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Abstract. Shannon entropy used in standard top-down decision trees
does not guarantee the best generalization. Split criteria based on gener-
alized entropies offer different compromise between purity of nodes and
overall information gain. Modified C4.5 decision trees based on Tsallis
and Renyi entropies have been tested on several high-dimensional mi-
croarray datasets with interesting results. This approach may be used in
any decision tree and information selection algorithm.
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1 Introduction

Decision tree algorithms are still the foundation of most large data mining pack-
ages, offering easy and computationally efficient way to extract simple decision
rules [1]. They should always be used as a reference, with more complex clas-
sification models justified only if they give significant improvement. Trees are
based on recursive partitioning of data and unlike most learning systems they
use different sets of features in different parts of the feature space, automatically
performing local feature selection. This is an important and unique property of
general divide-and-conquer algorithms that has not been paid much attention.
The hidden nodes in the first neural layer weight the inputs in a different way,
calculating specific projections of the input data on a line defined by the weights
gk = W (k) · X. This is still non-local feature that captures information from a
whole sector of the input space, not from the localized region. On the other hand
localized radial basis functions capture only the local information around some
reference points. Recursive partitioning in decision trees is capable of capturing
local information in some dimensions and non-local in others. This is a desirable
property that may be used in neural algorithms based on localized projected
data [2].

The C4.5 algorithm to generate trees [3] is still the basis of the most popular
approach in this field. Tests for partitioning data in C4.5 decision trees are based
on the concept of information entropy and applied to each feature x1, x2, ...
individually. Such tests create two nodes that should on the one hand contain
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data that are as pure as possible (i.e. belong to a single class), and on the
other hand increase overall separability of data. Tests that are based directly on
indices measuring accuracy are optimal from Bayesian point of view, but are not
so accurate as those based on information theory that may be evaluated with
greater precision [4]. Choice of the test is always a hidden compromise in how
much weight is put on the purity of samples in one or both nodes and the total
gain achieved by partitioning of data. It is therefore worthwhile to test other
types of entropies that may be used as tests. Essentially the same reasoning may
be used in applications of entropy-based indices in feature selection. For some
data features that can help to distinguish rare cases are important, but standard
approaches may rank them quite low.

In the next section properties of Shannon, Renyi and Tsallis entropies are
described. As an example of application three microarray datasets are analyzed
in the third section. This type of application is especially interesting for decision
trees because of the high dimensionality of microarray data, the need to identify
important genes and find simple decision rules. More sophisticated learning sys-
tems do not seem to achieve significantly higher accuracy. Conclusions are given
in section four.

2 Theoretical framework

Entropy is the measure of disorder in physical systems, or an amount of informa-
tion that may be gained by observations of disordered systems. Claude Shannon
defined a formal measure of entropy, called Shannon entropy[5]:

S = −
n∑

i=1

pi log2 pi (1)

where pi is the probability of occurrence of an event (feature value) xi being
an element of the event (feature) X that can take values {x1...xn}. The Shan-
non entropy is a decreasing function of a scattering of random variable, and is
maximal when all the outcomes are equally likely.

Shannon entropy is may be used globally, for the whole data, or locally, to
evaluate entropy of probability density distributions around some points. This
notion of entropy can be generalized to provide additional information about
the importance of specific events, for example outliers or rare events. Comparing
entropy of two distributions, corresponding for example to two features, Shannon
entropy assumes implicite certain tradeoff between contributions from the tails
and the main mass of this distribution. It should be worthwhile to control this
tradeoff explicitly, as in many cases it may be important to distinguish weak
signal overlapping with much stronger one. Entropy measures that depend on
powers of probability,

∑n
i=1 p(xi)α, provide such control. If α has large positive

value this measure is more sensitive to events that occur often, while for large
negative α it is more sensitive to the events which happen seldom.
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Constantino Tsallis [6] and Alfred Renyi [7] both proposed generalized en-
tropies that for α = 1 reduce to the Shannon entropy. The Renyi entropy is
defined as [7]:

Iα =
1

1 − α
log

(
n∑

i=1

pα
i

)
(2)

It has similar properties as the Shannon entropy:

– it is additive
– it has maximum = ln(n) for pi = 1/n

but it contains additional parameter α which can be used to make it more or
less sensitive to the shape of probability distributions.

Tsallis defined his entropy as:

Sα =
1

α − 1

(
1 −

n∑
i=1

pα
i

)
(3)

Figures 1-3 shows illustration and comparison of Renyi, Tsallis and Shannon
entropies for two probabilities p1 and p2 where p1 = 1 − p2.
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Fig. 1. Plots of the Renyi entropy for several negative and positive values of α.

