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Abstract. Learning problems with inherent non-separable Boolean logic
is still a challenge that has not been addressed by neural or kernel clas-
sifiers. The k-separability concept introduced recently allows for char-
acterization of complexity of non-separable learning problems. A simple
constructive feedforward network that uses a modified form of the error
function and a window-like functions to localize outputs after projec-
tions on a line has been tested on such problems with quite good results.
The computational cost of training is low because most nodes and con-
nections are fixed and only weights of one node are modified at each
training step. Several examples of learning Boolean functions and results
of classification tests on real-world multiclass datasets are presented.

1 Introduction

Many algorithms and neural network architectures for learning parity problem
and other difficult Boolean functions were presented in [1–5]. These methods
are suitable only for the parity problem and will not work for other complex
problems. Biological neural networks are able to solve quite complex learning
problems inherent in optimization of behavior or understanding linguistic pat-
terns. Finding general algorithm capable of solving a larger set of problems of
similar complexity as the parity problem is still a challenge. Sequential construc-
tive methods using computational geometry algorithms are the most promising
in this respect. Several interesting algorithms of this type, including the irregu-
lar partitioning, Carve, target switch, oil spot, and sequential window learning
algorithm, have been reviewed and compared in [6]. Most of them work only for
binary problems and therefore pre-processing using Gray coding is used.

As shown recently [7] complexity of classification problems may be charac-
terized by the concept of k-separability: the dataset x of points belonging to
two classes is called k-separable if a direction w exist such that k is the min-
imum number of intervals containing data from a single class after projection
on a line yi = xi · wi. For example, linearly separable two-class data points
form just two intervals (open-ended on left and right side), while the data that
cannot be linearly separated may require 3 or more intervals containing vectors
from a single class only. The n-bit parity problems require at least k = n + 1
intervals. This concept allows for precise characterization of the complexity of



learning. Although usually the smallest k is of interest sometimes higher k’s may
be preferred if the margins between projected clusters are larger, or if among k
clusters some have very small number of elements. Problems that may be solved
by linear projection on at least k-clusters belonging to alternating classes are
called k-separability problems [7]. For the parity k = n + 1 is sufficient and it
is quite likely (although it has not been proven) that all Boolean functions may
be learned using linear projection on no more than n + 1 intervals.

The difficulty of learning Boolean functions grows quickly with the minimum
k required to solve a given problem. Linear (2-separable) problems are quite
simple and may be solved with linear SVM or any other variant of LDA model.
Kernel transformations may convert some data distributions into linearly sepa-
rable distributions in higher dimensional space. This strategy does not work for
parity-like and other difficult Boolean functions, with virtually no generalization
from learned examples. Gaussian-based kernels set each data point as a sepa-
rate support vector, and in case of parity all points have closest neighbors from
the opposite class. Nearest neighbor methods and decision trees have the same
problem, linear methods fail completely while multilayer perceptrons, although
in principle may be used [1–5], in practice require special network architectures
and convergence of the learning procedure is almost impossible to achieve. As
already shown in [8] (see also [9, 10]) some problems require at least O(n2) pa-
rameters using networks with localized functions and only O(n) parameters when
non-local functions are used. The n-parity problem may be trivially solved using
a periodic function with a single parameter [7] while the multilayer perceptron
(MLP) networks need O(n2) parameters and learn it only with great difficulty.

For many complicated problems often a simple linear mapping exists that
leaves only trivial non-linearities that may be separated using window-like neu-
rons. For example XOR, the simplest non-linearly separable problem, is solved
by a network with one node implementing window-like transfer function:

M̃i(x; w, a, b) =
{

1 if wx ∈ [a, b]
0 if wx /∈ [a, b] (1)

This function is suitable for learning all 3-separable data, and the number
of such Boolean functions for 3 or more bits is much greater than of the lin-
early separable functions [7]. There are many advantages of using window-type
functions in neural networks, especially in difficult, highly non-separable classi-
fication problems [8].

Problems requiring k = 3 are already slightly more difficult for non-local
transformations (for example MLPs) and problems with high k quickly be-
come intractable for general classification algorithms. Although some k-separable
problems may also be solved using complex models it is rather obvious that sim-
plest linear solutions, or solutions involving smooth minimal-complexity non-
linear mappings combined with interval non-linearities, should show better gen-
eralization and such solutions should be easier to comprehend.

