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Abstract. Networks based on basis set function expansions, such as the Ra-
dial Basis Function (RBF), or Separable Basis Function (SBF) networks, have
non-linear parameters that are not trivial to optimize. Clustering techniques are
frequently used to optimize positions for localized functions. Context-dependent
fuzzy clustering techniques improve convergence of parameter optimization, lead-
ing to better networks and prototype-based logical rules that provide low-complexity
models of data.

1 Introduction

Basis set expansions of functions have been studied in approximation theory since the
XIX century by such great mathematicians as Weierstrass, Chebyshev, Runge, Volterra,
Lebesgue, Markov, Hermite, Fourier and many others. Multidimensional expansions
into product of various orthogonal polynomials, splines, or Gaussian functions have
been used in quantum mechanics from its beginning. In neural networks radial ba-
sis function networks (RBF) [2] have gained great popularity, providing approxima-
tions of multidimensional function as a linear combination of radial functions Φ(X) =∑

i WiG(||X −Ri||). Although many radial functions exist (see the survey of neural
transfer functions [11]) Gaussian functions are the most popular. One of the reasons is
that n-dimensional Gaussian functions belong to the few radial functions that are sep-
arable, that is they may be presented as a product of n one-dimensional components.
Such products may be identified either with “and” conditions in aggregation of fuzzy
membership functions for different features, or with Naive Bayes estimation of multi-
dimensional probability by a product of one-dimensional Gaussian distributions.

Separable basis function (SBF) networks, such as the Feature Space Mapping net-
work [9] use Gaussians or other one-dimensional functions to create approximations to
multidimensional probability distributions Φ(X) =

∑
I WIφi1(x1)φi2(x2) . . . φin(xn)),

where the multi-index I = {i1, i2, . . . in}. In quantum mechanics and quantum chem-
istry [18] these one-dimensional functions are called orbitals and the total function to
be approximated is called the wavefunction. SBF networks have more interesting prop-
erties (in particular all similarity-based methods with additive distance functions are
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equivalent to SBF networks [8]), although they are not so popular as the RBF networks.
Local representations are based on cognitive inspirations [21, 9], facilitating “intuitive”
representation of knowledge based on similarity (measured by neural output) to proto-
types, or reference objects described by probability density distributions in their feature
spaces. Classification or approximation is then done using rules based on similarity to
reference objects. In this paper only networks that use localized basis function (LBF)
expansions (output is larger than some threshold value in a finite region of input space)
are considered, and in empirical tests only Gaussian basis functions (GBF) have been
used, making these networks equivalent to the popular RBF networks. There is a ten-
dency to call all basis set expansion networks RBF networks, even if the functions used
are not radial. To avoid confusion the term LBF shall be used when localization is im-
portant, and more precise GBF when Gaussian functions are used.

In multilabel classification the goal is to discriminate between n-dimensional vec-
tors X = [x1, x2, . . . xn]T that carry c symbolic or numeric class labels Y = [y1, y2,
. . . yc]. In contrast to Bayesian formulation [2] class labels do not need to be interpreted
as probabilities, and thus one vector may be a member of several classes. The classifica-
tion system has some parameters that are optimized on a training dataset D = {X,Y}
of N pairs of feature vectors X and their class labels Y = Y(X), with the goal of ob-
taining good performance on new data sampled from the same probability distributions.

In the LBF network expansion g(X;W,R) =
∑

i WiGi(X,Ri) linear coefficients
W may be obtained using standard RBF techniques [2], but finding non-linear parame-
ters Ri, such as positions and dispersions of Gaussian functions, is more difficult. Most
frequently RBF network training starts from clustering of the whole training set, placing
the hidden units in the centers of obtained clusters. The hidden-output linear connec-
tions are then trained to minimize some cost function. This process can also be viewed
as nonlinear mapping of the input data by localized functions to some image space,
and then creating linear model in the image space. Kernel machines, in particular sup-
port vector machines (SVM) [23], do not perform this transformation using explicitly
defined transfer functions, but the idea is the same.

In the LBF networks used for classification problems clustering approach may lead
to non optimal position of the hidden neurons, hence the number of hidden neurons
required for sufficient accuracy may become unnecessarily large. Pruning techniques
are used to remove less important neurons [2] and even to merge several neurons [14].
Pruning may be followed by re-optimization of parameters, adding more neurons, and
repeating the whole cycle [1] to reduce the network and improve its generalization, but
additional computational cost are involved.

