
A Comparison of Methods for Learning of

Highly Non-Separable Problems

Marek Grochowski and W lodzislaw Duch

Department of Informatics, Nicolaus Copernicus University, Toruń, Poland,
Email: grochu@is.umk.pl, Google: W. Duch

Abstract. Learning in cases that are almost linearly separable is easy,
but for highly non-separable problems all standard machine learning
methods fail. Many strategies to build adaptive systems are based on
the “divide-and-conquer” principle. Constructive neural network archi-
tectures with novel training methods allow to overcome some drawbacks
of standard backpropagation MLP networks. They are able to handle
complex multidimensional problems in reasonable time, creating models
with small number of neurons. In this paper a comparison of our new
constructive c3sep algorithm based on k-separability idea with several
sequential constructive learning methods is reported. Tests have been
performed on parity function, 3 artificial Monks problems, and a few
benchmark problems. Simple and accurate solutions have been discov-
ered using c3sep algorithm even in highly non-separable cases.

1 Introduction

Multi-layer neural networks, basis set expansion networks, kernel methods and
other computational intelligence methods are great tools that enable learning
from data [1]. Recently the class of non-separable problems has been character-
ized more precisely using k-separability index [2, 3] that measures the minimum
number of intervals needed to separate pure clusters of data in a single projec-
tion. This index divides problems into different classes of complexity. For k = 2
problems are separable (a single hyperplane separates data from two classes), but
convergence and accuracy of standard methods decreases quickly with growing
k-separability index. Parity function for n bit binary strings requires k = n + 1
clusters and thus is highly non-separable. Each vector is surrounded by the
vectors from the opposite class, and therefore methods based on similarity (in-
cluding kernel methods) do not generalize and fail, while methods based on
discriminating hyperplanes may in principle solve such problems, but require
O(n2) parameters and do not converge easily. Universal approximation does not
entail good generalization.

Many statistical and machine learning methods thus fail on problems with
inherent complex logic. Training feedforward networks with backpropagation-
type algorithms requires specification of correct architecture for a given task.
Highly non-separable problems even for relatively modest number of dimensions
lead to complex network architectures, and learning in such cases suffers from

Wlodek
Tekst maszynowy
Lecture Notes in Computer Science, Vol. 5097, 566-577, 2008.

high computational costs and difficulties with convergences. Even for a simple
XOR problem convergence fails fairly often. Constructive neural techniques allow
to overcome some of these drawbacks. Furthermore, simplest models of the data
should be thought to avoid overfitting and ensure good generalization. Often
quite complex data may be described using a few simple rules [4], therefore using
an appropriate constructive strategy should create network with small number
of neurons and clear interpretation.

Several sequential constructive learning methods have been proposed [5–11],
based on computational geometry ideas. Most of them work only for binary
problems and therefore pre-processing using Gray coding is used. However, it
is interesting to see how well these algorithms will work on Boolean functions
and real benchmark problems, and how do they compare to our c3sep algorithm.
Next section gives short description of most promising of these methods and the
third section contains comparison made on artificial as well as real benchmark
problems.

2 Algorithms

All algorithms reported below may be viewed as a realization of general se-
quential constructive method described by Muselli in [5]. In each step of these
algorithms searching for best separation between maximum possible number of
vectors of the same class from the rest of the training samples is performed.
Consider a separation with hyperplanes realized by threshold neuron:

ϕ(x) =

{

+1 if wx − w0 ≥ 0
−1 otherwise

(1)

Let’s denote by Q+ a set of all vectors from a single selected class, by Q−

the remaining training samples, and by R a set of training vectors for which the
neuron performing separation gives an output equal to +1. Then each step of
this algorithm could be seen as searching for a subset R ∈ Q+ with maximum
number of elements. After each step vectors from the set R are removed from
the training dataset, and if some unclassified patterns still remain the search
procedure is repeated. After a finite number of iterations this procedure leads
to a construction of neural network that classifies all training vectors (unless
there are conflicting cases, i.e. identical vectors with different labels), where
each separating hyperplane corresponds to a hidden neuron in the final neural
network. Weights in the output layer do not take part in the learning phase and
their values can be determined from a simple algebraic equation proposed in [5].
The main difference between learning algorithms described here lies in the search
method employed for creating the best hidden neuron. Most of those algorithms
were created to handle datasets with binary attributes. Some of them (Irregular
Partitioning, Carve, Target Switch) have extended versions for the general case
of real valued features. Two methods (Sequential Window and c3sep) employ

neurons with window-like activation function

M̃i(x; w, a, b) =

{

1 if w · x ∈ [a, b]
0 if w · x /∈ [a, b]

