
Support Vector Machines for visualization

and dimensionality reduction

Tomasz Maszczyk and W�lodzis�law Duch

Department of Informatics, Nicolaus Copernicus University, Toruń, Poland
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Abstract. Discriminant functions gW(X) calculated by Support Vector
Machines (SVMs) define in a computationally efficient way projections
of high-dimensional data on a direction perpendicular to the discrimi-
nating hyperplane. These projections may be used to estimate and dis-
play posterior probability densities p(C|gW(X)). Additional projection
directions for visualization and dimensionality reduction are created by
repeating the linear discrimination process in a space orthogonal to al-
ready defined projections. This process allows for an efficient reduction of
dimensionality, visualization of data, at the same time improving classifi-
cation accuracy of a single discriminant function. SVM-based sequential
visualization shows that even if discrimination methods completely fail,
nearest neighbor or rule-based methods in the reduced space may provide
simple and accurate solutions.
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1 Introduction

Many classifiers, such as neural networks or support vector machines, work as
black-box predictors. Their quality is estimated in a global way, on the basis
of some accuracy or cost measures. In practical applications it is important to
be able to evaluate a specific case, showing the confidence in predictions in the
region of space close to this case. Looking at the situation from the Bayesian
perspective [1] it is clear that globally defined priors may be very different from
local priors. Principal Components Analysis (PCA), Independent Component
Analysis (ICA), Multidimensional Scaling (MDS) or other such methods com-
monly used for direct visualization of data [2] may be very useful for exploratory
data analysis, but do not provide any information about reliability of the method
used for classification of a specific case. Visualization methods already proved to
be very helpful in understanding mappings provided by neural networks [3, 4].

This paper shows how to use any linear discriminant analysis (LDA), or SVM
classifier in its linear or kernelized version, for dimensionality reduction and
data visualization, providing interesting information and improving accuracy at
the same time. The method presented here may be used for exploratory data
visualization or for analyzing results of the LDA. There is no reason why linear
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discriminants or nonlinear mappings provided by feedforward neural networks
should be treated as black boxes.

In the next section a few linear and non-linear visualization methods are
described, and visualization based on linear discrimination is introduced. For
illustration visualization using linear SVM in one and two dimensions for several
real and artificial datasets is presented in section 3. This type of visualization is
especially interesting because it is fast, projections are easy to understand, and
other methods do not seem to achieve significantly better projections. Conclu-
sions are given in section four.

2 Visualization algorithms

Visualization methods are discussed in details in many books, for example [2, 5].
Below a short description of three popular methods, multidimensional scaling
(MDS), principal component analysis (PCA), and Fisher discriminant anlaysis,
is given, followed by description of our approach. In the next section empirical
comparisons of these four methods are given. Although we have compared our
method with many other non-linear and linear methods space limitation do not
allow here to present more detailed comparisons.

Multidimensional scaling (MDS) is the only non-linear technique used here.
The main idea, rediscovered several times [6–8], is to decrease dimensionality
while preserving original distances in high-dimensional space. This is done ei-
ther by minimization of specific cost functions [9] or by solving cubic system of
equations [8]. MDS methods need only similarities between objects, so explicit
vector representation of objects is not necessary. In metric scaling specific quan-
titative evaluation of similarity using numerical functions (Euclidean, cosine or
any other measures) is used, while for non-metric scaling qualitative information
about the pairwise similarities is sufficient. MDS methods also differ by their cost
functions, optimization algorithms, the number of similarity matrices used, and
the use of feature weighting. There are many measures of topographical distor-
tions due to the reduction of dimensionality, most of them variants of the stress
function:

ST (d) =
n∑

i>j

(Dij − dij)2 (1)

or [8]

SD(d) =

∑n
i>j (Dij − dij)2

∑
i>j

(
d2

ij + D2
ij

) (2)

where dij are distances (dissimilarities) in the target (low-dimensional) space,
and Dij are distances in the input space, pre-processed or calculated directly
using some metric functions. These measures are minimized over positions of all
target points, with large distances dominating in the ST (d). SD(d) is zero for
perfect reproduction of distances and 1 for complete loss of information (all dij =
0), weighting the errors |Dij − dij | by squared summed distances. The sum runs
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over all pairs of objects and thus contributes O(n2) terms. In the k-dimensional
target space there are kn parameters for minimization. For visualization purposes
the dimension of the target space is k =1-3, but the number of objects n may
be quite large, making the approximation to the minimization process necessary
[10].