SVM improves generalization by increasing the classification margin. Support vec-
tors (SV) are selected fom the input vectors that define the shape of decision border.
Support vectors are spread around the SVM decision hyperplane. In contrast to many
linear discrimination techniques that use all data vectors to define the hyperplane [25]
in SVM vectors that are far from the decision border do not influence its final shape.
In the Support Vector Neural Training algorithm [7] vectors that are far from the de-
cision border (and therefore cause maximum or minimum activation of neurons) are
gradually removed from the training set, leaving only support vectors close to the de-
cision border. In this contribution context dependent clustering is used to restrict the



subspace where the decision border is defined. Although SVM may be used for ex-
traction of prototype-based rules (P-rules) [3] more interesting results may be obtained
using context dependent clustering.

In the next section the methods of building and optimizing LBF networks are dis-
cussed, in section 3 the basic context-dependent fuzzy C-means (CFCM) algorithm
and the method of defining the context (section 4) are explained. Empirical results,
presented in section 5, compare LBF networks based on the classical clustering and
the context dependent clustering. The last section contains a discuss of the results
and shows some potential applications of the proposed approach as a tool for creat-
ing prototype-based rule systems (P-systems).

2 Building LBF network

Typical LBF network consist of one hidden layer and an output layer. Neurons in
the hidden layer use localized transfer functions, for example in the RBF networks a
distance-based activation ||X−R|| between input vector X and the reference vector R
that defines the center of the function. In the most common case neurons of the hidden
layer have Gaussian transfer function. However, many other localized non-radial func-
tions may also be used, and many radial functions are non-local [11], therefore we shall
use the LBF name rather than RBF.

The output layer implements a linear combination of signals generated by the hid-
den layer, leading to a decision function:

g(X;W,R) =
K∑

i=1

WiGi(X,Ri) (1)

where K is the number of hidden neurons and W are weights of the output layer. In case
of a generalized Gaussian Basis Function expansion the particular parameterization of
localized functions involves:

g(X;W,R) =
K∑

i=1

Wi exp
(−||X−Ri||2Σi

)
(2)

where Ri is the position of i-th prototype (location of the center of the hidden unit in
the input space), and a local Mahalanobis distance function || · ||Σi with the covariance
matrix Σi is calculated in some neighborhood around the center:

||X−Ri||2Σi
= (X−Ri)T Σ−1(X−Ri) (3)

Covariance matrix could be replaced with a matrix of adaptive parameters learned from
the training data, providing scaling and rotations for the shapes of local decision board-
ers. Although it is possible to rotate Gaussian function in n-dimensions using only n
parameters [11] in practice almost always diagonal matrix Σ is used, providing distance
scaling factors si. Training of such GBF networks requires adaptation of positions Ri,
scaling factors si and weights W of the output layers. As suggested in [24] there are
three possible ways to build such networks:



1. One step process, each training data vector used to define one hidden unit, training
resticted to the output layer;

2. Two step training, interchanging training of non-linear and linear parameters:
– adjust location and scaling parameters of hidden units using some form of su-

pervised clustering or decision trees, independently of the network outputs;
– adjust output layer weights minimizing some cost function, usually mean square

error:

E(D;W,R) =
N∑

i=1

||Yi − g(Xi;W,R)||2 (4)

The output weights may be then determined using the pseudoinverse matrix:

W = (GT G)−1GT Y (5)

where Gij = G(Xi;Rj) is the rectangular matrix N × K of similarities be-
tween the prototypes R and the training data X.

3. Three step learning, where the first two steps described above are used for initializa-
tion, followed by simultaneous adaptation of all network parameters using gradient
descend or other methods.

Unfortunately the error function E(D;W,R) has multiple local minima making
the gradient optimization quite difficult. Results may be significantly improved if a
proper initialization of the network is found. This shall be the focus of the approach
developed below.

Another problem facing the LBF neural networks is to determine the optimal num-
ber of hidden units. The simplest solution is to use all vectors to define a large number
of hidden unites, but this leads to many problems with data overfitting, convergence
difficulties due to ill-conditioned G matrix and waste of computational resources. Re-
duction of the number of hidden nodes to K ¿ N is a form of regularization that
increases generalization of LBF networks. Other advantages of this approach include
easier interpretation of the functions implemented by such networks. For example, in
[13, 9, 17] relation between basis set expansion networks and fuzzy rule based systems
(F-rules) has been analyzed, showing that for separable neural transfer functions (and
thus a few types of radial basis functions) they are equivalent. Fuzzy rules are useful
if they are comprehensible and generalize well, therefore a small number of neurons
is highly desired. This is equally true for the systems based on P-rules [10, 8], that are
equivalent to networks with different types of functions implemented by their hidden
nodes.