(2)

while the rest of them use threshold neurons.

2.1 Irregular Partitioning Algorithm

This algorithm [10] starts with an empty set R and in each iteration one vector
from Q+ is moved to R. A new pattern is kept in R only if the R and Q− sets
are linearly separable. Quality of obtained results and computational cost of this
algorithm depends on the type of methods employed to verify existence of the
separating hyperplane. Although simple perceptron learning may be used Muselli
proposed to use the Thermal Perceptron Learning Rule (TPLR) [5], because it
has high convergence speed. In this paper linear programming techniques are
used to find an optimal solution.

2.2 Carve Algorithm

The Carve algorithm considers a convex hull generated by the elements of Q−.
Searching for the best linear separation of points from class Q+ is done here
by a proper traversing and rotating of hyperplanes that pass through boundary
points of the convex hull. Using the general dimension gift wrapping method a
near optimal solution may be found in polynomial time [6].

2.3 Target Switch Algorithm

In every step of the Target Switch Algorithm, proposed by Zollner et al. [11]
and extended for real valued features by Campbell and Vicente [8] search for the
threshold neuron that performs best separation between the set of vectors from
a given class R ∈ Q+ and the rest of samples Q− is made using any algorithm
that searches for linear separability (e.g. perceptron learning, TPLR or some
version of linear discrimination method). If the current solution misclassifies
some vectors from the Q− set the vector from Q+ nearest to the misclassified
vector from Q−, with the largest distance to the current hyperplane is moved
to Q−, and the learning process is repeated. This procedure leads in a finite
number of iterations to a desired solution where on one side of the hyperplane
only vectors from a single class are left.

2.4 Oil Spot Algorithm

Data with the binary-valued features may be represented as n-dimensional hy-
percube. There are two conditions that must be satisfied to separate sets R and
Q− with a hyperplane: (1) vectors in R are nodes of connected subgraph, and (2)
two parallel edges connecting vectors from R and Q− are always with the same
orientation. This concept is used by Oil Spot algorithm to search for optimal
separation of binary data with a hyperplane [9].

2.5 Sequential Window Learning

This method uses neurons with window-like transfer functions of the form

ϕ(x) =

{

1 if |wx − w0| ≤ δ
−1 otherwise

(3)

For this type of neurons fast and efficient learning algorithm for binary valued
data based on solution of a system of algebraic equations has been proposed by
Muselli [7]. This algorithm starts with two patterns from Q+ in R and incremen-
tally adds new vectors from Q+, maximizing the number of correctly classified
vectors by the window-like neuron.

2.6 c3sep - Constructive 3-separability Learning

The c3sep algorithm [3] uses traditional error minimization algorithm to train
neurons with soft-windowed transfer functions, e.g. bicentral functions [12]:

ϕ̃(x) = σ(β(wx − w0 − δ))(1 − σ(β(wx − w0 + δ)) (4)

Sharp decision boundaries, like those in Eq. (2), are obtained by using a large
value of the slope β at the end of the learning procedure. Function (4) separates
a cluster of vectors projected on a line defined by w with boundaries defined by
w0 and δ parameters. This transformation splits input space with two parallel
hyperplanes into 3 disjoint subsets. A large and pure cluster R of vectors from
one class is generated by minimization of the following error function:

