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Abstract 

Brain processes responsible for understanding language are approximated by spreading activation in semantic networks, providing en-
hanced representations that involve concepts not found directly in the text. Approximation of this process is of great practical and theoreti-
cal interest. Snapshots of activations of various concepts in the brain spreading through associative network may be captured in a vector 
model. Medical ontologies are used to identify concepts of specific semantic type in the text, and add to each of them related concepts, 
providing expanded vector representations. To avoid rapid growth of the extended feature space after each step only the most useful fea-
tures that increase document clusterization are retained. Short hospital discharge summaries are used to illustrate how this process works 
on a real, very noisy data. Results show significantly improved clustering and classification accuracy. Although better approximations to 
the spreading of neural activations may be devised a practical approach presented in this paper helps to discover pathways used by the 
brain to process specific concepts. 
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1. Introduction 
 

Semantic internet and semantic search in free text databases require automatic tools for annotation. In medical domain 
terabytes of text data are produced and conversion of unstructured medical texts into semantically-tagged documents is ur-
gently needed because errors may be dangerous and time of experts is costly. Our long-term goal is to create tools for auto-
matic annotation of unstructured texts, especially in medical domain, adding full information about all concepts, expanding 
acronyms and abbreviations and disambiguating all terms. This goal cannot be accomplished without solving the problem of 
word meaning and knowledge representation. So far the only systems that can deal with linguistic structures are human 
brains. Neurocognitive approach to linguistics “is an attempt to understand the linguistic system of the human brain, the sys-
tem that makes it possible for us to speak and write, to understand speech and writing, to think using language …” [1].  

Although neurocognitive linguistics approach proposed in [1] has been quite fruitful in understanding the neuropsy-
chological language-related problems it has not been so far that useful in creation of algorithms for text interpretation, and it 
is still exotic in the natural language processing (NLP) community. The basic premise is rather simple: each word in ana-
lyzed text is represented as a state of an associative network, and the spreading of activation creates network states that facili-
tate semantic interpretation of the text. Unfortunately unraveling the “pathways of the brain” [1] proved to be quite difficult.  

Connectionist approach to natural language has been introduced in the influential PDP books [2] but has not been devel-
oped beyond models providing qualitative explanations of linguistic phenomena. Much later some applications of con-
strained spreading activation techniques in information retrieval [3], semantic search techniques [4] and word sense disam-
biguation [5] have been made. In this paper neurolinguistic inspirations are used to search for useful approximations to 
spreading of brain activity during text comprehension, connecting this approach with standard, vector-based NLP techniques. 
A database of short medical documents (hospital discharge summaries) divided into ten categories is used for illustration of 
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this approach. In the next section neurocognitive inspirations for NLP are presented, in the third section medical data used in 
experiments are described, followed by the section introducing an algorithm that creates semantic description vectors, and by 
the section that shows applications of this algorithm to clusterization and discovery of topics in medical texts. Discussion of 
presented results and their wider implications closes this paper. 

2. Neurocognitive inspirations 
How are words and concepts represented in the brain? The neuroscience of language in general, and word representation 

in the brain in particular, is far from being understood, but the cell assembly model of language has already quite strong ex-
perimental support [6][7], and agrees with broader mechanisms responsible for memory [8]. In the cell assembly (or neural 
clique) model words (or general memory patterns) are represented by strongly linked subnetworks of microcircuits that bind 
articulatory and acoustic representations of spoken words. The meaning of the word comes from extended network that binds 
related perceptions and actions, activating sensory, motor and premotor cortices [6]. Various neuroimaging techniques con-
firm existence of such semantically extended networks.  

Psycholinguistic experiments show that acoustic speech input is quickly changed into categorical, phonological represen-
tation. A small set of phonemes is linked together in ordered string by a resonant state representing word form, and extended 
to include other brain circuits defining semantic concept. Hearing a word phonological processing creates localized attractor 
state whose activity spreads in about 90 ms to extended areas defining its semantics [6]. To recognize a word in a conscious 
way activity of its subnetwork must win a competition for an access to the working memory [7]-[10]. Hearing a word acti-
vates strings of phonemes priming (decreasing the threshold for activity) all candidate words and some non-word phoneme 
combinations. Polysemic words probably have a single phonological representation that differs only by semantic extension. 
In people who can read and write visual representation of words in the recently discovered Visual Word Form Area (VWFA) 
in the left occipitotemporal sulcus is strictly unimodal [7]. Adjacent Lateral Inferotemporal Multimodal Area (LIMA) reacts 
to both auditory and visual stimulation and has cross-modal phonemic and lexical links [11]. It is quite likely that the audi-
tory word form area also exists [7][9]. It may be a homolog of the VWFA in the auditory stream, located in the left anterior 
superior temporal sulcus; this area shows reduced activity in developmental dyslexics. Such word representations help to 
focus symbolic thinking. Context priming selects extended subnetwork corresponding to a unique word meaning, while 
competition and inhibition in the winner-takes-all processes leaves only the most active candidate network. Semantic and 
phonological similarities between words should lead to similar patterns of brain activations for these words. 

A sudden insight (Aha!) experience accompanies solutions of some problems. Studies using functional MRI and EEG 
techniques contrasted insight with analytical problem solving that did not required insight [12]. About 300 ms before the 
Aha! moment a burst of gamma activity was observed in the Right Hemisphere anterior Superior Temporal Gyrus (RH-
aSTG). This has been interpreted as “making connections across distantly related information during comprehension (…) 
that allow them to see connections that previously eluded them” [13]. Bowden et al. [12] performed a series of experiments 
that confirmed the EEG results using fMRI techniques. One can conjecture that this area is involved in higher-level abstrac-
tions that can facilitate indirect associations [13].  

It is probable that the initial impasse in problem solving is due to the inability of the processes in the left hemisphere, fo-
cused on the precise representation of the problem, to make progress in finding a solution. The RH has only an imprecise 
view of the left hemisphere (LH) activity, generalizing over similar concepts and their relations. This activity represents ab-
stract concepts, corresponding to categories higher in ontology, but also captures complex relations among concepts, rela-
tions that have no name, but are useful in reasoning and understanding. For example, “left kidney” sounds correct, but “left 
nose” seems strange, although we do not have a concept for spatially extended things that “left” applies to. The feeling aris-
ing from understanding words and sentences may be connected to the left-right hemisphere activation interplay. Most of RH 
activations do not have phonological components; the activations result from diverse associations, temporal dependencies 
and statistical correlations that create certain expectations. It is not clear what brain mechanism is behind the signaling of this 
lack of familiarity, but one can assume that interpretation of text is greatly enhanced by “large receptive fields” in the RH, 
which can constrain possible interpretations, help in the disambiguation of concepts and provide ample stereotypes and pro-
totypes that generate various expectations.  