MDS cost functions are not easy to minimize, with multiple local minima
for quite different mappings. Initial configuration is either selected randomly or
based on projection of data to the space spanned by principal components. Dis-
similar objects are represented by points that are far apart, and similar objects
are represented by points that should be close, showing clusters in the data. Ori-
entation of axes in the MDS mapping is arbitrary and the values of coordinates
do not have any simple interpretation, as only relative distances are important.

PCA is a linear projection method that finds orthogonal combinations of
input features X = {x1, x2, ..., xN} accounting for most variation in the data.
Principal components Pi result from diagonalization of data covariance ma-
trix [11], and are sequentially ordered according to the size of the eigenvalues.
They provide directions of maximum variability of data points, thus guarantee-
ing minimal loss of information when position of points are recreated from their
low-dimensional projections. Taking 1, 2 or 3 principle components and project-
ing the data to the space defined by these components yij = Pi · Xj provides
for each input vector its representative (y1j , y2j, ...ykj) in the target space. For
many data distributions such projections will not show interesting structures.

Kernel PCA [12] finds directions of maximum variance for training vectors
mapped to an extended space. This space is not constructed in an explicit way,
the only condition is that the kernel mapping K(X,X′) of the original vectors
should be a scalar product Φ(X) · Φ(X′) in the extended space. This enables
interesting visualization of data, although interpretation of resulting graphs may
be rather difficult.

Supervised methods that use information about classes determine more in-
teresting directions. Fisher Discriminant Analysis (FDA) is a popular algorithm
that finds a linear combination of variables separating various classes as much
as possible. FDA maximizes the ratio of between-class to within-class scatter,
seeking a direction W such that

max
W

JW =
WT SBW
WTSIW

(3)

where SB and SI are given by

SB =
C∑

i=1

ni

n
(mi − m)(mi − m)T ; SI =

C∑

i=1

ni

n
Σ̂i (4)

Here mi and Σ̂i are the sample means and covariance matrices of each class and
m is the sample mean [5].

FDA is frequently used for classification and projecting data on a line. For
visualization generating the second FDA vector in a two-class problem is not so
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trivial. This is due to the fact that the rank of the SB matrix for the C-class
problems is C − 1. Cheng et al. [13] proposed several solutions to this problem:

– stabilize the SI matrix by adding a small perturbation matrix;
– use pseudoinverse, replacing S−1

I by the pseudoinverse matrix S†
I ;

– use rank decomposition method.

In our implementation pseudoinverse matrix has been used to generate higher
FDA directions.

Linear SVM algorithm searches for a hyperplane that provides a large
margin of classification, using regularization term and quadratic programming
[14]. Non-linear versions are based on a kernel trick [12] that implicitly maps data
vectors to a high-dimensional feature space where a best separating hyperplane
(the maximum margin hyperplane) is constructed. Linear discriminant function
is defined by:

gW(X) = WT · X + w0 (5)

The best discriminating hyperplane should maximize the distance between de-
cision hyperplane defined by gW(X) = 0 and the vectors that are nearest to it,
maxW D(W,X(i)). The largest classification margin is obtained from minimiza-
tion of the norm ‖W‖2 with constraints:

