Fully connected network has (d + k)h parameters, where d
is the number of inputs, k the number of prototypes (output nodes) and h is the number
of projections (hidden nodes). Removing connections with small weight values may
further reduce model complexity.

This model is trained by two approaches: first, maximization of the QPC projection
pursuit index to find projection directions (QPC-LVQ), and second, based on the first
PCA eigenvector (PCA-LVQ). The cLVQ network learning starts with an empty hid-
den layer and k (the number of classes) output nodes. First optimization of projections
wi that separate data clusters is described. Centers of these clusters are determined
by positions of prototypes tj placed along the projected line wT

i x. Positions of these
prototypes are adjusted using LVQ1 algorithm [11], with additional term that attracts
prototypes to the line. Position of the winning prototype t (closest to the training vector
x) is adjusted using the following formula:

∆t = αδ(Cx, Ct)(x− t) + β
(
(t− µ)−wT (t− µ)w

)
(1)

The first term of Eq. 1, scaled by coefficient α, comes from standard LVQ1 procedure,
where Cx denotes class of the vector x and δ(Cx, Ct) = +1 if Cx = Ct and −1
otherwise. The second term, scaled by β, pushes prototypes in the direction that brings
them closer to the x = wz + µ line, where w defines a direction in space and µ is a
certain point on the line, for example a mean position of all prototypes µ = 1

N

∑
ti. For

β = 0 Eq. 1 reduces to the original LVQ1 algorithm. If β = 1 the second term of Eq.
1 will put the prototypes exactly along the line, i.e. this corresponds to the orthogonal
projection of prototypes on the direction w. The effective number of parameters is
reduced by adding these constraints.

The first PCA eigenvector calculated on co-linear prototypes (PCA-LVQ) is equiva-
lent to fitting points to a line defining projection direction w. Another approach is based
on the Quality of Projected Clusters (QPC) index, a supervised algorithm that finds in-
teresting linear projections for multiclass datasets [6]. Assuming that a set of prototypes
has been created by the LVQ procedure the QPC index is defined as:

QPC(w) =
n∑

i=1

Ai

k∑

j=1

δ(Cxi , Ctj)G
(
wT (xi − tj)

)

 (2)

where G(x) is a function with localized support and maximum in x = 0 (e.g. a
Gaussian function), Cxi is the class of vector xi, Ctj the class of prototype tj , and
δ(Cxi , Ctj) = ±1. This index achieves maximum value when linear projection on the
direction defined by w groups vectors xi from a single Cxi class into compact clusters
close to the prototype tj associated with this class. Parameters Ai control influence of

6 Marek Grochowski and Włodzisław Duch

each term in Eq. (2). If Ai = A+ for all i that satisfies Cxi
= Ctj

and Ai = A− oth-
erwise, then large value of A− enforces strong separation between clusters, while A+

has influence mostly on compactness and purity of clusters. Optimization of QPC index
is performed by a simple gradiend-based method. Since it may requre a large number
of iterations to converge, to speed up learning one can search for w only after some
specified number of learning epochs during LVQ optimization phase.

Procedure 1 describes steps performed to expand the network, creating a sequence
of hidden nodes, where weights wi of each successive node represent unique direction
in the input space according to the projection pursuit scheme.

Procedure 1 (Construction of the sequence of hidden nodes)

1. start with k output nodes and no hidden nodes;
2. add a new hidden node, optimize its weights wi and positions of prototypes tj (see

Procedure 2);
3. if the error does not decreases return the network which gives the lowest error;
4. else increase the number of prototypes splitting the node that makes the largest

number of errors;
5. orthogonalize training data to the i-th projection, and repeat, starting from step 2.

Each new projection wi is trained separately on dataset that is orthogonal to all direc-
tions w1, . . . , wi−1 found earlier. Another way to gain unique projections is to per-
form learning only on a subset of training samples misclassified by the network. Only
weights of one hidden node wi are adjusted in step 2, all projections found earlier are
fixed. Each change of weights wi requires proper modification of weights betwen the i-
th hidden node and all outputs. Number of output nodes needs to be optimized as well,
because each new direction wi produces different input space projection image. The
region covered by the prototype tj that leads to the largest number of errors (defined
by the WTA rule) is divided by adding new prototype associated with the class that has
most errors (step 3).

Procedure 2 describes optimization of hidden nodes wi.

Procedure 2 (Searching for an optimal hidden node after adding a new hidden node.)