The modification of the standard C4.5 algorithm has been done by simply
replacing the Shannon measure with one of the two other entropies, as the goal
here was to evaluate their influence on the properties of decision trees. This
means that the final split criterion is based on the gain ratio: a test on attribute
A that partitions the data D in two branches with Dt and Df data, with a set
of classes omega has gain value:

G(ω, A|D) = H(ω|D) − |Dt|
|D| H(ω|Dt) − |Df |

|D| H(ω|Df ) (4)

where |D| is the number of elements in the D set and H(ω|S) is one of the 3
entropies considered here: Shannon, Renyi or Tsallis. Parameter α has clearly
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Fig. 2. Plots of the Tsallis entropy for several negative and positive values of α.
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an influence on what type of splits are going to be created, with preference for
negative values of α given to rare events or longer tails of probability distribution.

3 Empirical study

To evaluate the usefulness of Renyi and Tsallis entropy measures in decision
trees the classical C4.5 algorithm has been modified and applied first to artificial
data to verify its usefulness. The results were encouraging, therefore experiments
on three data sets of gene expression profiles were carried out. Such data are
characterized by large number of features and very small number of samples. In
such situations several features may by pure statistical chance seem to be quite
informative and allow for good generalization. Therefore it is deceivingly simple
to reach high accuracy on such data, although it is very difficult to classify
these data reliably. Only the simplest models may avoid overfitting, therefore
decision trees providing simple rules may have an advantage over other models.
A summary of these data sets is presented in Table 1, all data were downloaded
from the Kent Ridge Bio-Medical Data Set Repository http://sdmc.lit.org.
sg/GEDatasets/Datasets.html. Short description of these datasets follows:

1. Leukemia: training dataset consists of 38 bone marrow samples (27 ALL and
11 AML), over 7129 probes from 6817 human genes. Also 34 samples testing
data is provided, with 20 ALL and 14 AML cases.

2. Colon Tumor: data contains 62 samples collected from the colon cancer pa-
tients. Among them, 40 tumor biopsies are from tumors (labeled as ”nega-
tive”) and 22 normal (labeled as ”positive”) biopsies are from healthy parts
of the colons of the same patients. Two thousand out of around 6500 genes
were pre-selected by the authors of the experiment based on the confidence
in the measured expression levels.

3. Diffuse Large B-cell Lymphoma (DLBCL) is the most common subtype of
non-Hodgkins lymphoma. The data contains gene expression data from dis-
tinct types of such cells. There are 47 samples, 24 of them are from ”germinal
centre B-like” group while 23 are ”activated B-like” group. Each sample is
described by 4026 genes.

Title #Genes #Samples #Samples per class Source

Colon cancer 2000 62 40 tumor 22 normal Alon at all (1999) [8]

DLBCL 4026 47 24 GCB 23 AB Alizadeh at all (2000) [9]

Leukemia 7129 72 47 ALL 25 AML Golub at all (1999) [10]
Table 1. Summary of data sets
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4 Experiment and results

For each data set the standard C4.5 decision tree is used 10 times, each time
averaging the 10-fold crossvalidation mode, followed on the same partitioning of
data by the modified algorithms based on Tsallis and Renyi entropies for different
values of parameter α. Results are collected in Tables 2-7, with accuracies and
standard deviations for each dataset. The best values of α parameter differ in
each case and can be easily determined from crossvalidation. Although overall
results may not improve accuracy for different classes they may strongly differ
in sensitivity and specificity, as can be seen in the tables below.

Entropy Alpha

-1.5 -0.9 -0.5 -0.1 0.1 0.3 0.5 0.7

Renyi 64.6±0.2 64.6±0.2 64.6±0.2 77.3±4.1 75.4±2.1 77.7±3.3 77.8±4.7 79.1±2.6

Tsallis 64.6±0.2 64.6±0.2 64.6±0.2 64.6±0.2 77.3±3.7 75.4±4.0 74.4±4.3 71.3±5.4

Alpha

0.9 1.1 1.3 1.5 2.0 3.0 4.0 5.0

Renyi 78.8±4.4 82.1±4.2 82.8±4.0 82.9±2.5 84.0±3.9 79.4±3.0 80.8±3.1 78.9±2.2

Tsallis 73.0±3.4 74.9±1.8 73.4±2.4 71.1±4.0 70.2±3.9 73.9±4.4 72.8±3.6 71.1±4.4

Shannon 81.2±3.7
Table 2. Accuracy on Colon cancer data set; Shannon and α = 1 results are identical.