Y (i)gW(X(i)) ≥ 1 (6)

for all training vectors X(i) that belong to class Y (i). Vector W, orthogonal to the
discriminant hyperplane, defines direction on which data vectors are projected,
and thus may be used for one-dimensional projections. The same may be done
using non-linear SVM based on kernel discriminant:

gW(X) =
Nsv∑

i=1

αiK(X(i),X) + w0 (7)

where the summation is over support vectors X(i) that are selected from the
training set. The x = gW(X) values for different classes may be smoothed and
displayed as a histogram, estimating p(x|C) class-conditionals and calculating
posterior probabilities p(C|x) = p(x|C)p(C)/p(x). Displaying p(C|x) shows dis-
tance of vectors from decision borders, overlaps between classes, on this basis
allowing for immediate estimation of reliability of classification.

SVM visualization in more than one dimension requires generation of more
discriminating directions. The first direction should give gW1(X) < 0 for vectors
from the first class, and > 0 for the second class. This is obviously possible
only for data that are linearly separable. If this is not the case, a subset of
all vectors D(W1) will give projections on the wrong side of the zero point,
inside [a(W1), b(W1)] interval that contains the zero point. Visualization may
help to separate the remaining D(W) vectors. In case of linear SVM the best
additional directions may be obtained by repeating SVM calculations in the
space orthogonalized to the already obtained W directions. One may also use
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only the subset of D(W) vectors, as the remaining vectors are already separated
in the first dimension. SVM training in its final phase is using anyway mainly
vectors from this subset. However, vectors in the [a(W1), b(W1)] interval do not
include some outliers and therefore may lead to significantly different direction.

In two dimensions the classification rule is:

– If gW1(X) < a(W1) Then Class 1
– If gW1(X) > b(W1) Then Class 2
– If gW2(X) < 0 Then Class 1
– If gW2(X) > 0 Then Class 2

where the [a(W1), b(W1)] interval is determined using estimates of posterior
probabilities p(C|x) from smoothed histograms, with a user-determined con-
fidence parameter (for example p(C|x) > 0.9 for each class). One could also
introduce such confidence intervals for the W2 direction and reject vectors that
are inside this interval. An alternative is to use the nearest neighbor rule after
dimensionality reduction.

This process may be repeated to obtain more dimensions. Each additional
dimension should help to decrease errors, and the optimal dimensionality is ob-
tained when new dimensions stop decreasing the number of errors in crossvali-
dation tests. If more dimensions is generated rules will be applied in sequential
manner with appropriate intervals, and only for the last dimension zero is used
as a threshold. In this way hierarchical system of rules with decreasing reliability
is created. Of course it is possible to use other models on the D(W1) data, for
example Naive Bayes approach, but we shall not explore this possibility concen-
trating mainly on visualization.

In case of non-linear kernel, gW(X) provides the first direction, while the
second direction may be generated in several ways. The simplest approach is to
repeat training on D(W) subset of vectors that are close to the hyperplane in
the extended space using some other kernel, for example a linear kernel.

3 Illustrative examples

The usefulness of the SVM-based sequential visualization method has been eval-
uated on a large number of datasets. Here only two artificial binary datasets, and
three medical datasets downloaded from the UCI Machine Learning Repository
[15] and from [16], are presented as an illustration. A summary of these data
sets is presented in Tab. 1. Short description of these datasets follows:

1. Parity 8: 8-bit parity dataset (8 binary features and 256 vectors).
2. Heart disease dataset consists of 270 samples, each described by 13 at-

tributes, 150 cases belongs to group “absence” and 120 to “presence of heart
disease”.

3. Wisconsin breast cancer data [17] contains 699 samples collected from pa-
tients. Among them, 458 biopsies are from patients labeled as “benign”, and
241 are labeled as “malignant”. Feature six has 16 missing values, removing
these vectors leaves 683 examples.
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4. Leukemia: microarray gene expressions for two types of leukemia (ALL and
AML), with a total of 47 ALL and 25 AML samples measured with 7129
probes [16]. Visualization is based on 100 best features from simple feature
ranking using FDA index.

