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Abstract. Cognitive architectures play a vital role in providing blueprints for building future intelligent 
systems supporting a broad range of capabilities similar to those of humans. How useful are existing 
architectures for creating artificial general intelligence? A critical survey of the state of the art in cognitive 
architectures is presented providing a useful insight into the possible frameworks for general intelligence. 
Grand challenges and an outline of the most promising future directions are described.  
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1. Introduction  

A long-term goal for artificial general intelligence (AGI) is to create systems that will exceed human 
level of competence in a large number of areas. There is a steady progress toward this goal in several domains, 
including recognition of specific patterns, memorization and retrieval of vast amount of information, 
interpreting signals and other types of numerical information, autonomous control, board games and 
reasoning in restricted domains. Yet even in lower level cognitive functions, such as object recognition or 
scene analysis artificial systems are still far behind the natural ones. Higher-level cognitive functions, such as 
language, reasoning, problem solving or planning, involve complex knowledge structures and are much more 
difficult to realize. Various types of memory stored by the brain facilitate recognition, association, semantic 
interpretation and rapid retrieval of large amounts of complex information patterns. At quite basic level 
organization of storage and retrieval of information in computers is completely different than in brains. 
Computing architectures are universal only in principle, in practice they always constrain information 
processing in specific ways. Computers are better in many tasks than brains, and vice versa, brains are better 
in many important tasks then computers. It is not clear at all whether cognitive architectures (CA) running on 
conventional computers, will reach the flexibility of the brain in lower or higher-level cognitive functions.  

Traditionally higher cognitive functions, such as thinking, reasoning, planning, problem solving or 
linguistic competencies have been the focus of artificial intelligence (AI), relaying on symbolic problem 
solving to build complex knowledge structure. These functions involve sequential search processes [1], while 
lower cognitive functions, such as perception, motor control, sensorimotor actions, associative memory recall 
or categorization, are accomplished on a faster time scale in a parallel way, without stepwise deliberation. 
Embodiment is a powerful trend in robotics and there is now a general agreement that the meaning of many 
concepts should be grounded in embodied, sensorimotor representations. However, the actual limitations of 
the symbolic and the embodied approaches to cognition are not known. Perhaps the dream of creating a 
General Problem Solver [2] may be realized with relatively minor extensions to symbolic cognitive 
architectures, while understanding animal behavior and robotic applications may require embodied cognition. 
Analysis of existing cognitive architectures should facilitate understanding of limitations of different 
approaches. Many general ideas seem to explain everything but do not scale up well to real applications, 
therefore a clear notion what exactly AGI should do is necessary.  
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2. Grand challenges for AGI  

What should be required from an AI system to be worthy of the “Artificial General Intelligence” name? 
Artificial Intelligence has focused on many specific approaches to problem solving, useful for development of 
expert systems, neglecting its initial ambitious goals. One requirement for AGI, storing and manipulation of 
vast amount of knowledge, has been addressed by the Cyc project [3]. Started in 1984 a huge frame-based 
knowledge base has been constructed, but its “potential applications” list has not been replaced by actual 
applications for decades. The biggest failure of AI community is evident in the language-related domains, for 
example in general purpose conversational systems, developed mostly in the form of various chatterbots by 
commercial companies and enthusiastic individuals. Restricted form of the Turing test [4] (the full test being 
too difficult to try), called Loebner Prize competition [5], has been won for almost two decades by chatterbots 
based on old template matching techniques, or more recently contextual pattern matching techniques. Such 
programs have no chance to develop real understanding of language and use it in meaningful dialogs or texts 
analysis, but may be used for stereotyped question/answer systems or “impersonation”. Carpenter and Free-
man have proposed a “personal Turing test” [6], where a person tries to guess if the conversation is done with 
a program or a real personally known individual. Human behavior includes the ability to impersonate other 
people, and the personal Turing test may be an interesting landmark step on the road to general intelligence.  

Another area that poses remarkable challenge to AI is word games, and in particular the 20-questions 
game. Word games require extensive knowledge about objects and their properties, but not about complex 
relations between objects. Different methods of knowledge representation may be used in different 
applications, from quite simple, facilitating efficient use of knowledge, to quite involved, needed only in deep 
reasoning. In fact simple vector-space techniques for knowledge representation are sufficient to play the 20-
question game [7]. Success in learning language depends on automatic creation and maintenance of large-
scale knowledge bases, bootstraping on the resources from the Internet. Question/answer systems pose even 
more demanding challenge, and in this area a series of competitions organized at Text Retrieval Conference 
(TREC) series may be used to measure progress. Intelligent tutoring systems are the next great challenge, but 
there seem to be no clearly defined milestones in this field.  

Feigenbaum [8] proposed as a grand challenge building a super-expert system in a narrow domain. This 
seems to go in a direction of specialized, rather than general intelligence, but one may argue that a super-
expert without general intelligence needed for communication with humans is not feasible. Sophisticated 
reasoning by human experts and artificial systems in such fields as mathematics, bioscience or law may be 
compared by a panel of experts who will pose problems, rise questions, and ask for further explanations to 
probe the understanding of the subject. A good example of such challenge is provided by the Automated 
Theorem Proving (ATM) System Competitions (CASC) in many sub-categories. An interesting step toward 
general AI in mathematics would be to create general theorem provers, perhaps using meta-learning 
techniques that rely on specialized modules. Automatic curation of genomic/pathways databases and creation 
of models of genetic and metabolic processes for various organisms poses great challenges for super-experts, 
as the amount of information in such databases exceeds by far human capacity to handle it.  