Support Vector Machines provide good inspiration for construction of optimal shapes
of decision borders that should be based on prototypes placed in a similar way as SVs
around the border area. Classical (unsupervised) clustering algorithms search analyze
all data in the whole input space without information about class distribution. Clustering
each class independently may not be a good solution, leading to centers of clusters that
may be far from optimal, as show in Fig. 1. Optimization methods from the LVQ family
[16], or other gradient based methods used in the network training, cannot move such
prototypes to areas where they could take an important role in the decision process.



Context-dependent clustering can be used with properly defined context to find
much better positions of prototypes. Such approach has been previously applied with
very good results for training of the prototype-based rule system with the nearest neigh-
bor rule [5].
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(a) Prototypes after FCM clustering.
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(b) Prototypes after CFCM clustering.

Fig. 1. Comparison of prototype positions obtained from the FCM and CFCM clustering algo-
rithms for the two class problem.

3 Conditional Fuzzy C-Means

Context-dependent clustering methods may be realized in several ways, for example us-
ing the Conditional Fuzzy C-Means method (CFCM) [22], an extension of the standard
Fuzzy C-Means (FCM) clustering algorithm [12]. CFCM clusters data under some ex-
ternal conditions defined for every training vector. These conditions are specified by an
external variable zk which is associated with each training vector Xk, providing addi-
tional information that should be taken into account during clusterization. The strength
of the clustering relations between the external variable zk and the data vector Xk is
defined by fk = µA(zk) ∈ [0, 1], where µA(zk) may be interpreted as a membership
function defined by particular context A. To find clusters that are near the decision bor-
der the external variable z is defined as an estimated distance between data vector X
and the decision border.

FCM and CFCM are based on minimization of a cost function defined as:

Jm(U,P) =
K∑

i=1

N∑

j=1

(uji)
m ‖Xj −Pi‖2A (6)

where K clusters are centered at Pi, i = 1..K, m > 1 is a parameter, and the matrix
U = (uji) is a K × N -dimensional membership matrix with elements uik ∈ [0, 1]



defining the degree of membership of the Xj vector in the i-th cluster. Conditional
clustering is achieved by enforcing 3 conditions on the matrix U:
1o Each vector Xj belongs to the i-th cluster to a degree that is between 0 to 1:

∀
1≤i≤K

∀
1≤j≤N

uji ∈ [0, 1] (7)

2o Sum of the membership values of j-th vector Xj in all clusters is equal to fj

∀
1≤j≤N

k∑

i=1

uji = fj (8)

3o Clusters must not be empty.

∀
1≤i≤K

0 <

N∑

j=1

uji < N (9)

The cost function (6) is minimized under these conditions by placing centers at:

∀
1≤i≤k

Pi =
N∑

j=1

(uji)mxj

/
N∑

j=1

(uji)m (10)

∀
1≤i≤K

1≤j≤N

uji = fj

/
K∑

l=1

(‖Xj −Pi‖
‖Xj −Pl‖

)2/(m−1)

(11)

4 Determining the context

Conditional clustering has been used previously to generate P-rules [5]. Searching for
optimal position of prototypes for P-rules is a difficult problem; moreover, a balance
between the number of prototypes (simplicity of the rules) and the accuracy of the
whole system is very important. Irrelevant prototypes, that is prototypes that do not
have any influence on classification, should be removed. Such prototypes are usually
far from decision borders. Therefore prototypes that lie close to vectors from one of the
opposite classes should be preferred, as they should be close to the possible decision
border.