Title #Features #Samples #Samples per class Source

Parity 8 8 256 128 C0 128 C1 artificial

Heart 13 270 150 “absence” 120 “presence” [15]

Wisconsin 10 683 444 “benign” 239 “malignant” [17]

Leukemia 100 72 47 “ALL” 25 “AML” [16]
Table 1. Summary of datasets used for illustrations

For each dataset four two-dimensional mappings have been created using
MDS, PCA, FDA and SVM-based algorithms described in Sec. 2. Results are
presented in Figs. 1-5.

High-dimensional parity problem is very difficult for most classification meth-
ods. Many papers have been published on special neural models for parity func-
tions, and the reason is quite obvious, as Fig. 1 illustrates: linear separation
cannot be easily achieved because this is a k-separable problem that should be
separated into n+1 intervals for n bits [18, 19]. PCA and SVM find a very useful
projection direction [1, 1..1], but the second direction does not help at all. MDS
is completely lost, as it is based on preservations of Euclidean distances that in
this case do not carry useful information for clustering. FDA shows significant
overlaps for projection on the first direction. This is a very interesting example
showing that visualization may help to solve a difficult problem in a perfect way
even though almost all classifiers will fail.

Variations on this data include random assignment of classes to bit strings
with fixed number of 1 bits, creating k-separable (k ≤ n) data that most methods
invented for the parity problem cannot handle [18]. All three linear projections
show for such data correct cluster structure along the first direction. However,
linear projection has to be followed by a decision tree or the nearest neighbor
method, as the data is nonseparable.

For Cleveland Heart data linear SVM gives about 83 ± 5% accuracy, with
the base rate of 54%. Fig. 2 shows nice separation of a significant portion of the
data, with little improvement due to the second dimension. MDS and PCA are
somewhat less useful than FDA and SVM projections.

Displaying class-conditional probability for Parity and Cleveland Heart in the
first SVM direction (Fig. 3) may also help to estimate the character of overlaps
and the resulting errors, and help to decide what type of transformation should
follow initial projection.

Wisconsin breast cancer dataset can be classified with much higher accuracy,
around 97 ± 2%, and therefore shows strong separation (Fig. 4), with benign
cancer cases clusterized in one area, and a few outliers that appear far from
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Fig. 1. 8-bit parity dataset, top row: MDS and PCA, bottom row: FDA and SVM.
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Fig. 2. Heart data set, top row: MDS and PCA, bottom row: FDA and SVM.
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Fig. 3. Estimation of class-conditional probability for Parity and Cleveland Heart in
the first SVM direction.

the main benign cluster, mixing with malignant cases. Most likely these are real
misdiagnosed outliers that should in fact be malignant. Only in case of SVM the
second direction shows some additional improvement.

Leukemia shows remarkable separation using two-dimensional SVM projec-
tion (Fig. 5), thanks to maximization of margin, providing much more interesting
projection than other methods. The first direction shows some overlap but in
crossvalidation tests it yields significantly better results than the second direc-
tion.

To compare the influence of dimensionality reduction on accuracy of classi-
fication for each dataset classification using SVM with linear kernel has been
performed in the original and in the reduced two-dimensional space. 10-fold
crossvalidation tests have been repeated 10 times and average results collected
in Table 2, with accuracies and standard deviations for each dataset. These cal-
culations intend to illustrate the efficiency of dimensionality reduction only; in
case of Leukemia starting from pre-selected 100 features from the microarray
data does not guarantee correct evaluation of generalization error (feature se-
lection should be done within crossvalidation in order to do it). With such a
large number of features and a very few samples, SVM with Gaussian kernel will
show nicely separated class-conditional probabilities, but in crossvalidation will
perform poorly, showing that strong overfitting occurs.