Defining similar challenges and milestones towards AGI in other fields is certainly worthwhile. The 
ultimate goal would be to develop programs that will advice human experts in their work, evaluating their 
reasoning, perhaps even adding some creative ideas. DARPA in the “Personal Assistants that Learn” (PAL) 
program sponsors a large-scale effort in similar direction. Nilsson has argued [9] for development of general 
purpose educable systems that can be taught skills needed to perform human jobs, and to measure which 
fraction of these jobs can be done by AI systems. Building one such system replaces the need for building 
many specialized systems, as already Allan Turing has noted proposing a “child machine” in his 1950 paper 
[4]. Some human jobs are knowledge-based and can be done by information processing systems, where 
progress may be measured by passing a series of examinations, as is done in such fields as accounting. 
However, most human jobs involve manual labor, requiring senso-motoric coordination that should be 
mastered by household robots or autonomous vehicles. The DARPA Urban Challenge competition (2007) 
requires integration of computer vision, signal processing, control and some reasoning. It is still simpler than 
control of a humanoid robot, where direct interaction of robots with people will require an understanding of 
perception, controlling of attention, learning casual models from observations, and hierarchical learning with 
different temporal scales. Creation of partners or personal assistants, rather than complete replacements for 
human workers, may be treated as a partial success. Unfortunately specific milestones for this type of 
applications have yet to be precisely defined. Some ordering of different jobs from the point of view of 
difficulty to learn them could be worthwhile. In fact many jobs have already been completely automatized, 



reducing the number of people in manufacturing, financial services, printing houses etc. In most cases 
alternative organization of work is to be credited for reduction in the number of jobs (plant and factory 
automation, ATM machines, vending machines), not because of deployment of AI systems.  

A detailed roadmap to AGI should thus be based on detailed analysis of the challenges, relationships 
between various functions that should be implemented to address them, system requirements to achieve these 
functions and classes of problems that should be solved at a given stage.  

3. Cognitive architectures 

Cognitive architectures are frequently created to model human performance in multimodal multiple task 
situations [1][10] rather than to create AGI. A short critical review of selected cognitive architectures that can 
contribute to development of AGI is provided below. Allen Newell in his 1990 book Unified Theories of 
Cognition [1] provided 12 criteria for evaluation of cognitive systems: adaptive behavior, dynamic behavior, 
flexible behavior, development, evolution, learning, knowledge integration, vast knowledge base, natural 
language, real-time performance, and brain realization. These criteria have been analyzed and applied to 
ACT-R, Soar and classical connectionist architectures [11] but such fine-grained categorization makes 
comparison of different systems rather difficult. Without going into such details we shall propose below a 
simpler taxonomy, give some examples of different types of cognitive systems that are currently under 
development, and provide a critique and some recommendations for better systems. Surveys on the system 
organization and working mechanisms of a few cognitive architectures that have already been published [12] 
were not written from the AGI point of view.  

Two key design properties that underlie the development of any cognitive architecture are memory and 
learning. The importance of memory has been stressed from different perspectives in a few recent books [13]-
[15]. Various types of memory serve as a repository for background knowledge about the world and oneself, 
about the current episode of activity, while learning is the main process that shapes this knowledge. Together 
learning and memory form the rudimentary aspects of cognition on which higher-order functions and 
intelligent capabilities, such as deliberative reasoning, planning, and self-regulation, are built. Organization of 
memory depends on the knowledge representation schemes. A simple taxonomy of cognitive architectures 
based on these two main features leads to a division of different approaches into three main groups (Fig. 1): 
symbolic, emergent, and hybrid models.  

 

 
Roughly speaking symbolic architectures focus on information processing using high-level symbols or 

declarative knowledge, in a classical AI top-down, analytic approach. Emergent architectures use low-level 
activation signals flowing through a network consisting of numerous processing units, a bottom-up process 
relaying on the emergent self-organizing and associative properties. Hybrid architectures result from 
combining the symbolic and emergent paradigms in one way or another. The memory and learning aspects of 
these three broad classes of approaches are investigated in details below.  
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Fig.  1. Simplified taxonomy of cognitive architectures 



3.1. Symbolic architectures 

There is a strong link between the type of architecture and problems it is supposed to solve. The use of 
symbols as the key means to support information processing originates from the physical symbol system 
hypothesis [1], which has been motivated by research on memory and problem solving. A physical symbol 
system has the ability to input, output, store and alter symbolic entities, and to carry out appropriate actions in 
order to reach its goals. The majority of symbolic architectures utilize a centralized control over the 
information flow from sensory inputs through memory to motor outputs. This approach stresses the working 
memory executive functions, with an access to semantic memory for knowledge retrieval. Rule-based 
representations of perception-action memory in knowledge-based production systems embody the logical 
reasoning skills of human experts. Graph-based representations are typically encoded as directed graph 
structures comprising nodes for symbolic entities and their attributes, and edges for relationships among them. 
Main examples of this sort of knowledge representation are semantic networks and conceptual graphs [16], 
frames/schemata [17], and reactive action packages (RAPs) [18]. The underlying paradigms of these 
approaches remain very similar, and are sometimes even equivalent.  

Substantial efforts have been made over the years to introduce analytical and inductive learning 
techniques to symbolic systems. The former aims at exploiting existing general/specific facts to infer other 
facts that they entail logically. Prominent examples include explanation-based learning (EBL) [19] and 
analogical learning [20]. Inductive machine learning, on the other hand, seeks to derive from specific facts or 
examples general rules which capture the underlying domain structure. Well-known examples of this kind 
include knowledge-based inductive learning (KBIL) [21] and delayed reinforcement learning [22]. Many 
ambitious cognitive architectures have been proposed and abandoned after a period of vigorous activity. Only 
those potential candidates for AGI that are still actively developed are reviewed below.  

SOAR (State, Operator And Result) is a classic example of expert rule-based cognitive architecture 
designed to model general intelligence [1],[23]. Based on theoretical framework of knowledge-based systems 
seen as an approximation to physical symbol systems, SOAR stores its knowledge in form of production rules, 
arranged in terms of operators that act in the problem space, that is the set of states that represent the task at 
hand. The primary learning mechanism in SOAR is termed chunking, a type of analytical EBL technique for 
formulating rules and macro-operations from problem solving traces [23]. In recent years many extensions of 
the SOAR architecture have been proposed: reinforcement learning to adjust the preference values for 
operators, episodic learning to retain history of system evolution, semantic learning to describe more abstract, 
declarative knowledge, visual imagery, emotions, moods and feelings used to speed up reinforcement learning 
and direct reasoning [24]. SOAR architecture has demonstrated a variety of high-level cognitive functions, 
processing large and complex rule sets in planning, problem solving and natural language comprehension 
(NL-SOAR) in real-time distributed environments (see [25] for more references). At present SOAR 
architecture has not yet integrated all these extensions. A few additional ones, like memory decay/forgetting, 
attention and information selection, learning hierarchical representations, or handling uncertainty and 
imprecision, will also be useful. The design of the perceptual-motor systems within SOAR is fairly unrealistic, 
requiring users to define their own input and output functions for a given domain. It remains to be seen how 
well numerous problems that face such an extension can be handled using the existing architecture as a base. 