Associations at higher level of abstraction in the RH are passed back to facilitate LH activations that form intermediate 
steps in language interpretation and problem solving. The LH impasse is removed when relevant activations are projected 
back from the less-focused right hemisphere, allowing new dynamical associations to be formed. High-activity gamma burst 
projected to the left hemisphere prime LH subnetworks with sufficient strength to form associative connections linking the 
problem statement with partial or final solution. An emotional component is needed to increase the plasticity of the brain and 
remember these associations. The “Aha!” experience may thus result from the activation of the left hemisphere areas by the 
right hemisphere, with a gamma burst helping to bring relevant facts to the working memory, making them available for con-
scious processing. This process occurs more often when the activation of the left hemisphere decreases (when the conscious 



 
 

 

efforts to solve the problem are given up). Sometimes it leads to a brief feeling that the solution is imminent, although it has 
not yet been formulated in symbolic terms, a common feeling among scientist and mathematicians. The final step in problem 
solving requires synchronization between several left hemisphere states, representing transitions from the start to the goal 
through intermediate states. This seems to be a universal mechanism that should operate not only in solving difficult prob-
lems, but also on much shorter time scale in understanding of complex sentences. The feeling “I understand” signifies the 
end of the processing and readiness of the brain to receive more information. 

Such observations may be used as inspirations for neurocognitive models. Distal connections between the left and right 
hemispheres require long projections, and therefore neurons in the right hemisphere may generalize over similar concepts 
and their relations. Distributed activations in the right hemisphere form configurations that activate extended regions of the 
left hemisphere. High-activity gamma bursts projected to the LH prime its subnetworks with sufficient strength to allow for 
synchronization of groups of neurons that create distant associations. In problem solving, this synchronization links brain 
states coding the initial description D of the problem with its partial or final solutions S. Such solutions may initially be diffi-
cult to justify, they become clear only when all intermediate states Tk between D and S are transversed. If each step from Tk 
to Tk+1 is an easy association, a series of such steps is accepted as an explanation. An RH gamma burst activates emotions, 
increasing the plasticity of the cortex and facilitating the formation of new associations between initially distal states. The 
same neural processes should be involved in sentence understanding, problem solving and creative thinking.  

According to these ideas, approximation of the spreading activation in the brain during language processing should require 
at least two networks activating each other. Given the word w = (wf,ws) with phonological (or visual written) component wf, 
an extended semantic representation ws, and the context Cont, the meaning of the word results from spreading activation in 
the left semantic network LH coupled with the right semantic network RH, establishing a global state Ψ(w,Cont). This state 
changes with each new word received in sequence, with quasi-stationary states formed after each sentence is understood. It is 
quite difficult to decompose the Ψ(w,Cont) state into components, because the semantic representation ws is strongly modi-
fied by the context. The state Ψ(w,Cont) may be regarded as a quasi-stationary wave, with its core component centered on 
the phonological/visual brain activations wf and with quite variable extended representation ws. As a result the same word in 
a different sentence creates quite different states of activation, and the lexicographical meaning of the word may be only an 
approximation of an almost continuous process. To relate states Ψ(w,Cont) to lexicographical meanings, one can clusterize 
all such states for a given word in different contexts and define prototypes Ψ(wk,Cont) for different meanings wk.  

The high-dimensional vector model of language popular in statistical approach to natural language processing [14] is a 
very crude approximation that does not reflect essential properties of the perception-action-naming activity of the brain 
[6][7]. The process of understanding words (spoken or read) starts from activation of the phonological or grapheme represen-
tations that stimulate networks containing prior knowledge used for disambiguation of meanings. This continuous process 
may be approximated through a series of snapshots of microcircuit activations φi(w,Cont) that may be treated as basis func-
tions for the expansion of the state Ψ(w,Cont) = Σi αi φi(w,Cont), where the summation extends over all microcircuits that 
show significant activity resulting from presentation of the word w. The high-dimensional vector model used in NLP meas-
ures only the co-occurrence of words Vij = 〈V(wi),V(wj)〉 in some window, averaged over all contexts. A better approxima-
tion of the brain processes involved in understanding words should be based on the time-dependent overlap between states 
〈Ψ(w1,Cont) | Ψ(w2,Cont)〉 = Σij αi αj  〈φi(w1,Cont) | φj(w2,Cont)〉. Systematic study of transformations between the two bases: 
activation of microcircuits φi and activation of complex patterns V(wi), has not yet been done for linguistic representations in 
the brain. Analysis of memory formation in mice hippocampus [8] in terms of combinatorial binary codes signifying activity 
of neuronal cliques goes in this direction. The use of wave-like representation in terms of basis functions to describe neural 
states makes this formalism similar to that used in quantum mechanics, although no real quantum effects are implied here. 

Spreading activation in semantic networks should provide enhanced representations that involve concepts not found di-
rectly in the text. Approximations of this process are of great practical and theoretical interest. The model should reflect acti-
vations of various concepts in the brain of an expert reading such texts. A few crude approximations to this process may be 
defined. First, semantic networks that capture many types of relations among different meanings of words and expressions 
may provide space on which words are projected and activation spread. Each node w in the semantic network represents the 
whole state Ψ(w,Cont) with various contexts clustered, leading to a collection of links to other concepts found in the same 
cluster that capture the particular meaning of the concept. Usually only the main differences among the meanings of the 
words with the same phonological representation are represented in semantic networks (meanings listed in thesauruses), but 
the fine granularity of the meanings resulting from different contexts may be captured in the clusterization process and can 
be related to the weights of connections in semantic networks. The spreading activation process should involve excitation 
and inhibition, and “the winner takes most” processes. Current models of semantic networks used in NLP are only vaguely 
inspired by the associative processes in the brain and do not capture such details  [14]-[16].  

Such crude approximation to the spreading activation processes leads to an enhancement of the initial text being analyzed 
by adding new concepts linked by episodic, semantic or hierarchical ontological relations. The winner-takes-all processes 



 
 

 

lead to inhibition of all but one concept that has the same phonological word form. Locally this may be represented as a sub-
network (graph) of consistent concepts centered around a prototype for a given word meaning Ψ(wk,Cont), linking it to 
words in the context. Such approach has been applied recently to disambiguate concepts in medical domain [17]. The en-
hanced representations are very useful in document clusterization and categorization, as is illustrated using short medical 
texts in the next section. Vector models may be related to semantic networks by looking at snapshots of the activation of 
nodes after several steps of spreading the initial activations through the network. In view of the remarks about the role of the 
right hemisphere, larger “receptive fields” in the linguistic domain should be defined and used to enhance text representa-
tions. This is much more difficult because many of these processes have no phonological component and thus have represen-
tations that are less constrained and have no directly identifiable meaning. Internal representations formed by neural net-
works are also not meaningful to us, as only the final result of information processing or decision making can be interpreted 
in symbolic terms. Defining prototypes for different categories of texts, clusterizing topics or adding prototypes that capture 
some a priori knowledge useful in document categorization [19], is a process that goes in the same direction.  