An initial data transformation by the hidden layer may create an image of the
data that projected on some direction w will produce pure clusters of samples



that belong to a single class and can be easily separated from vectors from the
opposite class. Unfortunately the standard learning algorithm cannot be used
because it is not known a priori to which interval a given vector should be
assigned, so labels cannot be used directly as targets for learning. In this paper
a simple and fast network with constructive algorithm and hidden nodes with
transfer functions of type (1) is proposed to solve this problem. This network
is described in the next section, and the Section 3 contains some experimental
results on learning the parity problem and other difficult Boolean functions.
Some cross-validation test results on benchmark multiclass problems are also
presented.

2 The Network Architecture and Training

Different neural network approaches may be used to search for k-separable solu-
tions [7, 11]. For difficult Boolean functions what is needed is a combination of
projection and clustering, with localized functions capturing interesting clusters
in projections. For 3-separable two-class problems the transformation provided
by the network should lead to 3 intervals: [−∞, a], [a, b], [b, +∞] to −1, +1,−1
values. This may be implemented using a single transfer function of type (1) that
separates instances from the interval [a, b] from the rest, grouping vectors from
a single class into a cluster. For backpropagation algorithm (and other gradi-
ent descent based methods) soft windowed-type functions should be used. Many
types of transfer functions can be used for realization of (1) (for taxonomy of a
neural transfer functions see [12], [8]). For example, the bicentral function may
be used in a product form:

Mi(x; w, t, a, β) = σ(β(wx − t − a))(1 − σ(β(wx − t + a))

or taken as a difference of two sigmoidal functions:

Mi(x; w, a, b, β) = σ(β(wx − a)) − σ(β(wx − b))

.
These two functions differ for b < a, with the second one producing negative

output M(b < a) < 0. This property may be useful for “unlearning” instances
misclassified by previous hidden nodes. Hard-window type function (1) is ob-
tained by setting large value of the slope β of sigmoidal functions at end of the
learning process.

Mi(x; Γi)
β→∞−→ M̃i(x; Γi)

or by introduction of an additional threshold parameter:
M̃i(x; Γi) = sgn (Mi(x; Γi) − ti). An interesting new window-type function that
may be used as a transfer function is:

Mi(x; w, a, b, β) =
1
2
(
1 − tanh(β(wx − a)) tanh(β(wx − b))

)
. (2)



It is easy to show that for all possible values of β there is M(wx = b) =
M(wx = a) = 0.5. Hence the interval boundaries during the learning phase,
when the slope β is small, are exactly the same as boundaries taken when the
value of β reaches large values – in the bicentral function case interval boundaries
for β → ∞ may be different than [t − a, t + a].

For more complex problems (k > 3) the network with weight sharing based
on several such nodes may be used. A standard network with window functions
should minimize an error measure:

E(x; Γ ) = Ex||y(x; Γ ) − c(x))|| (3)

where y(x; Γ ) is network output, c(x) ∈ {0, 1} denote class of given vector x
and Γ is a set of all parameters that are changed during training (weights, biases,
etc.). This expectation is calculated over all vectors, and any norm may be used,
including the most popular mean square error or cross entropy measures. The
minimum is reached for parameters Γ and if we could find good solution for the
whole network the problem would be solved. For complex problems (larger k) this
would require global minimization. This form of error does not give any control
over purity of the clusters, but adding for each hidden node with window-like
transfer function an extra term:

E(x; Γ ; a, b, λ) = Ex||y(x; Γ ) − c(x))|| + λEy∈[a,b]||y(x; Γ ) − c(x))|| (4)

will allow to get minimum error for a pure cluster, with λ controlling the tradeoff
between the covering and the purity. This approach requires constructive net-
work, with nodes trained one at a time. All experiments described below were
done with the following error function:

E(x; Γ, λ1, λ2) =
1
2

∑
x

(y(x; Γ ) − c(x))2 +

+λ1

∑
x

(1 − c(x))y(x; Γ ) − λ2

∑
x

c(x)y(x; Γ ) (5)

First term in (5) is the standard mean square error (MSE) measure, second
term with λ1 (penalty factor) increases the total error for vectors xi from class
c(xi) = 0 that falls into group of vectors from class 1 (it is a penalty for ”unclean”
clusters), third term with λ2 (reward factor) decreases the value of total error
for every vector xi from class 1 that was correctly placed inside created clusters
(it is a reward for large clusters).

The network used here has one hidden layer and one sigmoidal or linear node
in the output layer; it’s architecture is shown in Fig. 1.