E(x) =
1

2

∑

x

(y(x) − c(x))2 + λ1

∑

x

(1 − c(x))y(x) − λ2

∑

x

c(x)y(x) (5)

where c(x) = {0, 1} denotes the label of a vector x, and y(x) =
∑

ϕ̃i(x) is
the actual output of a network. All weights in output layer are fixed to 1. First
term is the standard mean square error (MSE) measure, second term with λ1

(penalty factor) increases the total error for vectors xi from the c(xi) = 0 class
that fall into cluster of vectors from the opposite class 1 (it is the penalty for
”contaminated” clusters), and the third term with λ2 (reward factor) decreases
the value of total error for every vector xi from class 1 that was correctly placed
inside created clusters (it is the reward for large clusters) [3]. To speed up training
procedure, after each learning phase, samples that were correctly handled by
previous nodes may be removed from the training data. However, larger clusters
(and thus better generalization) may be obtained if these vectors are not removed
and different neurons forming clusters that share some vectors are created. The
c3sep algorithm defines a simple feedforward network with window-line neurons
in the hidden layer, and every node trying to find best 3-separable solution in the
input space (projection on the line that create large cluster of vectors from one
class between two clusters of vectors from the opposite class). This is the simplest
extension of linear separability; other goals of learning have been discussed in
[3, 13].

3 Results

Results for three types of problems are reported here: Boolean functions offering
systematically increasing complexity, artificial symbolic benchmark problems,
and real benchmark problems.

3.1 Boolean Functions

First all algorithms described above have been applied to several artificial Boolean
functions. In this test no generalization is required since only the complexity and
computational cost of models discovered are compared, estimating the capacity
of different algorithms to discover simplest correct solutions. Fig. 1 presents re-
sults of learning of constructive methods applied to the parity problems from 2
bits (equivalent to the XOR problem) to 10 bits, and Fig. 2 shows the results of
learning randomly selected Boolean functions with P (C(x) = 1) = 0.5 (the same
function is used to train all algorithms). The most likely random function for n
bits has k-separability index around n/2. The n dimensional parity problem can
be solved by a two-layer neural network with n threshold neurons or (n + 1)/2
window-like neurons in the hidden layer. It may also be solved by one neuron
with n thresholds [2]. All results are averaged over 10 trials.

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 n
um

be
r

of
 h

id
de

n
ne

ur
on

s

Number of features

Parity problem

c3sep
Carve

Oil Spot
Irregular Partitioning
Sequential Window

Target Switch

0.003 0.025 0.034 0.037 0.065

0.004

0.049

0.214

0.346

 0.1

 1

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 C
PU

 ti
m

e
[s

ec
.]

Number of features

Parity problem

c3sep
Carve

Oil Spot
Irregular Partitioning
Sequential Window

Target Switch

0.003

0.025

0.034

0.037

0.065

0.004

0.049

0.214

0.346

Fig. 1. Number of hidden units created and time consumed during learning of parity
problems. Each result is averaged over 10 trials.

Most algorithms are able to learn all parity patterns without mistake. The
c3sep network, using a stochastic algorithm made in some runs small errors,
although with repeating training few times perfect solution is easily found. The
target switch algorithm for problems with dimension larger then n = 7 generate
solution with rapidly growing training errors. Values of the error are placed
in corresponding points of Fig. 1 and Fig. 2. Sequential window learning and
irregular partitioning algorithms were able do obtain optimal solution for all
dimensions.

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 n
um

be
r

of
 h

id
de

n
ne

ur
on

s

Number of features

Random Boolaen functions

c3sep
Carve

Oil Spot
Irregular Partitioning
Sequential Window

Target Switch

0.019
0.069

0.107
0.155

0.221
0.330

0.007

0.072

0.181

0.272

 0.1

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 C
PU

 ti
m

e
[s

ec
.]

Number of features

Random Boolaen functions

c3sep
Carve

Oil Spot
Irregular Partitioning
Sequential Window

Target Switch

0.019

0.069

0.107

0.155

0.221
0.330

0.007

0.072

0.181

0.272

Fig. 2. Number of hidden units created and time consumed during learning of random
Boolean functions. Each result is averaged over 10 trials.