Associative memory processes involved in spreading activation are also related to creativity, as has already been noticed a 
long ago [20]. Experimental support for the ideas described above may be found in pairwise word association experiments 
using different priming conditions. Puzzling results from using nonsensical words were observed [21] for people with high 
compared to those with low creativity levels. Analysis of these experiments [22] reinforces the idea that creativity relies on 
associative memory, and in particular on the ability to link distant concepts together. Adding neural noise by presenting non-
sensical words in priming leads to activation of more brain circuits and facilitates in a stochastic resonance-like way a forma-
tion of distal connections for not obvious associations. This is possible only if weak connections through chains involving 
several synaptic links exist, as is presumably the case in creative brains. For simple associations the opposite effect is ex-
pected, with strong local activations requiring longer times for the inhibitory processes to form consistent interpretations. 
Such experiments show that some effects cannot be captured at the symbolic level. It is thus quite likely that language com-
prehension and creative processes both require subsymbolic models of neural processes realized in the space of neural activi-
ties, reflecting relations in some experiential domain, and therefore cannot be modeled using semantic networks with nodes 
representing whole concepts. Recent results on creation of novel words [22] give hope that some of this process can be ap-
proximated by statistical techniques at the morphological level.  

Qualitative picture that follows through this (admittedly speculative) analysis is thus quite clear: chunking of terms and 
their associations corresponds to patterns of activations defining more general concepts in hierarchical way. The main chal-
lenge is how to use inspirations from neurocognitive linguistics to create practical algorithms for NLP. A practical algorithm 
will be presented below and applied to categorization of short medical texts.  

 

3. Discharge summaries 
The data used in this paper comes from the Cincinnati Pediatric Corpus (IRB approval 0602-37) developed by the Bio-

medical Natural Language Processing group at Cincinnati Children's Hospital Medical Center, a large pediatric academic 
medical center with over 750,000 pediatric patient encounters per year and terabytes of medical data in form of raw texts, 
stored in a complex, relational database [23]. Processing of medical texts requires resolution of ambiguities and mapping 
terms to the Unified Medical Language System (UMLS) Metathesaurus concepts [24]. Prior knowledge generates expecta-
tions of a few concepts and inhibition of many others, a process that statistical methods of natural language processing [14] 
based on co-occurrence relations approximate only in a very crude way.  

Discharge Summaries contain brief medical history, current symptoms, diagnosis, treatment, medications, therapeutic re-
sponse and outcome of hospitalization. Several labels (topics) may be assigned to such texts, such as medical subject head-
ings, names of diseases that have been treated, or billing codes. Two documents with the same labels may contain very few 
common concepts. Our previous work [19] has been focused on defining useful feature spaces for categorization of such 
documents, selecting 26 semantic types (a subset of 135 semantic types defined in ULMS) that may contribute to document 
categorization. Similarity measures that take into account a priori knowledge of the topics were introduced in a model that 
tried to capture expert intuition using a few parameters. Detailed preparation of the database and the pre-processing steps 
have already been described in [19], therefore it is not repeated here. Summary given in Table I allows to relate disease 
names to class numbers displayed in Fig. 1 and Fig. 2.  

Among 4534 discharge summary records “asthma” is the most common, covering 19.1% of all cases. Summary discharges 
are usually dictated and contain frequent misspelling and typing errors, punctuation errors, large number of abbreviations and 
acronyms. Categories assigned to these documents are not mutually exclusive and an expert reading such texts would not 
come close to the 100% classification accuracy, but for illustration purposes this division will be sufficient. The bag-of-
words representation of such documents leads to very large feature spaces, many strongly correlated features (terms forming 
concepts), and extremely sparse representation. Unified Medical Language System (UMLS) [24] is a collection of many 



 
 

 

medical concept ontologies that are used to discover useful concepts and their relations, enabling semantic smoothing.  
 

TABLE I.  
INFORMATION ABOUT DISEASES USED IN THE STUDY 

Disease name No. of 
records

Average size 
(bytes)

1. Pneumonia 609 1451
2. Asthma 865 1282
3. Epilepsy 638 1598
4. Anemia 544 2849
5. Urinary tract infection (UTI) 298 1587
6. Juvenile Rheumatoid Arthritis (J.R.A.) 41 1816
7. Cystic fibrosis 283 1790
8. Cerebral palsy 177 1597
9. Otitis media 493 1420
10. Gastroenteritis 586 1375

 

4. Enhanced concept representation 
Three basic methods to improve representation of the texts in document categorization may be used: selection, expansion and 
the use of reference topics. Reference knowledge from background texts has recently been used to define topics (prototypes) 
for text fragments [19], but here no prior knowledge is assumed. A standard practice in the document categorization is to use 
term frequencies tfj for terms j = 1 ... n in document Di of length li=|Di|, calculated for all documents that should be compared. 
Term frequencies are then transformed to obtain features in such a way that in the feature space simple metric relations be-
tween vectors representing these documents reflect their similarity. In document categorization we are interested in distribu-
tion of a given term among different categories. Words that appear in all documents may appear frequently, but carry little 
information that could be used for document categorization. In the tf x idf weighting scheme the uniqueness of each term is 
inversely proportional to the number of categories Cj, j=1..K this term appears in. The logarithm of ratio log(K/cfj) is used as 
an additional factor in term weights: 

 ( ) ( )
( )

1 log
10 log

1 log
j i

j i
jj

tf D Ks D round
cfl C

⎛ ⎞+
⎜ ⎟=
⎜ ⎟+⎝ ⎠

 (1) 

where l(Cj) is the average length of documents from the class Cj. If the term i appears in all documents it does not contribute 
to their categorization and therefore sj(Di)=0 for all i. Additional normalization of all vectors in the document puts them on a 
sphere with a unit radius Zi=si /||si||. This normalization tends to favor shorter documents. More sophisticated normalization 
methods have been introduced [14] but all such normalization schemes treat each term separately and do no approximate 
specific distribution of brain’s activations over related terms.  

A set of terms ti defines a feature space, with each term represented by a binary vector composed of zeros and a single 1 
bit. In a unit hypercube this corresponds to vertices that lie on the coordinate axes. In this space documents Dj defined by 
term frequencies tfi are also points defined by tfi(Dj) vectors with integer components. All term vectors are orthogonal to each 
other. Correlation between different terms is partially captured by latent semantic analysis [14], but features that are linear 
combination of terms have no clear semantics. Most terms from a large dictionary have zero components for all documents in 
typical document database, defining a null space.  