1. optimize weights wi and prototype positions tj to find the best projection that
minimizes classification error (using PCA-LVQ or QPC-LVQ algorithms);

2. remove redundant prototypes using condensed nearest neighbor (CNN) method;
3. adjust positions of the remaining prototypes (LVQ learning in the hidden space);
4. if the current projection does not lead to lower error than projections already found

return;
5. else increase the number of prototypes splitting the output node that makes the

largest number of errors, and go to step 2;

The final network after learning may contain prototypes which are useless (e.g.
LVQ learning can expel them far from the training data points). Redundant prototypes
that do not decrease accuracy are removed using Hart’s condensed nearest neighbor
(CNN) method [16, 17], where prototypes are used as reference vectors. Positions of
the remaining prototypes are then adjusted with few steps of LVQ to improve cluster
separation in the hidden space (after w · x projection).

Grochowski & Duch: Constrained Learning Vector Quantization ... 7

The cost of computations of Eq. 1 is O(knd) for QPC-LVQ network and O(knd2)
for PCA-LVQ, where d denotes dimensionality of the data, n is the number of instances
and k the number of prototypes. For each LVQ learning step the winner prototype must
be chosen, which requires O(nkd) operations. Only one hidden node is adapted at a
time and the computation of QPC index is linear respect to number of instances, num-
ber of prototypes and dimensionality of data. Both LVQ and QPC may require trying
a few initializations and performing many iterations, thus evaluation of QPC (or PCA,
respectively) should be done only after some LVQ learning. Removal of redundant pro-
totypes using CNN method also requires O(knd) time. Thus the overall computational
cost of searching for optimal solution by the methods described above should not ex-
ceed O(knd) for QPC and O(knd2) for PCA, respectively.

4 Results

Results of constrained LVQ models – QPC-LVQ and PCA-LVQ – are compared to the
original LVQ, support vector machine (SVM), k-nearest-neighbors (kNN) and the mul-
tilayer perceptron network (MLP) classifiers. Accuracy of classification has been esti-
mated using 10 fold stratified cross-validation method for several datasets with different
types of features. Following datasets from the UCI repository [8] have been used: Ap-
pendicitis, Australian, Breast Cancer Wisconsin, Glass, Heart, Ionosphere, LED (with
500 generated samples), Ljubljana Breast Cancer, Voting and Wine, plus the melanoma
skin cancer data collected in the Outpatient Center of Dermatology in Rzeszów in
Poland [18]. In addition two Boolean artificial datasets have been used: 10-dimensional
parity problem, and a Mirror Symmetry dataset with 1000 strings of 20 bits, where
half of them are symmetric. This parity problem is 11-separable while the symmetry
problem is 3-separable, but requires a set of exponentially growing weights. Results
are collected in Table 4. For QPC-LVQ and PCA-LVQ average number of projections
(#P) and number of prototypes (#K) is reported, for LVQ number of prototypes(#K, the
size of codebook), for SVM average number of support vectors (#SV), and for MLP
networks average number of hidden neurons (#N) are reported.

SVM with Gaussian kernel was used with γ and C parameters fully optimized using
an inner 5-fold crossvalidation procedure (the Ghostminer software was used2) MLP
networks were trained with error backpropagation several times changing the number
of hidden nodes from 0 to 20, and selecting the network that gave the best training
results. For k-class problems MLP networks with k outputs were used (1-of-k output
coding), except for two classes when a single output was used. For LVQ the number of
prototypes (codebook vectors) was increased from 1 to 20, and only the best solution is
reported. The optimal number of neighbors for kNN method was estimated each time
during 5-fold inner crossvalidation, and the best one model was chosen for training.
Euclidean measure was used to calculate distance to neighbors.

The SVM is quite accurate for almost all UCI datasets, but failed completely for the
parity problem. In most cases large number of support vectors are created even when
simple solutions exists. MLP was able to handle all problems with good accuracy and

2 http://www.fqs.pl/ghostminer/

8 Marek Grochowski and Włodzisław Duch

Table 1. Average classification accuracy for 10-fold crossvalidation test (see text for explanation); bold numbers = accuracy
within variance from the best result.