Learning of random Boolean function is much more difficult and upper bound
for the number of neurons needed for solving of this kind of functions is not
known. Learning of irregular partitioning with linear programming for problems
with large dimension is time consuming. Oil spot algorithm is the fastest algo-
rithm but leads to networks with high complexity. Sequential window learning
gave solutions with a small number of neurons and low computational cost. The
Carve algorithm can also handle all patterns in a reasonable time and with a
small number of neurons. The c3sep network was able to create smallest archi-
tectures but the average times of computations are longer than needed by most
other algorithms. This network provides near optimal solution, as not all patterns
were correctly classified; it avoids small clusters that may reduce classification
error but are not likely to generalize well in crossvalidation tests. Algorithms
capable of exact learning of every example by creating separate node for single
vectors are rarely useful.

4 Benchmark problems

Monk’s Problems Monk’s problems are three symbolic classification problems
designed to test machine learning algorithms [14]. 6 symbolic attributes may be
combined in 432 possible ways, and different logical rules are used to divide these
cases into two groups, one called “a monk”, and the other some other object.
The Monk 3 problem is intentionally corrupted by noise, therefore an optimal
accuracy is 94%. The other two problems have perfect logical solutions.

Sequential learning algorithm and the Oil Spot algorithm require binary val-
ued features therefore proper transformation of the symbolic data must be ap-
plied first. Resulting binary dataset contains 15 inputs where a separate binary
feature is associated with presence of each symbolic value. For binary valued
features Hamming clustering [15] can be applied to reduce the size of training
set and reduce the time of computations. This algorithm iteratively clusters to-

gether all binary strings from the same class that are close in the Hamming
distance.

All algorithms have been trained on the 3 Monk’s problems 30 times, and
averaged results for generalization error, the size of created network and com-
putational costs of training are reported in Tables 4, 4 and 4, respectively. Se-
quential window learning algorithm and c3sep network were able to achieve
great accuracy with very small number of neurons. With binary features only
a single neuron is sufficient to solve the problem in each case (only for Monk1
sometimes 2 neurons are created), showing that in the binary representation all
these problems are 3-separable. For Monk3 problem it is the only algorithm that
achieves optimal accuracy (using binary features). Sequential Window algorithm
produces also quite simple networks and finds very good solution with Hamming
clustering, staying behind c3sep in both accuracy and complexity only for the
Monk3 problem. The use of the Hamming clustering in most cases increased
generalization powers and reduced the number of neurons in the hidden layer.
CPU times for all algorithms are comparable.

An example of a projection on the first direction found by the c3sep algorithm
for the Monk1 problem shows (Fig. 3) a large cluster in the center that can be
separated using a window function. If the direction of the projection is binarized
logical rules for classification may be extracted.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
Monks 1 projection on direction w = −3.96, 4.06, −0.08, −0.06, −1.22, −0.03

is a Monk
not a Monk

Fig. 3. Probability density for two classes projected on first direction found for the
Monk1 problem.

Benchmark Problems with Crossvalidation Tests Boolean problems are
rather distinct from typical learning problems. Several tests have been performed
on a few benchmark datasets from the UCI repository [16]. The Iris dataset is

Table 1. Accuracy of neural networks for Monk’s problems. Each result is averaged
over 30 trials.