Agglomerative hierarchical clustering methods with typical normalizations and similarity measures perform poorly in 
document clustering because the original representation is too sparse and the nearest neighbors of a document belong in 
many cases to different classes [25]. This is quite evident in the multi-dimensional scaling representation of our discharge 
summary collection shown in Fig.1. The simplest extension of term representation is to replace single terms by a group of 
synonyms, using for example Wordnet synsets (wordnet.princeton.edu). In this way the document text itself is expanded by 
new synonymous terms, but this approach captures only one type of relations between words. This extends the non-null part 
of the feature space, simulating some of the spreading activation processes in the brain and increasing similarity of the docu-
ments that use different words to describe the same topic. In the binary approximation vector X(tj) representing term tj has 
zero elements except for X(tk)=1 for k=j and for those terms that are in the synset. The vector is multiplied by the term fre-
quency tfj in a given document Di and may be normalized in a standard way.  

 



 
 

 

 
Fig.  1. MDS representation of 4534 summary discharges documents, showing little clusterization. 

 
A better approximation to spreading activation in brain networks is afforded by soft evaluation of similarity of different 

terms. Distributional hypothesis assumes that terms similarity is the result of similar linguistic contexts [14]. However, in 
medical domain and other specialized areas it may be quite difficult to reliably estimate similarity on the basis of co-
occurrence because there are just too many concepts and without systematic, structured knowledge statistical approaches will 
always be insufficient. Semantic smoothing for language modeling emerged recently as an important technique to improve 
probability estimations using document collections or ontologies [25]. Smoothing techniques assign non-zero probabilities to 
terms that do not appear explicitly in a given text. This is usually done by clustering terms using various (dis)similarity 
measures used also in filtering of information [26], or other measures of similarity of probability distributions [27]-[29], such 
as the Expected Mutual Information Measure (EMIM) [28].  

In comparison of medical documents only specific concepts that belong to selected semantic types are used and thus there 
is no problem with shared common words. Documents from different classes may still have some words in common (e.g. 
basic medical procedures), but the frequency normalization will de-emphasize their importance. Discharge summaries from 
the same class may in some cases use completely different vocabulary. Wordnet synsets are not useful for very specific con-
cepts that have no synonyms.  

Semantic networks allow for concept disambiguation [5][14][16][17], but even using huge UMLS resources collection of 
relations is not sufficient to create semantic networks. These relations are based on co-occurrences and do not contain any 
systematic description of the ontological concepts. Ontology itself may be used with many such relations as: parent-child, 
related and possibly synonymous, is similar to, has a narrower or broader relationship, has sibling relationship, being most 
useful relations for semantic smoothing. Several parents for each concept may be found in UMLS. Global approach to 
smoothing may simply use some of these relations to enhance the bag of words representation of texts, adding to each term a 
set of terms that come from different relations – this will be called a “term coset”. These cosets for different terms may par-
tially overlap, as many terms may have the same parents or other relations. Such terms will be counted many times and thus 
will be more important. Straightforward use of relationships may be quite misleading. For example, many concepts related to 
body organs map to a general “Body as a whole - General disorders” concept that belongs to “Disease or Syndrome” type. 
Adding such trivial concepts will make all medical documents more similar to each other.  

To avoid this type of problems one should either characterize more precisely the types of relations that should be used, or 
to score each new term individually looking at its usefulness for various tasks. The simplest scoring indices that will improve 
discrimination may be based on Person’s correlation, Fisher’s criterion, mutual information, or other feature ranking indices 
[26]. From computational perspective it is much less costly to add all terms using specific relations and then use feature rank-
ing to reduce the space. Vector representation of terms have been created using the database of discharge summaries, but 
their use is not limited to the analysis of the database. The following general algorithm to create them has been used: 
1. Perform the text pre-processing steps: stemming, stop-list, spell-checking, either correcting or removing strings that are 

not recognized. 
2. Use MetaMap [30] with a very restrictive settings to avoid highly ambiguous results when mapping text to UMLS ontol-

ogy, try to expand some acronyms.  



 
 

 

3. Use UMLS relations to create first-order cosets; add only those types of relations that lead to improvement of classifica-
tion results. 

4. Reduce dimensionality of the first-order coset space, but do not remove original (zero-order) features; any feature ranking 
method may be used here [26].  

5. Repeat steps 3 and 4 iteratively to create second- and higher-order enhanced spaces.  
6. Create X(ti) vectors representing concepts. 

Vectors X(tj) representing terms tj have zero elements except for X(tk)=1 for k=j and for those terms that are in the cosets 
for a given term. They are highly dimensional and may be normalized to the unit length ||X(tk)||=1 without loss of informa-
tion; any metric may now be used to compare them. The non-zero coefficients of these vectors show connections between 
related terms. Iterative character of the algorithm leads to non-linear effects, feedback loops are strengthening some connec-
tions. Vectors representing terms are biased towards the data that has been used to create them and to the task used to define 
their usefulness, but with many labels and diverse text categories they may be useful in many applications. In medical docu-
ment categorization a single specific occurrence of a concept may be an important indicator of the document category. The 
Latent Semantic Indexing (LSI) [14] will miss it, finding linear combinations of terms that do not have clear semantics. 

This general algorithm should help to discover associations that are important from the categorization point of view, and 
thus understanding of text topics. It may help to build semantic network with useful associations. The algorithm may have 
different variants. Although ULMS ontology is huge it is difficult to manage, as it contains many strange concepts that are 
not useful in our application. Therefore a smaller MeSH (Medical Subject Headings) ontology [31], a subset of the whole 
ULMS, may been used as an alternative, a collection of keywords used to describe papers in medical domain. All MeSH 
terms are relevant and clinical free text may be mapped to the MeSH concepts using the same MetaMap (MMTx) software as 
has been used for mapping to ULMS [30]. Other medical ontologies, such as SnowMed, may be used instead of MeSH. Dif-
ferent dimensionality reduction may be used in practice, but here only Pearson’s correlation coefficient will be used for rank-
ing.  