Entropy Class Alpha

-1.5 -0.5 -0.1 0.1 0.3 0.5 0.7

Renyi 1 0.0±0.0 0.0±0.0 59.7±4.7 58.7±6.8 60.8±6.4 63.2±7.3 66.0±6.5
2 100±0.0 100±0.0 87.2±4.1 84.7±2.4 87.2±2.8 85.8±4.0 86.2±3.9

Tsallis 1 0.0±0.0 0.0±0.0 0.0±0.0 58.2±5.1 59.8±9.3 59.8±5.2 50.7±10.2
2 100±0.0 100±0.0 100± 0.0 87.6±4.8 83.9±4.3 82.8±4.4 82.6±3.9

Class Alpha

0.9 1.1 1.5 2.0 3.0 4.0 5.0

Renyi 1 65.8±6.5 70.0±7.2 67.3±5.4 69.2±6.6 58.5±2.9 61.0±3.8 58.7±3.5
2 85.8±4.6 88.8±4.5 91.5±2.1 92.1±2.9 90.7±4.3 91.6±3.7 90.1±3.6

Tsallis 1 55.7±7.7 58.5±4.9 58.3±8.2 53.2±7.6 67.2±9.2 60.5±7.4 60.0±10.4
2 82.8±3.4 84.2±2.2 78.9±4.6 80.0±3.7 77.7±6.0 79.7±5.3 77.3±3.4

Shannon 1 69.5±4.2
2 87.7±4.8

Table 3. Accuracy per class on Colon cancer data set; Shannon and α = 1 results are
identical.

Results depend quite clearly on the α coefficient, with α = 1 always repro-
ducing the Shannon entropy results. The optimal coefficient should be deter-
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Entropy Alpha

-1.5 -0.9 -0.5 -0.1 0.1 0.3 0.5 0.7

Renyi 46.0±4.2 46.0±4.2 46.0±4.2 69.9±5.2 71.8±5.4 70.7±5.4 70.5±5.0 73.0±4.9

Tsallis 52.4±6.8 52.4±6.8 52.4±6.8 52.4±6.8 71.1±5.6 69.8±5.2 72.4±6.0 79.9±5.0

Alpha

0.9 1.1 1.3 1.5 2.0 3.0 4.0 5.0

Renyi 76.5±6.7 81.0±6.2 81.0±4.8 80.5±5.0 79.3±5.1 79.5±5.6 75.9±7.2 69.7±6.3

Tsallis 81.3±4.7 82.0±4.3 81.8±5.2 80.8±6.5 81.5±5.7 78.8±6.9 81.8±4.1 80.5±4.0

Shannon 78.5±4.8
Table 4. Accuracy on DLBCL data set

Entropy Class Alpha

-1.5 -0.5 -0.1 0.1 0.3 0.5 0.7

Renyi 1 90.0±10.5 90.0±10.5 72.3±8.4 75.5±10.6 74.3±11.2 76.3±8.7 79.7±7.1
2 10.0±10.5 10.0±10.5 65.5±11.8 66.7±10.5 65.7±10.9 62.5±8.5 65.3±5.9

Tsallis 1 64.8±10.6 64.8±10.6 64.8±10.6 74.5±12.1 73.3±10.7 80.2±8.5 85.8±7.2
2 41.8±11.0 41.8±11.0 41.8±11.0 65.7±10.6 65.2±12.0 64.8±9.1 74.7±9.8

Class Alpha

0.9 1.1 1.3 1.5 2.0 3.0 5.0

Renyi 1 82.7±8.4 85.5±8.1 86.5±5.8 85.2±5.8 84.8±6.4 84.2±5.3 68.0±12.0
2 70.2±11.1 77.3±9.0 77.0±7.4 77.3±7.6 74.7±8.1 75.3±9.0 69.3±4.7

Tsallis 1 88.2±6.3 88.2±5.7 86.2±5.3 85.2±6.4 84.7±5.7 83.2±8.8 87.3±5.2
2 76.0±7.5 77.3±5.3 78.7±6.9 77.8±9.3 80.0±6.9 76.3±6.4 75.3±4.9

Shannon 1 84.8±7.0
2 72.7±8.7

Table 5. Accuracy per class on DLBCL data set

Entropy Alpha

-1.5 -0.5 -0.1 0.1 0.3 0.5 0.7

Renyi 65.4 ±0.4 65.4 ±0.4 88.5 ±2.4 85.6 ±3.9 84.6 ±3.8 82.4 ±4.6 82.0 ±4.6

Tsallis 65.4 ±0.4 65.4 ±0.4 65.4 ±0.4 83.5 ±4.4 84.8 ±4.2 84.3 ±3.5 82.3 ±3.9

Alpha

0.9 1.1 1.3 1.5 2.0 3.0 5.0

Renyi 80.5±3.8 81.5±3.5 82.2±3.5 82.4±2.6 85.3±2.8 86.1±2.8 83.8±2.0

Tsallis 82.5±4.4 81.5±2.9 82.3±1.1 83.3±1.4 82.2±2.5 86.5±2.7 87.5±3.6

Shannon 81.4±4.1
Table 6. Accuracy on Leukemia data set
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Entropy Class Alpha