Monk’s 1 Monk’s 2 Monk’s 3

Carve 93.93 ± 2.63 82.42 ± 2.10 88.50 ± 2.47

Irregular Partitioning 87.93 ± 4.19 83.94 ± 1.65 87.99 ± 2.06

Target Switch 93.46 ± 2.57 65.80 ± 2.64 80.38 ± 1.67

c3sep 99.69 ± 1.16 79.78 ± 1.32 87.84 ± 2.36

binary features

Carve 86.94 ± 3.79 87.14 ± 2.89 85.46 ± 3.09

Oil Spot 86.00 ± 1.63 84.32 ± 0.99 71.84 ± 1.16

Irregular Partitioning 100.00 ± 0.00 98.15 ± 0.00 91.44 ± 1.58

Sequential Window 95.18 ± 5.78 100.00 ± 0.00 84.68 ± 5.82

Target Switch 94.84 ± 3.18 91.23 ± 5.29 90.73 ± 1.97

c3sep 92.49 ± 9.12 100.00 ± 0.00 94.41 ± 0.31

with Hamming clustering

Carve 100.00 ± 0.00 97.50 ± 0.57 90.29 ± 2.85

Irregular Partitioning 83.84 ± 3.74 99.92 ± 0.46 92.58 ± 1.33

Oil Spot 100.00 ± 0.00 95.07 ± 0.52 90.22 ± 1.15

Sequential Window 100.00 ± 0.00 100.00 ± 0.00 91.72 ± 1.66

Target Switch 100.00 ± 0.00 98.09 ± 0.16 90.62 ± 1.00

c3sep 99.86 ± 0.76 99.38 ± 1.03 91.40 ± 2.54

Table 2. Number of hidden neurons created for Monk’s problems. Each result is av-
eraged over 30 trials.

Monk’s 1 Monk’s 2 Monk’s 3

Carve 3.30 ± 0.70 10.83 ± 0.99 4.90 ± 0.61

Irregular Partitioning 4.63 ± 0.76 8.77 ± 0.68 4.20 ± 0.41

Target Switch 10.67 ± 2.59 75.73 ± 4.83 12.33 ± 1.83

c3sep 2.43 ± 0.63 2.90 ± 1.94 3.87 ± 0.51

binary features

Carve 5.30 ± 0.60 8.17 ± 0.99 5.83 ± 0.75

Oil Spot 18.67 ± 2.34 34.37 ± 1.77 31.53 ± 2.29

Irregular Partitioning 3.60 ± 0.62 2.03 ± 0.18 2.00 ± 0.00

Sequential Window 2.70 ± 0.70 1.20 ± 0.41 4.47 ± 0.51

Target Switch 3.73 ± 0.91 12.97 ± 5.04 4.03 ± 0.56

c3sep 1.63 ± 0.49 1.00 ± 0.00 1.00 ± 0.00

with Hamming clustering

Carve 3.00 ± 0.00 5.00 ± 0.00 5.67 ± 0.61

Oil Spot 3.20 ± 0.41 5.53 ± 0.51 9.20 ± 1.06

Irregular Partitioning 3.00 ± 0.00 5.00 ± 0.00 4.37 ± 0.61

Sequential Window 2.00 ± 0.00 1.00 ± 0.00 5.10 ± 0.96

Target Switch 3.00 ± 0.00 5.00 ± 0.00 5.53 ± 0.63

c3sep 2.00 ± 0.00 1.67 ± 0.88 3.23 ± 0.43

Table 3. CPU time consumed during construction of neural networks solving Monk’s
problems. Each result is averaged over 30 trials.