EPIC (Executive Process Interactive Control) is a cognitive architecture for building computational 
models that subsume many aspects of human performance [10]. It aims at capturing human perceptual, 
cognitive and motor activities through several interconnected processors working in parallel, and to build 
models of human-computer interaction for practical purposes. The system is controlled by production rules 
for cognitive processor and a set of perceptual (visual, auditory, tactile) and motor processors operating on 
symbolically coded features rather than raw sensory data. Although EPIC is focused on multiple simple tasks 
in one experiment it has been connected to SOAR for problem solving, planning and learning, and the EPIC-
SOAR combination has been applied to air traffic control simulation [26].  

ICARUS project [27] defines an integrated cognitive architecture for physical agents, with knowledge 
specified in the form of reactive skills, each denoting goal-relevant reactions to a class of problems. The 
architecture includes a number of modules: a perceptual system, a planning system, an execution system, and 
several memory systems. Concepts are matched to percepts in a bottom-up way and goals are matched to 
skills in a top-down way. Conceptual memory contains knowledge about general classes of objects and their 
relationships, while skill memory stores knowledge about the ways of doing things. Each comprises a long-
term memory (LTM) and a short-term memory (STM). The LTM is organized in a hierarchical fashion, with 
the conceptual memory directing bottom-up, percept-driven inference and skill memory controlling top-down, 



goal-driven selection of actions. The acquisition of knowledge in ICARUS is achieved through hierarchical, 
incremental reinforcement learning, propagating reward values backward through time. Since skills comprise 
sub-skills, the system learns to calculate the value estimates over a stack of state-action pairs, instead of just a 
single pair as in the traditional reinforcement learning. This hierarchical processing strategy yields in turn a 
much faster learning rate than that of the standard reinforcement learning. The hierarchical memory 
organization and learning procedure have equipped ICARUS with the ability to focus its attention on a 
specific object or event in its sensor range and to reduce the reaction time and the search space requirements. 
Through its planning and memory modules, ICARUS is also able to incrementally learn new concepts in an 
efficient manner by constructing a feature tree that the system can comprehend. Relational reinforcement 
learning that gives priority to high-utility beliefs and rapidly finds most useful inferences handles well large 
memory hierarchies [28]. Interesting applications of this architecture to in-city driving, blocks world or free-
cell solitaire have been demonstrated. One vital problem is the lack of concurrent processing to cope with 
asynchronous inputs from multiple sensors while coordinating resources and actions across different 
modalities. Issues related to uncertainty have also been largely ignored.  

NARS (Non-Axiomatic Reasoning System) [29] project has been developed for over two decades. It is a 
reasoning system based on a language for knowledge representation, an experience-grounded semantics of the 
language, a set of inference rules, a memory structure, and a control mechanism, carrying out various high-
level cognitive tasks as different aspects of the same underlying process. The non-axiomatic logic is used for 
adaptation with insufficient knowledge and resources, operating on patterns that have the “truth-value” 
evaluated according to the system’s “experience” with using these patterns. This approach allows for 
emergence of experience-grounded semantics, and inferences defined on judgments. While several working 
NARS prototypes of increasing complexity have been built they are solving only rather simple problems.  

SNePS (Semantic Network Processing System) [30] is a logic, frame and network-based knowledge 
representation, reasoning, and acting system that went through over three decades of development. It stores 
knowledge and beliefs of some agent in form of assertions (propositions) about various entities. Each 
knowledge representation has its own inference scheme, logic formula, frame slots and network path, 
integrated in SNIP, the SNePS Inference Package. When a belief revision system discovers contradiction 
some hypotheses that led to the contradiction have to be unasserted by the user and the system removes all 
those assertions that depend on it. The SNePS Rational Engine controls plans and sequences of actions using 
frames and believing/disbelieving propositions. The natural language processing system works with English 
morphological analyzer/synthesizer and generalized augmented transition network grammar interpreter. 
SNePS has been used for commonsense reasoning, natural language understanding and generation, contextual 
vocabulary acquisition, control of simulated cognitive agent that is able to chat with the users, 
question/answer system and other applications. Interesting inferences have been demonstrated, but the 
program has not yet been used in a large-scale real application, for example a chatterbot.  

3.2. Emergent Paradigm Architectures 

Emergent cognitive architectures are inspired by connectionist ideas [31]. Their relation to the processes 
that take place in the brain may be rather distant. Processing elements (PEs) form network nodes that interact 
with each other in a specific way changing their internal states and revealing interesting emergent properties. 
There are two complementary approaches to memory organization, globalist and localist. The Multi-Layer 
Perceptron (MLP) and other neural networks based on delocalized transfer functions process information in a 
distributed, global way. All parameters of such networks influence their outputs. Generalization of learned 
responses to novel stimuli is usually good, but learning new items may lead to catastrophic interference with 
old knowledge [32]. The basis set expansion networks that use localized functions (such as Gaussians) are 
examples of localist networks; the output signals for a given input depend only on a small subset of units that 
are activated. However, it should be remembered that a modular organization of globalist network will easily 
create a subgroups of processing elements that react in a local way [33].  

The learning methodologies for emergent architectures are quite diverse [31],[32]. Associative learning 
creates a mapping of specific input representation to specific output representation and in this sense 
remembers the reactions, heteroassociations or enables pattern completion (autoassociations). In this case, 
learning may be either guided directly by a set of correct “target” signals or indirectly by certain critic inputs, 
which correspond to the supervised and reinforcement learning paradigms in AI, respectively. In competitive 
learning all PEs compete to become active and learn in an unsupervised fashion. The simplest form of this 
procedure is the winner-takes-all (WTA) rule, which permits only one winning PE (or one per group) to learn 



at a time, while inhibiting others that lose the competition. Correlation-based learning using Hebb learning 
rule captures statistical properties of incoming signals creating an internal model of the environment [32]. A 
few emergent architectures that are still under active development are presented below. In applications to 
complex reasoning they have not yet reached the same level of maturity as symbolic architectures, but are 
much closer to natural perception and reasoning based on perceptions, rather than symbolic knowledge.  