-1.5 -0.5 -0.1 0.1 0.3 0.5 0.7

Renyi 1 100±0.0 100±0.0 89.2±1.6 89.4±3.2 88.7±2.5 86.2±3.2 84.8±4.0
2 0.0±0.0 0.0±0.0 86.6±5.4 77.7±9.9 75.8±10.5 74.3±10.5 76.2±10.6

Tsallis 1 100±0.0 100±0.0 100±0.0 88.3±3.6 88.7±2.9 89.0±3.3 85.4±3.2
2 0.0±0.0 0.0±0.0 0.0±0.0 73.5±10.1 76.8±10.3 74.8±9.3 76.6±10.3

Class Alpha

0.9 1.3 1.5 2.0 3.0 4.0 5.0

Renyi 1 85.0±3.9 84.7±4.6 85.2±3.7 88.6±4.5 90.2±3.4 83.9±3.9 86.8±2.0
2 71.3±11.9 77.4±5.0 76.7±5.7 79.1±4.6 78.3±3.7 80.3±7.1 78.2±5.9

Tsallis 1 84.5±3.9 86.1±3.4 87.4±4.0 85.0±3.4 90.0±3.8 89.1±3.0 91.3±3.5
2 78.1±11.8 74.4±7.5 75.2±7.8 77.9±7.0 80.2±6.7 84.3±6.2 80.3±6.5

Shannon 1 83.8±5.3
2 76.6±5.7

Table 7. Accuracy per class on Leukemia data set

mined through crossvalidation. For the Colon dataset (Tab. 2-3) peak accuracy
is achieved for Renyi entropy with α = 2, with specificity (accuracy of the second
class) significantly higher than for the Shannon case, and with smaller variance.
Tsallis entropy seems to be very sensitive and does not improve over Shannon
value around α = 1. For DLBCL both Renyi and Tsallis entropies with α in the
range 1.1 − 1.3 give the best results, improving both specificity and sensitivity
of the Shannon measure (Tab. 4-5). For the Leukemia data best Renyi result for
α = −0.1, around 88.5 ± 2.4 is significantly better than Shannon’s 81.4 ± 4.1%,
improving both the sensitivity and specificity and decreasing variance; results
with α = 3 are also very good. Tsallis results for quite large α = 5 are even
better.

Below one of the decision trees generated on the Leukemia data set with
Renyi’s entropy and α = 3 is presented:

g760 > 588 : AML
g760 <= 588 :
| c1926 <= 134 : ALL
| c1926 > 134 : AML

Rules extracted from this tree are:

Rule 1:
g760 > 588

--> class AML [93.0%]

Rule 2:
g1926 > 134

--> class AML [89.1%]
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Rule 3:
g760 <= 588
g1926 <= 134

--> class ALL [93.9%]

The trees are very small and should provide good generalization for small
datasets, avoiding overfitting that other methods may suffer from. However, for
gene expression data this may not be sufficient as the results are not stable
against small perturbation of data (all learning methods suffer from this prob-
lem, see [?]). Therefore in practical applications a better approach is to define
approximate coverings of redundant features and replace such groups of fea-
tures with their linear combinations to reduce their dimensionality, aggregating
information about similar genes (Biesiada and Duch, in preparation). For the
demonstration of efficiency of non-standard entropy measures this is not so im-
portant.

5 Conclusions

Information Theoretic Learning (ITL) has been used to train neural networks for
blind source separation [11], definition of new error functions in neural networks
[12], classification with labeled and unlabeled data, feature extraction and other
applications [13]. The quadratic Renyi’s error entropy has been used to minimize
the average information content of the error signal for supervised adaptive system
training. However, the use of non-Shannon entropies in extraction of logical rules
using decision trees has not yet been attempted. The importance of decision trees
in large-scale data mining knowledge extraction applications and the simplicity
of this approach encouraged us to explore this possibility.

First experiments with modified split criterion of the C4.5 decision trees were
presented here. Theoretical results and tests on artificial data show that this can
be useful particularly for datasets with one or more small classes. Additional pa-
rameter α that may be easily adapted using crossvalidation tests gives possibility
to tune the tree to the discrimination of classes of different size. This algorithm
makes it more attractive than standard approach based on Shannon entropy that
does not allow for exploration of the tradeoff between the probability of differ-
ent classes and the overall information gain. This opens a way to applications in
many types of decision trees, encouraging also modification of split criteria that
are not based on entropy to account for the same tradeoff. An explicit formula
for such tradeoff may be defined, aimed at separation of nodes of high purity
at the expense of lower overall information gain. This as well as applications
of non-standard entropies to the text classification data, where small classes are
very important, remain to be explored. Bearing in mind the results and the simi-
plicity of the approach presented here the use of non-standard entropies may be
highly recommended.
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