Monk’s 1 Monk’s 2 Monk’s 3

Carve 0.18 ± 0.02 0.63 ± 0.06 0.21 ± 0.02

Irregular Partitioning 2.04 ± 0.16 8.94 ± 1.64 2.00 ± 0.19

Target Switch 0.53 ± 0.15 6.71 ± 0.66 0.53 ± 0.14

c3sep 0.78 ± 0.19 3.54 ± 1.81 2.36 ± 0.35

binary features

Carve 0.72 ± 0.09 1.41 ± 0.22 0.69 ± 0.07

Oil Spot 0.18 ± 0.02 0.39 ± 0.06 0.08 ± 0.01

Irregular Partitioning 3.25 ± 0.42 6.32 ± 1.53 2.39 ± 0.35

Sequental Window 1.06 ± 0.34 0.25 ± 0.27 1.72 ± 0.22

Target Switch 0.21 ± 0.08 3.97 ± 1.46 0.06 ± 0.01

c3sep 1.19 ± 0.35 0.73 ± 0.13 1.33 ± 0.12

with Hamming clustering

Carve 0.01 ± 0.00 0.11 ± 0.01 0.14 ± 0.02

Oil Spot 0.01 ± 0.00 0.02 ± 0.00 0.03 ± 0.00

Irregular Partitioning 0.01 ± 0.00 0.12 ± 0.01 0.11 ± 0.03

Sequental Window 0.01 ± 0.00 0.01 ± 0.00 0.05 ± 0.02

Target Switch 0.01 ± 0.00 0.05 ± 0.00 0.03 ± 0.01

c3sep 0.15 ± 0.06 0.31 ± 0.15 0.45 ± 0.06

perhaps the most widely used simple problem, with 3 types of Iris flowers de-
scribed by 4 real valued attributes. A Glass identification problem has 9 real val-
ued features with patterns divided into float-processed and non float-processed
piece of glass. United States congressional voting record database, denoted here
as Voting0 dataset, contains 12 features that determine if a congressman belongs
to a democratic or republican party. The Voting1 dataset has been obtained from
the Voting0 by removing the most informative feature. Each input can assume
values: yea, nay or missing.

As in the case of Monk’s problems some algorithms require additional trans-
formations of datasets. Real valued features were transformed to binary by em-
ploying Gray coding. Resulting Iris and Glass dataset in binary representation
have 22 and 79 features, respectively. For the three valued input of Voting dataset
the same transformation as in the Monk’s problems has been adopted. The corre-
sponding binary data contain 48 features for Voting0 and 45 for Voting1 datasets.

The average accuracy obtained after averaging 30 repetitions of the 3-fold
crossvalidation test is reported in Tab. 4. The average number of neurons and
average CPU time consumed during computations is reported in Tab. 4 and
Tab.4. In all this tests in most cases c3sep network gave very good accuracy
and low variance with very small number of neurons created in the hidden layer.
Most algorithms that can handle real features suffer from data binarization,
particularly in the case of Iris and Glass where all features in the original data
are real valued.

Table 4. 30x3 CV test accuracy.

Iris Glass Voting0 Voting1

Carve 90.18 ± 1.58 74.17 ± 3.28 93.24 ± 1.00 87.45 ± 1.37

Irregular Partitioning 90.98 ± 2.29 72.29 ± 4.39 93.41 ± 1.13 86.96 ± 1.43

Target Switch 65.45 ± 5.05 46.76 ± 0.91 94.64 ± 0.63 88.13 ± 1.47

c3sep 95.40 ± 1.30 70.68 ± 2.97 94.38 ± 0.72 90.42 ± 1.15

binary features

Carve 71.84 ± 3.46 62.08 ± 4.55 91.79 ± 1.22 86.77 ± 1.43

Oil Spot 75.16 ± 2.86 66.05 ± 2.41 90.93 ± 0.90 86.68 ± 1.47

Irregular Partitioning 75.53 ± 3.20 62.38 ± 3.66 92.73 ± 1.19 86.79 ± 2.20

Target Switch 84.93 ± 3.28 71.69 ± 3.42 94.66 ± 0.69 88.36 ± 0.98

c3sep 75.58 ± 6.15 60.92 ± 4.47 94.50 ± 0.89 89.78 ± 1.26

with Hamming clustering

Carve 79.93 ± 3.16 61.92 ± 3.77 93.40 ± 0.69 86.40 ± 1.10

Oil Spot 80.84 ± 2.46 61.83 ± 3.46 92.86 ± 1.09 85.33 ± 1.41

Irregular Partitioning 79.56 ± 4.45 62.38 ± 4.89 93.05 ± 1.10 85.84 ± 1.27

Sequental Window 77.36 ± 4.71 54.18 ± 3.50 91.40 ± 1.21 82.28 ± 1.82

Target Switch 81.09 ± 3.70 62.54 ± 3.57 93.31 ± 0.79 87.02 ± 1.42

c3sep 78.58 ± 4.74 58.51 ± 3.90 83.48 ± 13.39 76.35 ± 11.62

Table 5. Average number of hidden neurons generated during 30x3 CV test.