IBCA (Integrated Biologically-based Cognitive Architecture) is a large-scale emergent architecture that 
epitomizes the automatic and distributed notions of information processing in the brain [34]. The role of three 
regions in the brain is emphasized: posterior cortex (PC), frontal cortex (FC), and hippocampus (HC). The PC 
module assumes an overlapping, distributed localist organization that focuses on sensory-motor as well as 
multi-modal, hierarchical processing. The FC module employs a non-overlapping, recurrent localist 
organization in which working memory units are isolated from one another and contribute combinatorially 
(with separate active units representing different features). The HC module utilizes a sparse, conjunctive 
globalist organization where all units contribute interactively (not combinatorially) to a given representation. 
It permits rapid binding of all activation patterns across PC and FC (i.e., episodic memory), while reducing 
interference. The LEABRA learning algorithm includes error-driven learning of skills and Hebbian learning 
with inhibitory competition dynamics. In this framework, the PC and FC modules employ a slow integrative 
learning that blends many individual experiences to capture the underlying regularities of the world and to 
support sensory-motor activities. The HC module adds fast learning that retains and discriminates (instead of 
integrating) the individual experiences. This cooperation between HC and FC/PC reflects in turn the 
complementary learning paradigms in the brain.  

A salient trait of IBCA is the knowledge-dependency merits (generalization, parallelism, flexibility) of 
content-specific distributed representation in the brain, missing in symbolic models. Complementary learning 
capacity resolves problems with knowledge consolidation, or transfer of short-term into long-term memory. 
Higher-level cognition (variable binding, chaining of operation sequences etc.) is a result of emergent power 
of activation-based processing (invocation, maintenance, and updating of active representations for self-
regulation) in the FC module. These capacities have been validated in basic psychological tasks, such as 
Stroop test, dynamic sorting task, or visual feature binding [32]. However, the fine-grained structure of the 
architectural modules requires a large number of neurons to simulate cognitive functions, and raises the issues 
of system scalability. The current architecture is limited to learning the ANN weight parameters, but not the 
network local structure. Representation of emotions for motivation and setting goals, as well as motor 
coordination and timing, is still missing. While this type of architecture may be used to explain human 
behavior probed by psychological or psycholinguistic experiments no-one has yet demonstrated how to use it 
for tasks that require reasoning, where many symbolic architectures reach the human competence level. 

Cortronics is a new emergent architecture that models the biological functions of the cerebral cortex and 
thalamus systems (jointly termed thalamocortex) in the human brain [15]. Its memory organization consists of 
modular feature attractor circuits called lexicons. Each lexicon comprises further a localist cortical patch, a 
localist thalamic patch, and the reciprocal connections linking them. Essentially, each lexicon implements a 
large stable set of attractive states called symbols, each represented by a specific group of neurons. The 
number of neurons overlapping between each pair of symbols is relatively small, and each neuron 
representing one symbol may be used to represent many symbols. Accordingly, knowledge in Cortronics 
takes the form of parallel, indirect unidirectional links between the neurons representing one symbol in a 
lexicon and those describing a symbol in another lexicon. Each such knowledge link is termed an item of 
knowledge, and the collection of all these links is called a knowledge base. The union of cortical patches of 
all lexicons constitutes in turn the entire cortex, while that of the thalamic patches of all lexicons forms only a 
portion of thalamus. A competitive activation of symbols of lexicons, called confabulation, is used for 
learning and information retrieval. Confabulation is carried out by every lexicon when appropriate knowledge 
link inputs, and operation command inputs, arrive at the lexicon at once. The states of involved neurons 
evolve dynamically via the parallel, mutual interactions of these neurons, and the minority that ends up in the 
excited/active state denote conclusions, the symbol(s) that won the competition, or a null symbol, implying a 
“don’t know” answer. The model predicts or anticipates the next state, move or word that should follow. This 
is quite new architecture and it is not yet clear how it can be extended to create AGI, as confabulation is not 
sufficient for reasoning with complex knowledge. However, it is an interesting process involved in 
anticipation, imagination and creativity [35][36], a process at a shorter time scale than reasoning processes.  

The NuPIC (Numenta Platform for Intelligent Computing) is an emergent architecture based on the 
Hierarchical Temporal Memory (HTM) technology, which is modeled on the putative algorithm used by 
neocortex [13]. Network nodes are organized in a hierarchical way, with each node implementing learning 



and memory functions. Hierarchical organization is motivated by the growing size of cortical receptive fields 
in the information streams that connect primary sensory cortices with secondary and higher-level association 
areas. This feature is also present in the IBCA architecture, where specific connectivity between different 
layers leads to growing and invariant object representation. HTM is unique in stressing the temporal aspect of 
perception, implementing memory for sequences of patterns that facilitate anticipation. Each level in the 
hierarchical network is trained separately to memorize spatio-temporal objects, and is able to recognize new, 
similar objects in a bottom-up/top-down process. The architecture has not yet been tested in larger 
applications, therefore it is hard to evaluate its potential and its limitations.  

NOMAD (Neurally Organized Mobile Adaptive Device) automata are based on “neural Darwinism” 
theory [37]. Nomads, also known as Darwin automata, demonstrate the principles of emergent architectures 
for pattern recognition task in real time. They use many sensors for vision, range finders to provide a sense of 
proximity, prioproceptive sense of head direction and self-movement, artificial whiskers for texture sensing, 
artificial taste (conductivity) sensors. NOMAD is controlled by a large (~105 neurons with ~107 synapses) 
simulated nervous system running on a cluster of powerful computers. The “Brain-Based Robotic Devices” 
that develop through behavioral tasks has elucidated a role of value systems based on reward mechanisms in 
adaptation and learning, importance of self-generated movement in development of perception, the role of 
hippocampus in spatial navigation and episodic memory (Darwin X-XI models), invariant visual object 
recognition (Darwin VI-VII), binding visual features of complex objects into a unified scene by neural 
synchrony due to the recurrent connections in visual pathways, implementation of concurrent, real-time 
processes. However, the emergence of higher-level cognition does not seem likely in this architecture.  

A number of emergent architectures based on the global workspace theory of Baars [38] have been 
formulated in the last two decades, but very few reached implementation level. Shanahan has described a very 
simple implementation based on weightless neural network built from generalizing random access memory 
processing units and used to control simulated robot [39]. Other examples of architectures inspired by the 
global workspace theory are discussed in the hybrid systems subsection below.  