For Heart and Wisconsin data both FDA and SVM give significantly better
results than other methods used in this comparison, with SVM achieving much
better results than FDA for Leukemia, as should also be obvious from data
visualization. Adding the second SVM direction to the first one has obviously
negligible influence on the SVM results. However, visualizations show (Fig. 1)
that for highly non-separable types of data the linear SVM projection may still be
useful for dimensionality reduction and should be used for preprocessing of data
for other classification or regression algorithms. The Gaussian kernel SVM fails
as badly as linear SVM on some types of data, but it may work perfectly well on
the reduced data. This is true not only for Boolean problems with complex logic,
but also for microarray data such as Leukemia, where crossvalidation results with
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Fig. 4. Wisconsin data set, top row: MDS and PCA, bottom row: FDA and SVM.
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Fig. 5. Leukemia data set, top row: MDS and PCA, bottom row: FDA and SVM.
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Fig. 6. Estimation of class-conditional probability for Wisconsin using linear and Gaus-
sian kernel SVM (top row); the same for Leukemia (bottom row).

Gaussian kernel on the original data shows some error (98.6 ± 4.5%), while the
same crossvalidation on the two-dimensional data consistently gives 100%.

4 Conclusions

There are many methods for data visualization, some of them quite sophisti-
cated [20], with PCA and MDS among the most common. Visualization allows
for exploratory data analysis, giving much more information than just global
information about expected accuracy or probability of individual cases. In real
applications visualization is sometimes used for initial data exploration, but
rarely to the evaluation of the mapping implemented by predictors. Visualiza-
tion can certainly help to understand what black box classifiers really do [3, 4].
In industrial, medical or other applications where safety is important evaluation
of confidence in predictions, that may be done using visualization methods, is
critical.

Sequential dimensionality reduction based on SVM has several advantages:
it enables visualization, guarantees dimensionality reduction without loss of ac-
curacy, increases accuracy of the linear discrimination model, is very fast and
preserves simple interpretation. Information obtained from unsupervised meth-
ods, such as PCA or kernel PCA, provide directions of highest variance, but
no information about reliability of classification. There is no reason why SVM
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# Features Parity 8 Heart Wisconsin Leukemia

PCA 1 41.76±6.24 55.56±8.27 65.00±5.98 65.23±15.62

PCA 2 41.69±5.30 55.56±8.27 65.00±5.98 77.55±19.10

MDS 1 39.66±5.76 60.26±9.31 97.00±2.00 60.18±18.05

MDS 2 38.22±5.40 68.63±9.00 96.65±2.10 94.46± 8.39

FDA 1 40.25±6.54 85.00±6.58 97.17±1.91 75.57±15.37

FDA 2 38.72±7.13 85.19±6.32 97.13±2.03 81.79±14.10

SVM 1 41.91±6.51 84.81±6.52 97.26±1.81 97.18± 5.68

SVM 2 41.84±6.16 84.81±6.52 97.26±1.81 97.18± 5.68

All 31.41±4.80 83.89±6.30 96.60±1.97 95.36± 7.80

Table 2. 10-fold crossvalidation accuracy in % for four datasets with reduced features.

decision borders should not be visualized using estimations of class-dependent
probabilities, or posterior probabilities p(C|x) in one or two dimensions. This
process gives insight into the character of data, helping to construct appropriate
predictors by combining linear or non-linear projections with other data models,
such as decision trees or nearest neighbor models. For highly non-separable data
(with inherent complex logic, symbolic data) k-separability approach may be the
most appropriate, for very sparse high-dimensional data linear projection on one
or two directions may be followed by kernel methods [12, 14], prototype-based
rules [21] or the nearest neighbor methods. Such observations allow for imple-
mentation of meta-learning as composition of transformations [22], for automatic
discovery of the simplest and most reliable models. Visualization will also help
to evaluate the reliability of predictions for individual cases, showing them in
context of the known cases, and providing information about decision borders
of classifiers. We plan to add visualization of probabilities and scatterograms to
a few popular SVM packages soon.
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