Iris Glass Voting0 Voting1

Carve 5.72 ± 0.46 7.00 ± 0.50 4.99 ± 0.39 8.34 ± 0.45

Irregular Partitioning 5.49 ± 0.53 4.69 ± 0.26 2.04 ± 0.21 3.48 ± 0.30

Target Switch 22.76 ± 2.17 55.49 ± 2.38 3.69 ± 0.29 9.22 ± 0.85

c3sep 3.00 ± 0.00 1.14 ± 0.26 1.00 ± 0.00 1.02 ± 0.12

binary features

Carve 8.02 ± 0.52 6.79 ± 0.26 5.56 ± 0.32 8.59 ± 0.46

Oil Spot 27.78 ± 1.41 21.54 ± 1.80 22.76 ± 1.39 37.32 ± 2.32

Irregular Partitioning 3.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.06 2.50 ± 0.30

Target Switch 3.07 ± 0.14 1.72 ± 0.25 3.20 ± 0.26 7.46 ± 0.48

c3sep 3.30 ± 0.35 1.03 ± 0.10 1.00 ± 0.00 1.00 ± 0.00

with Hamming clustering

Carve 7.81 ± 0.61 7.28 ± 0.46 5.07 ± 0.37 8.88 ± 0.50

Oil Spot 10.94 ± 1.13 12.17 ± 1.17 7.70 ± 0.74 15.31 ± 1.38

Irregular Partitioning 6.68 ± 0.73 5.39 ± 0.40 4.00 ± 0.48 6.19 ± 0.43

Sequental Window 9.90 ± 0.68 5.54 ± 0.40 5.46 ± 0.50 7.10 ± 0.61

Target Switch 7.02 ± 0.54 8.10 ± 0.63 4.58 ± 0.47 8.98 ± 0.57

c3sep 5.37 ± 0.79 3.38 ± 0.38 3.29 ± 0.40 4.97 ± 0.36

5 Conclusions

Constructive algorithms that may learn functions with inherently complex logics
have been collected and compared on learning of Boolean functions, symbolic

Table 6. Average of CPU time consumed during 30x3 CV test.

Iris Glass Voting0 Voting1

Carve 0.07 ± 0.00 0.40 ± 0.02 1.08 ± 0.04 1.85 ± 0.08

Irregular Partitioning 0.64 ± 0.08 4.86 ± 0.57 122.66 ± 24.86 242.48 ± 32.82

Target Switch 0.37 ± 0.05 7.12 ± 1.46 0.08 ± 0.02 1.86 ± 0.37

c3sep 2.05 ± 0.21 1.27 ± 0.17 3.49 ± 0.31 4.58 ± 0.34

binary features

Carve 1.53 ± 0.09 4.82 ± 0.21 4.22 ± 0.20 5.42 ± 0.24

Oil Spot 0.06 ± 0.00 0.68 ± 0.06 1.74 ± 0.23 2.20 ± 0.40

Irregular Partitioning 0.39 ± 0.02 1.38 ± 0.04 49.34 ± 7.14 474.56 ± 83.94

Target Switch 0.00 ± 0.00 0.02 ± 0.00 0.15 ± 0.04 2.20 ± 0.45

c3sep 2.61 ± 0.34 4.07 ± 0.51 7.28 ± 0.96 7.98 ± 0.18

with Hamming clustering

Carve 0.28 ± 0.03 0.49 ± 0.04 0.52 ± 0.04 1.47 ± 0.09

Oil Spot 0.04 ± 0.00 0.12 ± 0.01 0.29 ± 0.03 0.62 ± 0.05

Irregular Partitioning 0.51 ± 0.22 3.54 ± 0.21 0.81 ± 0.40 6.59 ± 1.36

Sequental Window 0.29 ± 0.05 1.11 ± 0.16 0.60 ± 0.13 2.52 ± 0.39

Target Switch 0.06 ± 0.02 0.76 ± 0.13 0.29 ± 0.04 0.98 ± 0.12

c3sep 2.29 ± 6.73 0.77 ± 0.07 0.68 ± 0.11 1.78 ± 0.25

and real benchmark problems. These algorithms are rarely used but certainly
worth more detailed study. Sequential Window algorithm works particularly well
for binary problems but is not competitive for benchmark problems with real-
valued features. Note that on the Boolean problems used here for testing all the
off-the shelf methods that are found in data mining packages (decision trees,
MLPs, SVMs and nearest neighbor methods) will completely fail. Therefore in-
vestigation of methods that can handle such data is very important.