Many other interesting emergent architectures have been discussed in recent years, but there is little 
experience with them due to the lack of software implementation to experiment with. Haikonen has written a 
book outlining an approach to conscious machines and discussing cognitive architecture for robot brains [40]. 
Anderson and his colleagues proposed the Erzatz brain project [41]. The autonomous mental development 
movement, motivated by the human mental development from infancy to adulthood, has been active for about 
a decade now [42], going in similar direction as the Edelman’s Darwin projects, and Brooks’ Cog project 
[43][44], that is creating a robotic agent for real-time interaction. Korner and Matsumoto argue [45] that 
cognitive architecture should control constraints that are used to select a proper algorithm from existing 
repertoire to solve a specific problem, or to create a new one if the stereotyped behaviors are not sufficient. 
This is very much in agreement with the meta-learning ideas in computational intelligence [46], where 
solving hard learning problems is done by learning which transformations should be composed to achieve the 
goal. The DARPA Biologically-Inspired Cognitive Architectures (BICA) program has already resulted in a 
several interesting proposals, such as the “TOSCA Comprehensive brain-based model of human mind” [47] 
written by a number of experts from leading USA institutions, which essentially came to the same conclusion.  

3.3. Hybrid Paradigm Architectures 

Given the relative strengths of the symbolic and emergent paradigms, it becomes clear that combining the 
two would offer a promising venue for developing a more complete framework for cognition [48]. Symbolic 
architectures are able to process information and realize high-level cognitive functions, such as planning and 
deliberative reasoning, in a way that resembles human expertise. However, the major issues in this approach 
are the formulation of symbolic entities from low-level information, as well as the handling of large amount 
of information and uncertainty. Emergent architectures are better suited for capturing the context-specificity 
of human performance and handling many pieces of low-level information simultaneously. Yet their main 
shortcoming is the difficulty in realizing higher-order cognitive functions. The potential benefit of a combined 
approach is therefore to have each method address the limitations of the other, allowing creation of a 
complete brain architecture that covers all levels of processing, from stimuli to higher-level cognition. 

Research in this area has led to many proposals of hybrid cognitive architectures, which can be roughly 
divided in two classes based upon the memory type of the constituent modules: localist-distributed and 
symbolic-connectionist [48]. The first class of hybrid architectures comprises a combination of localist 
modules (with each concept specified by one PE node) and distributed modules (with each concept 



represented by a set of overlapping nodes). In comparison, the second class involves a mixture of symbolic 
modules (i.e., rule- or graph-based memory) and connectionist modules (either of localist or distributed type).  
Correspondingly, hybrid architectures can be categorized into two main classes according to their direction of 
learning: top-down and bottom-up learning [49]. The former involves a transition of knowledge from explicit 
(accessible) conceptual level to implicit (inaccessible) sub-conceptual level, while the latter goes from sub-
conceptual level to conceptual level. The top-down learning can be achieved by pre-coding a set of expert 
rules at the top level (localist/symbolic module) and allowing the bottom-level (distributed ANN) to learn by 
observing actions guided by the top-level [49]. Conversely, bottom-up learning may be accomplished by 
extracting or translating implicit knowledge coded by a bottom-level module into a set of conceptual rules 
[33][50]. A few examples of hybrid cognitive architectures follow, focused on the memory organizations, 
learning methodologies, and key strengths and issues.  

ACT-R (Adaptive Components of Thought-Rational) is a hybrid cognitive architecture and theoretical 
framework for emulating and understanding human cognition [11]. It aims at building a system that can 
performs the full range of human cognitive tasks and describe in detail the mechanisms underlying perception, 
thinking, and action. The central components of ACT-R comprise a set of perceptual-motor modules, memory 
modules, buffers, and a pattern matcher. The perceptual-motor modules basically serve as an interface 
between the system and the world. There are two types of memory modules in ACT-R: declarative memory 
(DM) and procedural memory (PM), which encode factual knowledge about the world and that about how to 
do things respectively. Both are realized as a symbolic-connectionist structures, where the symbolic level 
consists of productions (for PM) or chunks (for DM), and the sub-symbolic level of a massively parallel 
connectionist structure. Each symbolic construct (i.e., production or chunk) has a set of sub-symbolic 
parameters that reflect its past usage and control its operations, thus enabling an analytic characterization of 
connectionist computations using numeric parameters (associative activation) that measure the general 
usefulness of a chunk or production in the past and current context. Finally, the ACT-R buffers serve as a 
temporary storage for inter-module communications (excluding PM), while the pattern matcher is used to find 
a production in PM that matches the present state of the buffers. 

ACT-R utilizes a top-down learning approach to adapt to the structure of the environment. In particular, 
symbolic constructs (i.e., chunks or productions) are first created to describe the results of a complex 
operation, so that the solution may be available without recomputing the next time a similar task occurs. 
When a goal, declarative memory activation or perceptual information appears it becomes a chunk in the 
memory buffer, and the production system guided by subsymbolic processes finds a single rule that responds 
to the current pattern. Sub-symbolic parameters are then tuned using Bayesian formulae to make the existing 
symbolic constructs that are useful more prominent. In this way chunks that are often used become more 
active and can thus be retrieved faster and more reliably. Similarly, productions that more likely led to a 
solution at a lower cost will have higher expected utility, and thus be more likely chosen during conflict 
resolution (i.e., selecting one production among many that qualify to fire). This architecture may be partially 
mapped on the brain structures. It has been applied in a large number of psychological studies, and in 
intelligent tutoring systems, but ambitious applications to problem solving and reasoning are still missing.  

CLARION (The Connectionist Learning Adaptive Rule Induction ON-line) is a hybrid architecture that 
incorporates a distinction between explicit (symbolic) and implicit (sub-symbolic) processes and captures the 
interactions between the two [48]-[50]. The design objective is two-fold: to develop artificial agents for 
certain cognitive task domains, and to understand human learning and reasoning processes in similar domains. 
The CLARION architecture contains four memory modules, each comprising a dual explicit-implicit 
representation: action-centered subsystem (ACS), non-action-centered subsystem (NCS), motivational 
subsystem (MS), and metacognitive subsystem (MCS). Essentially, the ACS module serves to regulate the 
agent’s actions, while NCS maintain the general system knowledge (either explicit or implicit). On the other 
hand, MS functions to provide a motivation/impetus for perception, action and cognition, while MCS monitor, 
direct and alter the operations of the other three modules. Each of these modules adopts a localist-distributed 
representation, where the localist section encodes the explicit knowledge and the distributed section (e.g. an 
MLP network) the implicit knowledge. CLARION also employs different learning methods for each level of 
knowledge. Learning of implicit knowledge is achieved using reinforcement learning methods such as Q-
learning or supervised methods such as the standard back-propagation, both of which can be implemented 
using an MLP network [50]. The implicit knowledge already acquired at the bottom level is then utilized to 
craft the explicit knowledge at the top level via a bottom-up learning. This can in turn be viewed as a rational 
reconstruction of implicit knowledge at the explicit level. Top-down learning may also be achieved by 
precoding/fixing some rules at the top level and allowing the bottom-level to accumulate knowledge by 



observing actions guided by these rules [49]. As such, the system’s decision making that relies initially on the 
top level gradually becomes more dependent on the bottom level. Software is available for experimentation 
with CLARION. A lot of psychological data has been simulated with this architecture, but also a complex 
sequential decision-making for a minefield navigation task.  