Identification of precise topics, or in our case subtypes of disease, may proceed in a slightly different way. First, all very 
rare concepts (say, appearing in less than 1% of all documents) may be removed, and all documents that contain very few 
concepts used as features (say, less than 1%) are also removed, reducing uncertainty of clusterization. This approach would 
not be appropriate for document categorization, when all documents should be categorized, and even rare concepts may be 
useful, but for topic identification it should increase reliability of the task. Second, semantic pruning should be applied, leav-
ing only those concepts that belong to specific semantic types. These types may be selected using filter methods, removing 
all features of specific type and checking classification accuracy. Below only those MeSH concepts that belong to 26 ULMS 
semantic types will be used. In this task binary representation is sufficient; it has worked well in categorization of summary 
discharges [19] and has been sufficient in analysis of activations of neural cliques [8]. ULMS relations are used to create new 
features. The number of documents N(t) and the number of features n(t) may both change during iterations. Each document 
Dij, i=1..N(t) is represented by a row of j=1..n(t) binary features, therefore the whole vector representation of all documents 
in iteration t is given by a matrix D(t) with N(t)x n(t) dimensions. ULMS contains relations Rij between concepts i and j; se-
lecting only those concepts i that have been used as features to create matrix D(t) and concepts j that are related to i and rep-
resenting existence of each relation as a Kronecker δij a binary matrix R(t) is created. Multiplying the two matrices D(t)R(t) 
= D’(t) gives an expanded matrix D’(t) with new columns defining enhanced feature space. These columns contain integer 
values indicating to which document the new concept is associated. For class k = 1 .. K a binary vector Cki = δik, i= 1..N(t) 
serves as a class indicator of all documents. To evaluate the usefulness of the candidate features the Pearson correlation coef-
ficient between these columns and all vectors that are class indicators are calculated. Only those candidate features with the 
highest absolute value of the correlation coefficients are retained and after removal of some D’(t) matrix columns and binari-
zation of the remaining ones it is converted to a new current matrix D(t+1). For binary vectors there may be several features 
with the same largest correlation coefficient.  

5. Experiments with medical records 
The initial number of candidate words was 30260, including many proper names, spelling errors, alternative spellings, ab-

breviations, acronyms, etc. Out of 135 UMLS semantic types only 26 are selected (e.g. Antibiotics, Body Organs, Disease), 
ignoring more general types (e.g. Temporal or Qualitative Concepts) [19]. Each document has been processed by the 
MetaMap software [30] and concepts of the predefined semantic types have been filtered leaving 7220 features found in dis-
charge summaries. After matching these features with a priori knowledge derived from medical textbook a relatively small 
subset of 807 unique medical concepts has been designed [19]. 

The performance of several classifiers has been evaluated on different versions of transformed data, including the most 
common and widely used text smoothing methods. Feature ranking based on Pearson’s linear correlation coefficients (CC) 
have been performed to estimate feature/class correlations (other ranking methods, including Relief, did not give better re-



 
 

 

sults). In experiments with the kNN and SVM classifiers discriminating one class against all others it has been noticed that 
the CC threshold as small as 0.05 dramatically decreases accuracy, but for 0.02 the decrease is within 10-fold crossvalidation 
variance. Similar results are obtained with other feature spaces and classifiers. 

In [19] 6 different normalizations of concept frequencies have been used, but results did not differ on more than a standard 
deviation (about 2%). The best 10-fold crossvalidation results for kNN do not exceed 52%, for SSV decision trees [31] (as 
implemented in the Ghostminer package [36] used for all calculations) about 43%, and for the linear SVM method 60.9% 
(Gaussian kernel gives very poor results). In all calculations reported here variance of the test results was below 2%. A new 
method based on similarity evaluation and the use of a priori knowledge applied to this data [19] gave quite substantial im-
provement, reaching 71.6%.  

Detailed interpretation of results with topic-oriented a priori knowledge is not quite straightforward. Adding ontological 
relations and creating cosets for 807 terms selected as primary features allows for more much more detailed analysis. Using 
mostly the parent, broader and “related and possibly synonymous” relationships the first order space with 2532 has been cre-
ated. In this space rather simple SSV decision tree model improved by about 6%, reaching 48.6±2.0%, with similar im-
provement from linear SVM that reached about 65%, with balanced accuracy (average accuracy in each class) reaching 
about 63%. Inspecting the most important features using Pearson’s correlation coefficient shows that this improvement may 
be largely attributed to mappings of various pharmacological substances to common higher-order concepts, for example 
Dapsone (of the Pharmacologic Substance type), becomes related to Antimycobacterials, Antimalarials, Antituberculous and 
Antileprotic, Sulfones and other drug families, making the diseases treated by these agents more similar. Two drugs with dif-
ferent names, Dapson and Vioxx, are related via the Sulfone, so although the name differ similarity is increased.  

Taking all primary and first-order features with correlation coefficients CC>0.02 and repeating the expansion generates 
second-order space with 2237 features that provide even more interesting relations. Feedback loops in which term A has term 
B in its coset, and B has A in return, become possible. Bacterial Infections comes from many specific infections: Yersinia, 
Salmonella, Shigella, Actinomycosis, Streptococcal, Staphylococcal and other infections, increasing similarity of all diseases 
caused by bacteria. In this space accuracy of the linear SVM (C=10) is improved to 72.2±1.5%, with balanced accuracy 
69.1±2.8%. Feature selection with CC>0.02 leaves 823 features, degrading the SVM results (C=32) only slightly to 
71.5±1.8% and the balanced accuracy to 68.1±2.1%. Even better results have been obtained using the Feature Space Map-
ping (FSM) neurofuzzy network [37] that was used with Gaussian functions and a target learning accuracy of 80%: with 70-
80 functions in each crossvalidation partitions it reached 73.8±2.4% with balanced accuracy of 69.6±2.3%. This shows that 
in each class separately expected accuracy is about 70%. Other methods of feature ranking, such as Relief or methods based 
on entropy [26] did not improve these results.  

The improvement in classification accuracy with the second-order space is clearly reflected in better clusterization of the 
multidimensional scaling (MDS) representation [38] of similarity among documents shown in Fig. 2. For Pneumonia (Class 
1) one cluster is observed in the upper part of this figure, and a rather diffused cluster in the lower part. Upon closer exami-
nation of source documents and the new coset terms it becomes clear that the second cluster contains documents with cases 
that are hard to qualify uniquely as pneumonia, as the patient have also several other problems and the diagnosis is uncertain. 
There are quite a few problems with the type of expansion before dimensionality reduction. Some drugs, for example Aceta-
minophen, are related to 15 specific concepts in the UMLS ontology, all of the type: Acetaminophen 80 mg Chewable Tab-
let. Perhaps for medical doctor writing prescriptions this is a unit of information, but obviously such detailed concept appear 
rarely and thus are removed by feature selection, while general concepts, such as Acetaminophen (Pharmacologic Substence) 
are left. In effect most important features tend to come from the second-order cosets.   

MDS shows some artifacts due to the large number of points and high dimensionality of the data. Therefore a more de-
tailed study to identify interesting clusters of documents that result from a subclass of a disease has been pursued. Unfortu-
nately medical textbooks do not present such subtypes and their prevalence, mentioning instead quite rare cases and proce-
dures that few doctors will ever encounter, therefore such background knowledge is hard to find, otherwise it could be used 
as a prior knowledge. Below we have focused on searching for interesting clusters that represent a clinical prototype of a 
particular subtype of the disease (clinotype). 