The key element is to use non-local projections w · x that does not lead
to separable distribution of data, followed by a window that covers the largest
pure cluster that can be surrounded by vectors from other classes. Constructive
neural networks are well suited to use this type of projections. The Support
Vector Neural Training constructive algorithm [17] may also be used here; dur-
ing training all vectors that are too far from the current decision border, that
is excite the sigmoidal neuron too strongly or too weakly, are removed, so the
final training involves only the vectors in some margin around the decision bor-
der. Another alternative algorithm may be based on modified oblique decision
tree (such as OC1 [18]), with each node defining w · x projection, followed by
univariate decision tree separating the data along the projection line. Several im-
provements of the c3sep algorithm are also possible, for example by using better
search algorithms, second order convergent methods etc. A significant progress
in handling problems that require complex logic should be expected along these
lines. More tests on ambitious bioinformatics and text analysis problems using
such algorithms are needed to show their real potential.

References

1. Cherkassky, V., Mulier, F.: Learning from data. Adaptive and learning systems
for signal processing, communications and control. John Wiley & Sons, Inc., New
York (1998)

2. Duch, W.: k-separability. Lecture Notes in Computer Science 4131 (2006) 188–197
3. Grochowski, M., Duch, W.: Learning highly non-separable boolean functions using

constructive feedforward neural network. Lecture Notes in Computer Science 4668

(2007) 180–189
4. Duch, W., Setiono, R., Zurada, J.: Computational intelligence methods for under-

standing of data. Proceedings of the IEEE 92(5) (2004) 771–805
5. Muselli, M.: Sequential constructive techniques. In Leondes, C., ed.: Optimiza-

tion Techniques, vol. 2 of Neural Network Systems, Techniques and Applications.
Academic Press, San Diego, CA (1998) 81–144

6. Young, S., Downs, T.: Improvements and extensions to the constructive algorithm
carve. Lecture Notes in Computer Science 1112 (1996) 513–518

7. Muselli, M.: On sequential construction of binary neural networks. IEEE Trans-
actions on Neural Networks 6(3) (1995) 678–690

8. Campbell, C., Vicente, C.: The target switch algorithm: a constructive learning
procedure for feed-forward neural networks. Neural Computations 7(6) (1995)
1245–1264

9. Mascioli, F.M.F., Martinelli, G.: A constructive algorithm for binary neural net-
works: The oil-spot algorithm. IEEE Transactions on Neural Networks 6(3) (1995)
794–797

10. Marchand, M., Golea, M.: On learning simple neural concepts: from halfspace
intersections to neural decision lists. Network: Computation in Neural Systems 4

(1993) 67–85
11. Zollner, R., Schmitz, H.J., Wünsch, F., Krey, U.: Fast generating algorithm for a

general three-layer perceptron. Neural Networks 5(5) (1992) 771–777
12. Duch, W., Jankowski, N.: Survey of neural transfer functions. Neural Computing

Surveys 2 (1999) 163–213
13. Duch, W.: Towards comprehensive foundations of computational intelligence. In

Duch, W., Mandziuk, J., eds.: Challenges for Computational Intelligence. Vol-
ume 63. Springer, Berlin, Heidelberg, New York (2007) 261–316

14. et al., S.T.: The monk’s problems: a performance comparison of different learning
algorithms. Technical Report CMU-CS-91-197, Carnegie Mellon University (1991)

15. Muselli, M., Liberati, D.: Binary rule generation via hamming clustering. IEEE
Transactions on Knowledge and Data Engineering 14 (2002) 1258–1268

16. Merz, C., Murphy, P.: UCI repository of machine learning databases (1998-2004)
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

17. Duch, W.: Support vector neural training. Lecture Notes in Computer Science
3697 (2005) 67–72

18. Murthy, S., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees.
Jurnal of Artificial Intelligence Research 2 (1994) 1–32