LIDA (The Learning Intelligent Distribution Agent) is a conceptual and computational framework for 
intelligent, autonomous, “conscious” software agent that implements some ideas of the global workspace 
(GW) theory [51]. The architecture is built upon a bit older IDA framework, which was initially designed to 
automate the whole set of tasks of a human personnel agent who assigns sailors to new tours of duty. LIDA 
employs a partly symbolic and partly connectionist memory organization, with all symbols being grounded in 
the physical world in the sense of Brooks [44]. LIDA has distinct modules for perception, working memory, 
emotions, semantic memory, episodic memory, action selection, expectation and automatization (learning 
procedural tasks from experience), constraint satisfaction, deliberation, negotiation, problem solving, 
metacognition, and conscious-like behavior. Most operations are done by codelets implementing the 
unconscious processors (specialized networks) of the global workspace theory. A codelet is a small piece of 
code or program that performs one specialized, simple task. The LIDA framework incorporates three new 
modes of learning into the older IDA model: perceptual, episodic, and procedural learning, which are all of 
bottom-up type. Perceptual learning concerns learning of new objects, categories, relations, etc, and takes two 
forms: strengthening or weakening of the base-level activation of nodes, as well as creation of new nodes and 
links in the perceptual memory. Episodic learning, on the other hand, involves learning to memorize specific 
events (i.e., the what, where, and when). It results from events taken from the content of “consciousness” 
being encoded in the (transient) episodic memory. Finally, procedural learning concerns learning of new 
actions and action sequences with which to accomplish new tasks. It combines selectionist learning (i.e., 
selecting from an obsolete repertoire) and instructionalist learning (i.e., constructing new representations), 
with functional consciousness providing reinforcements to actions. There is no doubt that this architecture 
may explain many features of mind, however, it remains to be seen high competence ti will achieve in 
understanding language, vision, and common sense reasoning based on perceptions. 

DUAL architecture [52] has been inspired by Minsky’s “Society of Mind” theory of cognition [53]. It is a 
hybrid, multi-agent general-purpose architecture supporting dynamic emergent computation, with a unified 
description of mental representation, memory structures, and processing mechanisms carried out by small 
interacting micro-agents. As a result of lack of central control the system is constantly changing, depending 
on the environment. Agents interact forming larger complexes, coalitions and formations, some of which may 
be reified. Such models may be evaluated at different levels of granularity, the microlevel of micro-agents, the 
mesolevel of emergent and dynamic coalitions, and the macrolevel of the whole system and models, where 
psychological interpretations may be used to describe model properties. Micro-frames are used for symbolic 
representation of facts, while relevance or activation level of these facts in a particular context is represented 
by network connections with spreading activation that changes node accessibility. Links between microagents 
are based on their frame slots and weights control the influence of agents on each other’s activity. DUAL 
architecture has been used in a number of projects: AMBR, a model of human reasoning that unifies analogy, 
deduction, and generalization, including a model of episodic memory; a model of human judgment; a model 
of perception, analysis of interactions between analogy, memory, and perception; understanding the role of 
context and priming effects for the dynamics of cognitive processes. This is certainly a very interesting 
architecture that is capable of explaining many cognitive phenomena. It is not clear how well it will scale up 
to real problems requiring complex reasoning, as nothing in this area has yet been demonstrated.  

Polyscheme [54] integrates multiple methods of representation, reasoning and inference schemes in 
problem solving. Each Polyscheme “specialist” models a different aspect of the world using specific 
representation and inference techniques, interacting with other specialists and learning from them. Scripts, 
frames, logical propositions, neural networks and constraint graphs can be used to represent knowledge. A 
reflective specialist guides the attention of the whole system, providing various focus schemes that implement 
inferences via script matching, backtracking search, reason maintenance, stochastic simulation and 
counterfactual reasoning. High-order reasoning is guided by higher-level policies for focusing attention. 
Many problem solving algorithms use forward inference, subgoaling, grounding, representing alternate 
worlds and identity matching as their basic operations. Such operations are handled by specialists who are 
equipped with different representations but focus on the same aspect of the world, and may integrate also 
lower-level perceptual and motor processes. Thus Polyscheme may be used both in abstract reasoning and 
also in common sense physical reasoning in robots. It has been used to model infant reasoning including 



object identity, events, causality, spatial relations. This meta-learning approach combining different 
approaches to problem solving is certainly an important step towards AGI and common sense reasoning.  

4CAPS architecture [55] has plausible neural implementation and is designed for complex tasks, such as 
language comprehension, problem solving or spatial reasoning. A unique feature is the ability to compare the 
activity of different 4CAPS modules with functional neuroimaging measures of brain’s activity. It has been 
used to model human behavioral data (response times and error rates) for analogical problem solving, human–
computer interaction, problem solving, discourse comprehension and other complex tasks solved by normal 
and mentally impaired people. Its first operating principle, “Thinking is the product of the concurrent activity 
of multiple centers that collaborate in a large scale cortical network”, leads to the architecture based on a 
number of centers (corresponding to particular brain areas) that have different processing styles, for example 
Wernicke’s area is specialized for the associative retrieval/design, constructing and selectively accessing 
structured sequential and hierarchical representations. Each center can perform and be a part of multiple 
cognitive functions, but has a limited computational capacity constraining its activity. Functions are assigned 
to centers depending on the resource availability, therefore the topology of the whole large-scale network is 
not fixed. Although 4CAPS contains many interesting ideas it is not aimed at achieving intelligent behavior, 
but rather tries to model human performance; software written in Lisp is available for experimentation. See 
the discussion in [55] of other models that are aimed at explanation of behavioral data.  