Two classes Pneumonia and Otitis Media, that show strongest mixing. In addition J.R.A. has been added as the third class, 
a rare disease with small number of cases. There are 610 discharge summaries with Pneumonia as initial diagnosis, 493 
summaries with Otitis Media and only 41 discharge summaries with J.R.A. as initial diagnosis. The MeSH (Medical Subject 
Headings) ontology [31] has been used. The summary discharges texts have been mapped on the 2007 MeSH concepts using 
the MetaMap (MMTx) software [30].  

 



 
 

 

 
Fig.  2. Clusterization of document database after two steps of spreading activation  using UMLS ontology. 
 

Resulting concepts found in summary discharges have then been used to create a binary matrix, where rows correspond to 
documents and columns to concepts. This created an initial matrix with 1144 rows and 2874 columns. The number of docu-
ments and the number of concepts has then been reduced by removing all rows and columns that had less than 1% or more 
than 99% of non-zero values. In effect documents that have too few concepts to be reliably handled and concepts that are 
very rarely used have been deleted. This is justified because the goal here is to look for common clinotypes, in other applica-
tions all documents and rare concepts should be carefully analyzed.  This frequency-based pruning reduced the number of 
columns (concepts) to 570 and the number of rows to 1002, including 542 discharge summaries from the Pneumonia, 426 
from Otitis Media and 34 discharge summaries from the J.R.A. class.  

In the next step semantic pruning has been performed. MeSH concepts were filtered through the 26 UMLS semantic types. 
This reduced the number of concepts that have been used as features to a modest 224 and the number of documents to 908. 
Semantic types that contributed more than 10 concepts, in order of their prevalence, are: Disease or Syndrome, Pharmacol-
ogical Substance, Sign or Symptom, Antibiotic, Therapeutic or Preventive Procedure, Body Part, Organ, or Organ Compo-
nent, Diagnostic Procedure, Body Location or Region, Body Substance, Biologically Active Substance, and Finding. 4 se-
mantic types did not appear in the text left at this stage: Anatomical Abnormality, Biological Function, Clinical Drugs, Labo-
ratory or Test Result, and Vitamins. However, concepts of these semantic types appear frequently in medical documents for 
other diseases. 

Enhancement of the feature space constructed in such a way is done by iterative spreading of activation. Not all connec-
tions lead to activation of new concepts. After every iteration frequency pruning and semantic pruning is conducted. Activa-
tion is spread in a non-linear process that tries to approximate complex process of excitations and inhibitions of associated 
concepts in the brain of an expert. Since UMLS provides information about excitatory connections only an additional source 
of knowledge is needed to inhibit most of the concepts. This is done by looking at the usefulness of each new feature acti-
vated by the semantic relations for understanding the category structure of the document set. Let A(t) be the state of a binary 
document/concept matrix after the spreading activation step t. If UMLS has relation between concept i that is included in our 
space and concept j that is not yet included then a new column A(t)j will be created. After scanning all relations A(t') matrix 
is created. Some form of ranking should now be done to leave only the most relevant features. Although this could be done 
in many ways [26] here Pearson's correlation coefficient between new features and each class is calculated and only the con-
cepts that has highest correlation coefficient with respect to class that this document belongs to is chosen.  

Thus enhancements of the feature space are followed by reductions, leaving in the end only the most informative features, 
including many features that do not appear in the original documents. Approximately 40 new features are added after each 
iteration of this algorithm, 294, 328, 360, 400, 438, 483, 526, 570, 617, 671, 727 ... For example, in the first step Chronic 
Childhood Arthritis adds  Sulfasalazine, Tolmetin, Aurothioglucose,  while Acetylcysteine is added by Cystic Fibrosis, Pneu-
monia, and Lung diseases; Lateral Sinus Thrombosis is added by Otitis Media, and Brain Concepts. In the second iterations 
these new concepts add further concepts, for example Sulfasalazine adds 3 concepts, Ureteral obstruction, Porphyrias, and 
Bladder neck obstruction, while the Urinary tract infection and Otitis Media add Sulfisoxazole and Sulfamethoxazole. For 
about 200 concepts there are about 70.000 ULMS relations described as “related or other than structural”, but only about 500 



 
 

 

of them belong to one of the 26 semantic types selected here. Out of those 500 only about 35-40 that correlate most with pre-
defined classes are actually added in each iteration.  

How is this procedure influencing the quality of the clusters? Distance measure used is based on dissimilarity of Pearson's 
correlation coefficients. As a clustering technique Ward's algorithm has been used [32]. It partitions the data set in a manner 
that minimizes the loss associated with each grouping, and quantifies this loss in a form that is readily interpretable. At each 
step of the analysis, the union of every possible cluster pair is considered, and the two clusters whose fusion results in mini-
mum increase of the 'information loss' measure are combined. Information loss is defined by Ward in terms of an error sum-
of-squares criterion. As a measure of clustering quality silhouette width [33] has been used, as implemented by Brock et al. 
[34]. The silhouette width is the average of each observation's silhouette value, a measure of the degree of confidence in the 
clustering assignment of a particular observation. Let a(Xi) denote the average dissimilarity of vector Xi to all vectors in its 
own cluster and let b(Xi) be the average dissimilarity to the second best cluster for the vector Xi. Silhouette value for the vec-
tor Xi is defined as:  
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and the total silhouette value is simply the average value for all vectors. Well-clustered observations have values near 1 
and poorly clustered observations having values near −1.  

As a result of consistent use of  frequency pruning, semantic pruning and conceptual pruning at every step of activation 
quality of clusters is increased. Even though the feature space is increased at approximately constant rate the increase of 
quality and convergence of the algorithm with growing number of clusters (shown in Fig. 3) are far from linear, but after 12 
iterations changes are minimal. The number of candidate concepts before pruning is quite large (activation may spread to 
many related concepts) and increases significantly, from 21186 to 34156 after 9 iterations.   

 
Fig.  3. Relation between the number of clusters and the quality of clustering in the first 15 iterations. 

 
 
Fig. 3 shows that enhancing feature space not only creates better quality clusters but justifies larger number of tighter clus-

ters then there are classes. Ward clusterization knowing that there are 3 classes tries to create 3 clusters, but for larger num-
ber of clusters the quality remains also high. After six iterations 6 clusters seem to be optimal, but after nine iterations even 9 
clusters are acceptable. 5 clusters have been extracted after 4 iterations, as shown in the MDS visualization, Fig. 4.  

 



 
 

 

 

 
Fig.  4. MDS representation of 3 selected classes (P, O, J), top left: original data, followed by iterations 2, 3 and 4. 
 