Dataset QPC-LVQ PCA-LVQ LVQ SVM kNN MLP
acc. #P #K acc. #P #K acc. #K acc. #SV acc. #K acc. #N

Appendicitis 86.1± 8.5 1.0 2.5 82.2± 7.4 1.0 3.1 86.6± 6.8 2 86.7± 10.8 31.4 84.0± 6.1 4.8 87.8± 10.1 3
Australian 86.1± 4.1 1.0 2.0 86.1± 4.1 1.0 2.0 85.6± 4.6 2 84.9± 1.6 206.1 85.1± 2.9 8.2 86.8± 4.9 2
Mirror Symmetry 87.3± 4.2 1.2 3.5 78.1± 11.4 1.8 5.3 75.7± 4.3 12 98.0± 1.4 296.5 89.3± 2.6 5.8 92.1± 10.7 3
Breast C.W. 96.2± 1.8 1.0 2.0 96.2± 2.1 1.0 2.0 96.5± 2.5 2 96.6± 1.7 51.1 97.1± 1.4 5.6 96.9± 1.0 1
Melanoma 85.7± 6.2 1.0 4.0 70.8± 9.0 1.7 4.3 76.8± 7.2 4 85.2± 5.7 240.3 86.0± 7.4 1.0 96.0± 2.7 4
Glass 60.4± 10.3 1.1 4.5 58.9± 7.3 1.4 4.0 66.3± 10.5 7 64.9± 6.2 283.6 68.8± 9.2 1.4 69.2± 10.4 7
Heart 78.9± 8.5 1.0 2.0 80.7± 9.0 1.0 2.0 82.2± 8.6 2 81.5± 9.1 101.5 78.5± 7.6 8.5 79.6± 9.8 1
Ionosphere 78.4± 8.0 1.0 3.1 75.5± 8.5 1.1 3.5 81.9± 7.0 4 93.5± 4.7 61.0 84.0± 7.7 1.2 81.5± 5.5 5
Iris 96.0± 4.4 1.0 3.0 94.7± 4.0 1.0 3.0 97.3± 3.3 3 96.7± 4.7 39.6 94.5± 6.9 5.8 94.7± 8.2 0
L. Breast 72.6± 4.4 1.0 2.0 74.0± 6.9 1.0 2.1 74.7± 6.0 3 73.3± 9.6 143.6 73.7± 5.5 6.9 72.2± 6.7 1
LED500 58.5± 8.0 1.1 9.6 45.5± 8.6 1.5 8.2 72.0± 5.1 10 65.2± 5.5 664.1 71.2± 6.6 8.5 70.8± 7.5 0
Parity 10 96.1± 3.9 1.0 6.8 97.6± 0.8 1.0 7.5 51.3± 4.9 8 44.2± 5.7 921.2 80.7± 3.4 20.0 82.9± 17.2 14
Voting 95.2± 3.5 1.0 2.0 90.6± 5.5 1.3 2.5 93.8± 2.7 5 95.9± 2.4 57.0 93.3± 3.2 4.6 95.9± 2.4 1
Wine 96.0± 5.7 1.9 3.1 94.9± 4.7 2.0 3.0 97.7± 2.8 4 96.6± 2.9 63.7 95.0± 4.1 6.2 98.3± 2.7 0

a small number of neurons, but at a rather high cost, requiring many initializations with
increasing number of hidden nodes from 0 to 20. Setting the right number of hidden
nodes has been very important to reach high quality solutions but also reduces time
to convergence. The number of parameters adapted during training of MLPs with one
hidden layer is (d + 1)h + (h + 1)k, where d denotes number of inputs, h - number of
hidden nodes and k the number of output nodes.

The QPC-LVQ algorithm was able to find in most cases, with very few hidden
nodes, solution of comparable accuracy to all other classifiers. Moreover, for some
datasets (mirror symmetry, melanoma and parity) it has significantly outperformed orig-
inal LVQ1. Only for the LED data the QPC-LVQ model has been too simple and gave
worse results. The PCA-LVQ performs worse in most cases, comparison of PCA-LVQ
and QPC-LVQ using Wilcoxon [19] test shows significant differences, at confidence
level of 95%, in terms of accuracy (p-value of 0.048) and number of parameters (p-
value of 0.003) both in favor of QPC-LVQ. QPC-LVQ compared with LVQ, SVM and
kNN shows no significant difference in accuracy, giving p-value equal to 0.62, 0.07 and
0.87, respectively. Only for the MLP Wilcoxon test find significant differences (p-value
of 0.048) against QPC-LVQ. On the other hand MLP and LVQ needed on average 3
times more parameters than QPC-LVQ.