Shruti [56], biologically-inspired model of human reflexive inference, represents in connectionist 
architecture relations, types, entities and causal rules using focal-clusters. These clusters encode 
universal/existential quantification, degree of belief, and the query status. The synchronous firing of nodes 
represents dynamic binding, allowing for representations of quite complex knowledge and inferences. This 
architecture may have great potential, but after rather long time of development it has not yet found any 
serious applications to problem solving or language understanding.  

The Novamente AI Engine is based on system-theoretic ideas regarding complex mental dynamics and 
associated emergent patterns, inspired by the psynet model [57] and more general “patternist philosophy of 
mind” [58]. Similarly as in the “society of minds” and the global workspace, self-organizing and goal-
oriented interactions between patterns are responsible for mental states. Emergent properties of network 
activations should lead to hierarchical and relational (heterarchical) pattern organization. Probabilistic term 
logic (PTL), and the Bayesian Optimization Algorithm (BOA) algorithms are used for flexible inference. 
Actions, perceptions, and internal states are represented by tree-like structures.  This is still an experimental 
architecture that is being developed, seems to be in a fluid state, and its scaling properties are not yet known.  

4. Where do we go from here? 

The previous sections has presented a number of very interesting models of cognition that have the potential 
to develop general intelligence. Many excellent projects have already been formulated, some have been 
developed over many decades, while others are just starting. So far cognitive architectures are used in very 
few real-world applications. Grand challenges, as discussed in section two, and smaller steps that lead to 
human and super-human levels of competence should be formulated to focus the research. Extending small 
demonstrations in which a cognitive system reasons in a trivial domain to larger-scale applications, for 
example generating results that may be of interest to experts, or acting as an assistant to human expert, is one 
important direction. Without a set of demanding test problems it is very hard to evaluate new projects, 
compare their capabilities and understand their limitations. Integrative models of human performance are of 
great interest in the defense and aerospace industries. A recent project on the Agent-Based Modeling and 
Behavior Representation (AMBR) Model Comparison resulted in quantitative data comparing the 
performance of humans and cognitive architectures in a simplified air traffic controller environment [59]. 
Some efforts have been expended on the evaluation of software agents and several proposals in this direction 
has been put forth during the 2007 AAAI Workshop “Evaluating Architectures for Intelligence” [60]. Ideas 
ranged from using in-city driving environment as a testbed for evaluating cognitive architectures, to 
measuring incrementality and adaptivity components of general intelligent behavior. 

Perhaps a measure of “cognitive age” could be established, with a set of problems that children at a given 
age are able to solve. Problems should be divided into several groups: e.g. vision and auditory perception, 
understanding language, common-sense reasoning, abstract reasoning, probing general knowledge about the 
world, learning, problem solving, imagination, creativity. Solving all problems from a given group that 
children at some age are able to solve will qualify cognitive system to pass to the next grade in this group of 



problems. It should be expected that some systems will show advanced age in selected areas, and not in the 
others. For example, solving problems requiring vision may require addition of specialized computer vision 
modules, while mathematical reasoning in many reasoning systems may be fairly advanced comparing to 
children. Experts in human intelligence largely agree to the original Gardner’s proposal [61] that seven kinds 
of intelligence should be distinguished: logical-mathematical, linguistic, spatial, musical, bodily-kinesthetic, 
interpersonal and intrapersonal intelligence, perhaps extended by emotional intelligence and a few others.  

General world knowledge is fairly difficult to collect and could be probed using a question/answer 
system. If a 5-year old child could get all the answer to general questions from an avatar controlled by some 
cognitive architecture one should assume that the mental age of the control system in this respect is at least 5. 
Knowledge bases in cognitive systems are usually quite limited and require very different kind of 
organization and knowledge representation methods. Huge CyC knowledge base is an exception [3], and 
using it to construct large knowledge bases suitable for other cognitive systems is certainly worth the effort.  

Such analysis should certainly help to understand what type of intelligence may be expected from 
embodied cognitive robotic projects and what the limitations of symbolic approaches are. Brooks has made a 
good point that elephants do not play chess [43], and expressed hope [44] that a robot with integrated vision, 
hearing and dextrous manipulation controlled by large scale parallel MIMD computer “will learn to ‘think’ by 
building on its bodily experiences to accomplish progressively more abstract tasks”. His Cog project based on 
grounding the meaning of concepts in deep embodiment has many followers although after 15 years it has 
stayed at the level of reactive agent and there are no good ideas how to extend it to higher cognitive levels. 
While behavioral intelligence in robotic devices may be difficult to achieve without embodiment experiences 
with this approach in the last two decades are not very encouraging for AGI. Elephants are intelligent, but 
cannot learn language or be personal assistants. It is also possible that ideas on which cognitive architectures 
are based are not sufficient to solve the problems in computer vision or language and more specific models of 
some brain functions are needed.  

The survey presented above showed several trends that will probably dominate in the research on 
cognitive architectures. First, the number of hybrid architectures is already quite large, biological inspirations 
are becoming increasingly important and this will lead to domination of BICA architectures. Even hard core 
symbolic architecture proponents base now further extension of their architectures on inspirations from the 
brain [24]. They focus on the role of cortex and limbic system, but completely neglect the regulatory role of 
the brain stem which may provide overall meta-control selecting different types of behavior. Second, there 
may be many BICA architectures, but several key features need to be preserved. Different types of memory 
are certainly important, as has been already stressed by several symbolic, emergent and hybrid architectures. 
Processing of speech or texts requires recognition of tokens, or mapping from sounds or strings of letters to 
unique terms; resolving ambiguities and mapping terms to concepts in some ontology; and a full semantic 
representation of the text, that facilitates understanding and answering questions about its content. These three 
steps are roughly based on several kinds of human memory.  

First, recognition memory that helps to focus quickly attention when something is wrong, for example a 
strangely spelled word that could be a misspelling, a foreign word, personal name, or an attempt to avoid 
spam filters. This may be implemented by simple neural networks without hidden layer or by correlation 
matrix memories [35]. The role of recognition memory has also been largely forgotten.  