To determine position of prototypes using conditional clustering algorithm an ex-
ternal coefficient zk is defined, evaluating for a given vector Xk the ratio of a scatter
between this vector and all vectors from the same class, divided by a scatter for all
vectors from the remaining classes:

zk =
∑

j,ω(Xj)=ω(Xk)

‖Xk −Xj‖2
/ ∑

l,ω(Xl)6=ω(Xk)

‖Xk −Xl‖2 (12)



Here ω(Xk) denotes class label of the vector Xk. For quite inhomogeneous data sum-
mation may be restricted to local neighborhoods of the Xk vector. The zk coefficients
are then normalized to be in the range [0,1]:

zk ⇐
(

zk −min
k

(zk)
)/(

max
k

(zk)−min
k

(zk)
)

(13)

Normalized zk coefficients reach values close to 0 for vectors inside large homogenous
clusters, and close to 1 if the vector zk is near the vectors of the opposite classes and far
from other vectors from the same class (for example, if it is an outlier). To avoid effects
related to multiple density peaks in non-homogenous data distributions a cut-off point
for distance of the order of standard deviation of the whole data could be introduced,
although in our tests it was not necessary. These normalized coefficient determine the
external variable which then is transformed into appropriate weights used as context or
condition for CFCM clustering. Such weighting can be also understood as assigning
appropriate linguistic term in the fuzzy sense. In the algorithm used below a Gaussian
weighting was used:

fk = exp
(

zk − µ

σ2

)
(14)

with the best parameters in the range of µ =0.6–0.8 and σ =0.6–0.9, determined em-
pirically for a wide range of datasets. The µ parameter controls where the prototypes
will be placed; for small µ they are closer to the center of the cluster and for a larger µ
closer to the decision borders. The range in which they are sought is determined by the
σ parameter.

5 Experiments and results

5.1 Datasets

To verify usefulness of proposed methodology for creating GBF networks several ex-
periments have been performed, taking four rather different real-world benchmark datasets
from the UCI repository [20].

1. Cleveland Heart Disease describes 303 patients, but 7 cases with missing attributes
are usually removed, leaving 297 cases that initially have been divided into 5 cat-
egories (according to severity of the heart disease), but are usually used in bench-
mark problems with two classes, sick (139 samples) and healthy (164 samples),
with 14 most useful attributes (nominal, binary, ordinal and real) selected from 76.

2. Pima Indians Diabetes - diagnosis of diabetes among Pima Indians using descrip-
tors provided by the World Health Organization. Dataset consist of 768 samples,
described by 8 attributes, with 500 samples for healthy and 268 samples for sick
people. All attributes are numerical.

3. Ionosphere data describe radar signals reflected from the free electrons in the iono-
sphere by sending 17 pulses, each described by two components, therefore there are
34 real attributes. The dataset consist of 351 vectors classified into two categories,



depending on the state of the ionosphere. Because the second attribute of the orig-
inal dataset has all values equal to 0, it has been removed from data together with
the first binary attribute.

4. Appendicitis is a small dataset of 8 medical tests performed on 106 patients sus-
pected of appendicitis. Each patient had a biopsy to verify the need for surgery. 85
cases required treatment, and 21 did not. From the original dataset one attributes
with missing values has been removed, so the final dataset consist of 106 samples
with 7 attributes each.

5.2 Testing methodology and obtained results

The primary goal of these tests is to compare the effects of the context-based clus-
tering with standard clustering algorithms on the initialization and performance of the
GBF networks. The best results with the optimal number of neurons determined in the
crossvalidation procedure are reported. Dispersions of the Gaussian neurons have been
selected using a search procedure, and a search has been made to find appropriate pa-
rameters for the context variable in the CFCM clustering case. In all tests the data has
been normalized to keep each variable in the [0, 1] range.

Generalization abilities of all methods applied to these datasets have been estimated
using the 10-fold crossvalidation tests. Both accuracy of the model and its variance are
collected in Table 1. Low variance shows good stability of the model, as some part
of variance is due to the partitioning of data by the crossvalidation procedure. Stable
models with low variance obtained in cross validation test should be preferred over
more accurate but also more fluctuating ones. To select a good model a simple formula
that minimizes estimated error minus the standard deviation as suggested in [15], or
with a more sophisticate statistical tests.

Table (1) shows the results for selected datasets. For comparison also SVM and P-
rules system results are included. SVM was taken from libsvm implementation [19],
using Gaussian kernels with C and σ parameters optimized using a grid search pro-
cedure to test performance of over 40 models for different values of these parameters.
P-rules system (CFCM-LVQ type) based on CFCM clustering followed by LVQ proto-
type optimization technique [5]. It is also important to noticed that P-rules model has
build in feature selection algorithm, while for all other models feature selection haven’t
been performed, what is also important P-rules model was designed to find the possible
simplest data representation what can be seen in the number of selected prototypes.