Initially 5 clusters have been distinguished, the first dominated by 199 P (pneumonia) documents, with 68 otitis media (O) 
and 6 J.R.A (J) documents, the second with 40 P, 62 O, and 1 J, the third with 127 P and 26 O, the fourth with 28 P, 163 O 
and 22 J, and the fifth with 103 P and 63 O documents. After 4 iterations a small J.R.A cluster (26 cases) with a single otitis 
media case is left at the bottom, above it a cluster with mixed P (131) and O (70) and 2 J cases, on the right a cluster with 
clear dominance of P (304),  17 O and 1 J case, on the left a cluster with dominance of O (240) and a few P (17), and a top 
cluster with 54 O and 45 P. There is no reason why these clusters should become pure, as some documents represent clearly 
mixed cases, with two or more diseases described, or with different subtypes (clinotypes) of the disease. What is important is 
that these clusters are quite distinct and thus may be analyzed by domain experts that should be able to describe such clino-
type and distinguish it from others. 

Clinotypes consist of a set of medical concepts that appear as clusters. A particular concept belongs to a given clinotype if 
it has high Pearson's correlation coefficient with documents (or with representative) from the cluster denoting this clinotype. 
As an example 5 clinotypes after 4 iterations of spreading activation are presented, showing new concepts from enhanced 
feature space. Only the most important concepts are showed, with concepts contributed from the original space listed first, 
followed by those from iterative enhancements, with the iteration number in which they appear first given in parenthesis.   

 



 
 

 

Clinotype 1, bottom cluster in Fig. 4, obviously related to J.R.A.: Original space contributed Chronic Childhood Arthritis, 
Methotrexate, Knee, Joints, Hip region structure and Rehabilitation therapy, all with correlation coefficients above 0.30;   
Enhanced Space: Porphyrins (4), Porphyrias (2), Cyproheptadine (4), Tolmetin (1), Chlorpheniramine (4) and Ureteral ob-
struction (2).  

 
Clinotype 2: above the bottom cluster in Fig. 4, has been quite mixed and the feature space has not been expanded by our 

procedure. Original space: Pneumonia, Bacterial; Pneumonia, Pneumococcal; Obstetric Delivery, Cefuroxime, Influenza, 
Ibuprofen with relatively weak correlation coefficients 0.06-0.10. Interpretation of this cluster is not clear.  
 

Clinotype 3: right cluster in Fig. 4. Original space contributes: Pneumonia, Chest X-ray, Oxygen, Azithromycin, Cefu-
roxime, Coughing, with correlation coefficients between 0.8 to 0.15.   
Enhanced Space: Deslanoside (3), Amyloid (3), Colchicine (3), Amyloidosis (2),  Digitoxin (2) and Amyloid Neuropathies 
(3). This cluster is related to pneumonia.   
 

Clinotype 4: left cluster in Fig. 4. Original Space: Otitis Media, Erythema, Tympanic membrane structure, Amoxicillin, 
Eye and Ear structure, with correlation coefficients from 0.78 to 0.16.   
Enhanced Space contributes:  Respiratory Tract Fistula (4),  Trimethoprim-Sulfamethoxazole Combination (4), Sulfisoxazole 
(2), Nocardia Infections (3), Sulfamethoxazole (2), Chlamydiaceae Infections (4). This is obviously related to otitis media.  
 

Clinotype 5: top cluster in Fig. 4. Original Space: Otitis Media, Pneumonia, Urinary tract infection, Virus Diseases, Res-
piratory Sounds, Chest X-ray, with correlation coefficients between 0.40 and 0.10.  
Enhanced Space: Respiratory Tract Fistula (4), Trimethoprim-Sulfamethoxazole Combination (4), Sulfisoxazole (2), Nocar-
dia Infections (3), Sulfamethoxazole (2) and Chlamydiaceae Infections (4). This is another type of otitis media inflammation. 
 

6. Conclusions and wider implications 
The use of background knowledge in natural language processing is an important topic that may be approached from dif-

ferent perspectives. Without such knowledge analysis of texts, especially texts in technical or biomedical domains, is almost 
impossible. Neurolinguistic inspirations may be quite fruitful, leading to approximations of processes that are responsible for 
text understanding in human brains. General inspirations for neurocognitive linguistics have been outlined, drawing on re-
cent experiments with priming, insight and creativity. A novel theoretical approach linking NLP vector models and descrip-
tion of brain activations has been outlined. Vector representations of concepts may be regarded as a snapshot of dynamic 
activity patterns, defining connections with other concepts. However, more work on relations between spreading activation 
networks, semantic networks and vector models is needed.  

Creating useful numerical representation of various concepts is an interesting challenge. Large-scale semantic networks 
and spreading activation models may be constructed starting from large ontologies. For medical applications such vectors 
may be created by expansion of each term to form a cosets using relationships provided by UMLS ontologies. To end up 
with a useful representation the utility of each new relation has to be checked, or a whole class of concepts based on some 
specific relations may be added to the coset and then pruned to remove concepts that are not useful in text interpretation. 
Association rules may also be helpful here [39]. A crude version of such approach has been presented here and already using 
the second-order expansions gave quite good results on a very difficult problem of summary discharge categorization. This is 
one of the approaches to enhance UMLS ontologies by vectors that represent these concepts in numerical way and could be 
used in variety of tasks.  

Finding optimal enhanced feature spaces and simplest decompositions of medical records into classes using either sets of 
logical rules or minimum number of prototypes in the enhanced space is an interesting challenge. “Optimal” may here de-
pend on a wider context as the meaning of a concept depends on the depth of knowledge an expert has. For example, family 
physician may understand some concepts in a different way than a cardiologist, but it should be possible to capture both per-
spectives using prototypes. A lot of knowledge that medical doctors gain through the years of practice is frequently never 
verbalized. Prototypes representing clusters of documents describing medical cases may be treated as a crude approximation 
to the activity of neural cell assemblies in the brain of a medical expert who thinks about a particular disease. This may be 
observed in clusterization of these documents if a proper space is defined. Clusters in Fig. 2 and 4 may be interpreted in this 
way, although MDS mapping to two dimensions only has to introduce many distortions. It is relatively easy to collect infor-
mation about rare cases that are subject to scientific investigation, but not the subtypes of the common ones. Finding such 
subclusters, or identifying different subtypes of disease, is an interesting goal that may potentially help to train young doctors 
by presenting optimal sets of cases for each specific cluster. It could also be potentially useful in more precise diagnoses. 
With sufficient amount of documents optimization of individual feature weights could also be attempted.  



 
 

 

Although much remains to be done before unstructured medical documents and general web documents will be fully and 
reliably annotated in an automatic way, a priori knowledge certainly will be very important. Creating better approximations 
to the activity of the brain representing concepts and making inferences during sentence comprehension is a great challenge 
for neural modeling. In medical domain ontologies, relations between concepts, and classification of semantic types enables 
useful approximations to the neurolinguistic processes, while in general domains resources of this sort are still missing.  