Second, there is a need for semantic memory that serves not only as hierarchical ontology, but 
approximates spreading activation processes in real brains, and thus activates various types of associations 
providing background knowledge that humans use for token to concept mapping and disambiguation. 
Unfortunately large-scale semantic memories that contain both structural properties of concepts (chairs have 
legs, seat, etc) and their relations and associations (chair – table, sit, etc) and could be used in computationally 
efficient way do not exist. While significant progress has been made in drawing inspirations from 
neuroscience in analysis of auditory, visual and olfactory signals much less has been done at the higher 
cognitive function level. Although neurocognitive approach to linguistics has been formulated as “an attempt 
to understand the linguistic system of the human brain, the system that makes it possible for us to speak and 
write, to understand speech and writing, to think using language …” [62], in practice it has been used only to 
analyze specific linguistic phenomena. A practical algorithm to discover these “pathways of the brain” has 
been introduced recently [63], opening the way for construction of large-scale semantic networks that will 
approximate symbolic knowledge stored in human brain, although creating such large-scale memories will 
require a large effort. Efforts to build concept descriptions from electronic dictionaries, ontologies, 
encyclopedias, results of collaborative projects and active searches in unstructured sources have been 
described in [7].  



Third, episodic memory is required to store experiences from interactions with individual users, to 
understand the context of current interactions and interpret all events in view of this context. Various elements 
of semantic and episodic memories are kept in the working memory. All types of memory are intimately 
connected. Recognition of tokens is facilitated by the active part of semantic memory and made easier by the 
expectations resulting from episodic memory. Reading text leads to priming effects: expectation and 
anticipation of a few selected words, and inhibition of many others that do not come to the mind of the reader. 
Episodic memory is based on semantic relations of the concepts found in the text. Although several proposals 
for memory-based cognitive architectures have been formulated the role of different types of memory has not 
been stressed and no effort to create appropriate large-scale knowledge bases has been made. AGI requires 
such memories, and as a step towards such memory-based architecture an avatar that uses large semantic 
memory to play word games has been demonstrated [7].  

What is the best practical way to implement these ideas? Template matching proved to be amazingly 
effective in simulation of dialogues and is still dominating in chatterbots [64], but it obviously does not lead 
to real understanding of the concepts that appear in the discussion. Neural template matching, or templates 
approximating the distribution of neuronal group activities in the brain during concept comprehension, is the 
simplest technique that goes beyond symbolic template matching, leading to sets of consistent concepts. 
Words are ambiguous and form concepts that have meanings modified by their contexts. In the brain a word w 
= (wf,ws) has phonological component wf (the memorized form of the word, string of phonemes or characters), 
and an extended semantic representation ws (extended activations related to the use and category of the word, 
including immediate associations). The extended activation is not unique, only when the current context Cont 
is specified (specific activations of other concepts are determined) the meaning of the word is established, 
resulting from spreading activation in the brain to form a global state Ψ(w,Cont). This state changes with each 
new word received in sequence, with quasi-stationary states formed after each sentence is processed and 
understood. It is quite difficult to decompose the Ψ(w,Cont) state into components, because the semantic 
representation ws is strongly modified by the context. The state Ψ(w,Cont) may be regarded as a quasi-
stationary wave, with its core component centered on the phonological/visual brain activations wf and with 
quite variable extended representation ws. As a result the same word in a different sentence creates quite 
different states of activation, and the lexicographical meaning of the word may be only an approximation of 
an almost continuous process. To relate states Ψ(w,Cont) to lexicographical meanings, one can cluster all 
such states for a given word in different contexts and define prototypes Ψ(wk,Cont) for different meanings wk. 
These prototypes are neural templates that should replace symbolic templates. The form of the word wf 
identifies several candidate templates with different meanings, and the one that fits to other templates, 
maximizing overall consistency of interpretations, is selected. 

The symbolic approach to language is a poor substitute for neurolinguistic processes, and high-
dimensional vector model of language, popular in statistical approach to natural language processing (NLP) 
[65], is a very crude approximation that does not reflect essential properties of the perception-action-naming 
activity of the brain [66][67]. The process of understanding words (spoken or read) starts from activation of 
word form representation (the phonological or grapheme representation) in the temporal lobe, quickly 
spreading neural activation to further brain areas, including the non-dominant (usually right) hemisphere, that 
does not contain representations of word forms, but learns to evaluate clusters of activations, forming 
constraints on the way words may be used, and forming general, higher-level concepts [63]. This continuous 
process may be approximated through a series of snapshots of patterns created by microcircuit activations 
φi(w,Cont) that can be treated as basis functions for the expansion of the state Ψ(w,Cont) = Σi αi φi(w,Cont), 
where the summation extends over all patterns that show significant activity resulting after presentation of the 
word w. The high-dimensional vector model used in NLP measures only the co-occurrence of words Vij = 
〈V(wi),V(wj)〉 in small window neighborhood, averaged over all contexts, while human knowledge includes 
also structural properties of concepts that are important, but do not appear explicitly in texts. The use of wave-
like representation in terms of basis functions to describe neural states makes this formalism similar to that 
used in quantum mechanics, although no real quantum effects are implied here. Objects of discourse and 
actual episodes are memorized by hippocampus that links to the cortex and is able to recreate the original 
activations at the moment the episode has been experienced.  

An outline of the road from single neurons, to brain modules, to societies of brains has been presented in 
[69]. Single neurons have little internal knowledge and very simple interactions via weighted links; 
assemblies of neurons at different levels form coalitions and may be regarded as specialized processors, 
passing structured information and attaining rather complex internal states. This may be approximated by 
interacting agents, with internal knowledge and means of communication, with coalitions of simple agents 



creating dynamic, higher-order units that may be viewed as “soft agents”, with new competencies arising at 
demand by variation on the main theme. Such meta-learning ideas for solving pattern recognition and 
reasoning based on partial observations has been recently described [46], and preliminary implementation of 
general system architecture to support such approach has been presented [70]. 

The role of imagination, creativity, learning from partial observations and using this knowledge in an 
intuitive way, and the role of the right hemisphere in the linguistic processes, has only recently been discussed 
[24][35][36]. The AIM1 (ArtIficial Mind1) architecture based on these ideas is under development and will 
be presented in near future. This architecture will draw inspirations from some of the projects presented in 
this paper, but will be primarily aimed at ambitious applications requiring natural language processing. It is 
quite likely that this approach will lead to creation of conscious artifacts [40][71].  
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