5 Discussion

Drawbacks of existing learning methods that fail on relatively simple problems, as well
as on highly-non separable problems, may be remedied by structural risk minimization
approach, in which models of growing complexity are introduced by relaxing various
constraints. One such approach has been analyzed here, based on the constrained LVQ
model, allowing for systematic relaxation of constraints to create progressively more

Grochowski & Duch: Constrained Learning Vector Quantization ... 9

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

w
1

w
2

Wine

Class 1
Class 2
Class 3

Class 1

Class 2

−1.5 −1 −0.5 0 0.5 1 1.5 2

Austrailian

Class 1

Class 2

−3 −2 −1 0 1 2 3

Parity 10

Not Symmetric

Symmetric

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

Mirror Symmetry

Fig. 1. Visualization of hidden layer of the QPC-LVQ network for Wine, Australian, Parity 10
and the Mirror Symmetry dataset.

complex solutions. Such models may learns optimal solutions to complex Boolean func-
tions as well as problems that are almost linearly separable using single feature, while
unconstrained LVQ converges to worse solutions. Two versions of such approaches
have been presented here, based on PCA and QCP algorithm to find good projection
lines. Straightforward LVQ modification allows for reduction of the number of effective
parameters by forcing the LVQ prototypes to stay near those projection lines. In tests
one or two lines have usually been sufficient, with very small number of prototypes.

Great advantage of algorithms developed here is that the hidden layer contains only
one or two nodes, and therefore activations of those nodes may be used to visualize
inherent dataset relations. Fig. 1 illustrates this, with prototypes and decision boundaries
set by prototypes (the winner-takes-all rule leads to Voronoi tessellation) for Wine,
Australian, Parity 10 and the Mirror Symmetry datasets. Such visualizations allows to
estimate confidence of classification for each vector. The main point ot this paper was
to show that the strategy of starting with constrained models and gradually relaxing
constraints (in Eq. 1 decreasing β to 0) should help to discover simple models that more
complex approaches will miss, and also in some complex cases find better solutions.
This is indeed observed in Tab. 4: for some data LVQ-QCP has ineed advantages, while
for other data that require more complex decision borders unconstrained optimization is

10 Marek Grochowski and Włodzisław Duch

significantly more accurate. Thus it is recommended to always use methods that allow
for such control of model complexity.

References

1. Duch, W.: k-separability. Lecture Notes in Computer Science 4131 (2006) 188–197
2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer Verlag (2006)
3. Grochowski, M., Duch, W.: Learning highly non-separable Boolean functions using Con-

structive Feedforward Neural Network. Lecture Notes in Computer Science 4668 (2007)
180–189

4. Schölkopf, B., Smola, A.: Learning with Kernels. Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, Cambridge, MA (2001)

5. Grochowski, M., Duch, W.: A Comparison of Methods for Learning of Highly Non-
Separable Problems. Lecture Notes in Computer Science 5097 (2008) 566–577

6. Grochowski, M., Duch, W.: Projection Pursuit Constructive Neural Networks Based on
Quality of Projected Clusters. Lecture Notes in Computer Science 5164 (2008) 754–762

7. Duch, W., Blachnik, M.: Fuzzy rule-based systems derived from similarity to prototypes. In
Pal, N., Kasabov, N., Mudi, R., Pal, S., Parui, S., eds.: Lecture Notes in Computer Science.
Volume 3316. Physica Verlag, Springer, New York (2004) 912–917

8. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
9. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine learning, neural and statistical classi-

fication. Elis Horwood, London (1994)
10. Duch, W., Setiono, R., Zurada, J.: Computational intelligence methods for understanding of

data. Proceedings of the IEEE 92 (2004) 771–805
11. Kohonen, T.: Self-organizing maps. Springer-Verlag, Heidelberg Berlin (1995)
12. Biehl, M., Ghosh, A., Hammer, B.: Dynamics and generalization ability of lvq algorithms.

J. Mach. Learn. Res. 8 (2007) 323–360
13. Vapnik, V.: The Nature of Statistical Learning Theory. Springer-Verlag, New York (1995)
14. Duch, W., Adamczak, R., Diercksen, G.: Classification, association and pattern completion

using neural similarity based methods. Applied Mathematics and Computer Science 10
(2000) 101–120

15. Duch, W.: Similarity based methods: a general framework for classification, approximation
and association. Control and Cybernetics 29 (2000) 937–968

16. Hart, P.E.: The condensed nearest neighbor rule. IEEE Transactions on Information Theory
114 (1968) 515–516

17. Jankowski, N., Grochowski, M.: Comparison of instance selection algorithms. i. algorithms
survey. Lecture Notes in Computer Science 3070 (2004) 598–603

18. Hippe, Z.: Data mining in medical diagnosis. In Kącki, E., ed.: Computers in Medicine.
Volume 1., Łódź, Poland, Polish Society of Medical Informatics (1999) 25–34

19. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1 (1945) 80–83