 
 
Acknowledgment 

W. Duch thanks the Polish Committee for Scientific Research, research grant 2005-2007, for support. 
 
References 
 
[1] Lamb, S. (1999). Pathways of the Brain: The Neurocognitive Basis of Language. Amsterdam & Philadelphia: J. Benjamins Publishing Co. 
[2] Rumelhart, D.E. & McClelland, J.L. (eds), (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition Vol. 1: Founda-

tions, Vol. 2: Psychological and Biological Models. Cambridge, MA: MIT Press.  
[3] Crestani, F. (1997). Application of Spreading Activation Techniques in Information Retrieval. Artificial Intelligence Review 11, 453-482. 
[4] Crestani, F., & Lee, P.L. (2000). Searching the web by constrained spreading activation. Information Processing & Management 36, 585-605. 
[5] Tsatsaronis, G. Vazirgiannis, M., & Androutsopoulos, I. (2007) Word Sense Disambiguation with Spreading Activation Networks Generated from 

Thesauri, in 20th Int. Joint Conf. in Artificial Intelligence (IJCAI 2007), Hyderabad, India, pp. 1725-1730. 
[6] Pulvermuller, F. (2003), The Neuroscience of Language. On Brain Circuits of Words and Serial Order. Cambridge, UK: Cambridge University Press. 
[7] Dehaene, S., Cohen, L. Sigman, M. & Vinckier, F. (2005) The neural code for written words: a proposal. Trends in Cognitive Science 9, 335-341. 
[8] Lin, L., Osan, R., & Tsien, J.Z. (2006). Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes. 

Trends in Neuroscience 29(1), 48-57. 
[9] Dehaene, S.,  & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition 79, 

1-37. 
[10] Duch, W. (2005). Brain-inspired conscious computing architecture. Journal of Mind and Behavior 26(1-2), 1-22. 
[11] Gaillard, R., Naccache, L., Pinel, P., Clémenceau, S., Volle, E.., Hasboun, D., Dupont, S., Baulac, M., Dehaene, S., Adam, C., & Cohen, L. (2006). 

Direct intracranial, FMRI, and lesion evidence for the causal role of left inferotemporal cortex in reading. Neuron 50, 19-204. 
[12] Bowden, E.M., Jung-Beeman, M., Fleck, J. & Kounios, J. (2005). New approaches to demystifying insight. Trends in Cognitive Science 9, 322-328. 
[13] Jung-Beeman, M., Bowden, E.M., Haberman, J., Frymiare, J.L., Arambel-Liu, S., Greenblatt, R., Reber, P.J., &. Kounios, J. (2004). Neural activity 

when people solve verbal problems with insight. PLoS Biology 2, 500-510. 
[14] Manning, C.D. & Schütze, H. (1999). Foundations of Statistical Natural Language Processing Cambridge, MA: MIT Press. 
[15] Sowa J.F. (Ed), (1991). Principles of Semantic Networks: Explorations in the Representation of Knowledge. San Mateo, CA: Morgan Kaufmann Pub-

lishers.  
[16] Lehmann F. (Ed), (1992). Semantic Networks in Artificial Intelligence. Oxford, Pergamon. 
[17] Matykiewicz, P., Duch, W., & Pestian, J. (2006). Nonambiguous Concept Mapping in Medical Domain, Lecture Notes in Artificial Intelligence 4029, 

941-950. 
[18] Duch, W. (2007) Creativity and the Brain. In: A Handbook of Creativity for Teachers. Ed. Ai-Girl Tan, Singapore: World Scientific Publishing, pp. 

507-530.  
[19] Itert, L. Duch, W. & Pestian, J. (2007). Influence of a priori Knowledge on Medical Document Categorization, IEEE Symposium on Computational 

Intelligence in Data Mining, IEEE Press, pp. 163-170. 
[20] Mednick, S.A. (1962). The associative basis of the creative process. Psychological Review 69, 220–232.  
[21] Gruszka, A., & Nęcka, E. (2002). Priming and acceptance of close and remote associations by creative and less creative people. Creativity Research 

Journal 14, 193-205.  
[22] Duch W., & Pilichowski, M. (2007). Experiments with computational creativity. Neural Information Processing - Letters and Reviews 11,  123-133. 
[23] Pestian, J. Aronow, B. & Davis, K. (2002). Design and Data Collection in the Discovery System. In Int. Conf. on Mathematics and Engineering Tech-

niques in Medicine and Biological Science. 
[24] UMLS Knowledge Sources, 13th Edition – January Release. Available: http://www.nlm.nih.gov/research/umls 
[25] Zhou,  X., Zhang, X. & Hu X., (2007). Semantic Smoothing of Document Models for Agglomerative Clustering, 20th Int. Joint Conf. on Artificial Intel-

ligence (IJCAI 2007), Hyderabad, India, pp. 2922-2927. 
[26] Duch, W. (2006). Filter Methods. In: Feature extraction, foundations and applications. Eds: I. Guyon, S. Gunn, M. Nikravesh, L. Zadeh, Studies in 

Fuzziness and Soft Computing, Physica-Verlag, Springer, pp. 89-118. 
[27] Cimiano, P. (2006). Ontology Learning and Population from Text. Algorithms, Evaluation and Applications. Springer. 
[28] Bein, W.W., Coombs, J.S., & Taghva, K. (2003). A Method for Calculating Term Similarity on Large Document Collections. Int. Conf. on Information 

Technology: Computers and Communications,  pp. 199-207.  
[29] Li, Y., Zuhair, A.B. & McLean, D. (2003). An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources. IEEE 

Transactions on Knowledge and Data Engineering 15(4), 871-882. 
[30] MetaMap, available at http://mmtx.nlm.nih.gov 
[31] Medical subject headings, MeSH, National Library of Medicine,  URL: http://www.nlm.nih.gov/mesh/. 
[32] Ward, J.H. (1963). Hierachical grouping to optimize an objective function. J. American Statistical Association 58, 236-244. 
[33] Rousseeuw, P.J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65. 
[34] Brock, G., Pihur, V., Datta, S., & Datta. S., see http://cran.r-project.org/src/contrib/Descriptions/clValid.html 
[35] Grąbczewski, K., & Duch, W. (2000). The separability of split value criterion, 5th Conf. on Neural Networks and Soft Computing, Zakopane, Poland, 

pp. 201-208.  
[36] Ghostminer data mining software,  www.fqspl.com.pl/ghostminer/ 
[37] Duch, W. & Diercksen, G.H.F. (1995). Feature Space Mapping as a universal adaptive system. Computer Physics Communications 87: 341-371. 
[38] Pękalska, E.  & Duin, R.P.W. (2005). The dissimilarity representation for pattern recognition: foundations and applications. New Jersey; London: 

World Scientific.  
[39] Antonie, M.-L. & Zaiane, O.R. (2002). Text document categorization by term association. Proc. of IEEE Int. Conf on Data Mining (ICDM), pp. 19- 26. 