6 Discussion of results and further perspectives

The context-dependent initialization of the localized basis set expansion networks pro-
posed in this paper is a simple modification of the commonly used fuzzy C-means
method. Experiments with GBF networks showed for all datasets and for all number of
hidden neurons that the context-dependent clustering is more robust then the standard
clustering algorithm used to initialize and train neural networks. The same approach is
applicable to all basis set expansion networks that use localized functions with clearly
defined centers. Surprisingly good results have been obtained in comparison to the SVM



GBF FCM GBF CFCM SVM P-rules
acc±std k acc±std k acc±std # SV acc±std # Proto

Ionosphere 3.41±0.56 40 2.29±0.71 60 4.28±0.64 113.70 12.18±1.41 6
Cleveland 16.12±2.50 5 15.13±2.39 5 16.79±1.98 131.80 17.2±2.15 2
Pima Indians 22.14±1.56 55 21.88±1.54 45 21.75±1.52 428.70 23.04±1.17 2
Appendicitis 10.55±3.5 3 10.55±3.75 3 11.46±3.57 30.00 16.23±5.8 2

Table 1. Accuracy of the GBF network with k hidden neurons per class trained by FCM and
CFCM algorithms, ooptimized SVM with Gaussian kernels and P-rules system.

model that is also based on Gaussian kernels, and is usually one of the best classifiers.
The CFCM GBF networks proved to be not only more accurate, have in most cases
lower variance, but also require much lower number of prototypes then support vectors
obtain by SVM. Although sparse SVM versions may be used for data understanding
[6] results are not so good and models are not so simple as those obtained from prop-
erly trained GBF networks. Although the datasets analyzed in the previous section has
been rather diverse, all of them are relatively simple; this has been done intentionally to
check if simple models with explanatory power may be generated. More complex data
may not have simple models and thus black box predictors may be acceptable.

Performance of all method that calculate distances is strongly affected by noise in
high-dimensional problems, and that includes also clustering algorithms. In this case
feature selection or feature aggregation methods may be a necessary preliminary step.
In contrast to SVM and most other kernel methods, basis expansion networks with full
optimization of individual node parameters are capable of multi-resolution, providing
complex shapes of decision border in selected areas of the input space where it is really
needed, and simple description in other areas. Small number of neurons has been suf-
ficient for Diabetes and Appendicitis datasets, but for the Ionosphere large number of
neurons is needed. Tests are being conducted on more complex datasets to see how well
CFCM training of GBF and other LBF networks will compare with other methods.

As suggested in Sec. 2 LBF networks may be used not only as a black box, but also
to understand data structures, helping to understand the reasons for decision made by
the model. Separable Basis Function networks may be interpreted as equivalent fuzzy
system if the full covariance matrix mixing different features is not used. Such restric-
tion does not occur in systems that extract prototype-based rules (P-rules), where the
explanatory power of the model comes from the analysis of a set of characteristic ex-
amples taken as prototypes, and optimization of individual similarity measures [5, 4,
8, 10]. The goal is to find minimal set of reference cases that allow for good general-
ization. P-rules systems may take decisions in several ways, but most often the single
nearest prototype rule is used. In RBF, LBF or SBF networks the model is more com-
plex, using instead of the max(·) aggregation function a weighted sum of contributions
from all hidden nodes. Such model is more flexible, but in effect more appropriate for
approximation problems than for data understanding. Using appropriate normalization
SBF networks may still be viewed as P-rule systems of the Takagi-Sugeno fuzzy model
type.



In the CFCM approach to LBF networks initialization and training, all prototypes lie
in the vicinity of decision borders. Comparing with the standard approach to the training
of such networks this leads to a reduction of unnecessary prototypes, which is highly
desirable from the point of view of comprehensibility. However, model selection for
LBF has to be done carefully, to avoid placing many prototypes close to the decision
borders, when one prototype far from the border will be sufficient. This is not a big
problem in P-systems with the nearest neighbor decision rule, but in LBF the size of
the support of localized functions has to be explicitly optimized. One drawbacks of the
CFCM algorithm is the need to determine correct mean and sigma values in Eq. 14.
Although default parameters work well in most cases for some data a grid search for
optimal values may be important. This leads to an increase of computational complexity
that may become a problem for very large datasets, although for most datasets learning
takes very little time.
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