All connection weights between the output and the hidden layer have fixed
strength 1, simply summing the outputs filtered through the window functions.
Every hidden node should separate a large group of vectors from class c = 1. The
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Fig. 1. Example of a network with two hidden neurons. Only parameters of the second
node are adapted (dotted line), the first node M1 has been frozen with large value of
β.

weight sharing requirement to obtain linear projections may relaxed, allowing
different projection directions for different neurons, although initialization from
the same direction may frequently need to linear k-separable solution. Learning
starts with an empty hidden layer and in every phase of the training one new
unit is added, initialized and trained using the backpropagation algorithm until
convergence is reached. Weight sharing is not used to allow for different projec-
tions that may lead to partially overlapping clusters. Node weights are initialized
with small random values, while biases a and b (for sigmoidal type of neurons)
are estimated using a, b = (wx)min ± 1

3 |(wx)max − (wx)min|. The input vectors
correctly handled by the first neuron do not contribute to the error, therefore
the weights of this neuron are kept frozen during further learning. Next node is
added and learning procedure is repeated on the remaining data. If number of
cases correctly classified by a given new node drops below certain minimum the
learning procedure stops and this node is removed from the network.

3 Results.

Reward and Penalty. There are 65536 possible 4 dimensional Boolean func-
tions and 192 of them are 6-separable functions [7]. The remaining functions
are k-separable with k < 6. Hence for learning this functions at least 2 hidden
nodes of type (1) are needed. The network have been applied to 192 functions
that are 6-separable, using various values of λ1 and λ2. Figure 2 shows the effect
of reward and penalty on average error, the number of learning cycles and the
numbers of nodes needed in the final network to find a perfect solution. While
reward λ2 grows the error becomes larger. Penalty factor has less drastic influ-
ence on error, only for values close to zero the error slightly grows but for almost
all λ1 there was no training error. By increasing the penalty factor the learning
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Fig. 2. Influence of penalty and reward factor on error (left), number of cycles (right)
and number of neurons (bottom).

procedure becomes slower, more cycles are needed for convergence. Reward and
penalty factors effect also the complexity of evolved network architecture. With
small values of λ1 and λ2 the network ends with more neurons to achieve perfect
solution. For values of penalty and reward λ1 ∈ [0.4−0.8] and λ2 ∈ [0.1−0.3] the
network makes no mistakes, the convergence is fast and the network needs less
neurons than the network without additional penalty and reward terms. Hence
for further experiments λ1 = 0.5 and λ2 = 0.2 was taken.

Parity. Many models were presented to handle parity problem [1–3] but these
models cannot be applied to other problems of similar complexity. Our network
has easily learned all parity problems with dimensions less then 8, producing a
very simple model in a small number of trials (initializations). For functions with
higher dimension greater number of network initializations are needed to find the
best solution (lowest k, with smallest number of clusters). In most cases weights
of a single hidden unit converges to direction parallel to diagonal of n-dimension
hypercube. Input vectors projected on this direction for parity problem gives
well separated clusters of ones and zeros, thus this direction seems to be the
desired solution. First hidden unit usually finds the largest cluster of ones. For
example for the 6-dimensional parity problem projection of data on diagonal



direction gives the following order of labels:

0111111000000000000000111111111111111111110000000000000001111110

The line placed above the middle sequence of 1 shows the range of interval
[a, b] created by the first hidden node. Next node tries to find another direction
and similar interval that contain remaining vectors from class 1. Projection on
weights of the second and the third hidden neuron give

1000001111111111000000000001111111111000000000001111111111000001
0111110000000000111111111100000110000011111111110000000000111110.

This is not k-separability solution as the projection directions were not aligned
by weight sharing. With the increased dimension of the problem complexity
of created network grows and the correct solution are harder to find. This is
presented in Fig 3 where results of the training on parity problems are compared
with results obtained for parity-like functions created from the parity function
by perturbation of a few labels, and for the randomly generated labels with a
probability p(C = 1|x) = 0.5 for a given vector x. Results were averaged over
100 randomly generated Boolean functions. While optimal solutions for some
parity functions have not been found increasing the number of initializations
should eventually find it.

In [6] sequential constructive methods based on computational geometry al-
gorithms have been applied to the parity problems up to 9 bits. Computational
time for all of them grows exponentially with the size of the problem. Most algo-
rithms need a large number of neurons and may not generalize well. The sequen-
tial window learning algorithm was able to find models of minimal complexity.
This algorithm also uses window-like neurons, but works only for binary data and
employs learning algorithm based on computational learning techniques. While
a detailed comparison of our approach with sequential constructive methods is
certainly worthwhile the lack of software implementations for these methods
makes such comparison a longer-term project.
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Fig. 3. Influence of dimensionality on the average training accuracy (left) and the
average number of neurons (right) for some Boolean problems.



Monk 1 Problem. The three monk problems are artificial, small problems de-
signed to test machine learning algorithms [13]. The task is to determine whether
an object described by six symbolic features is “a monk” or not. The first prob-
lem defines “being a monk” as having the head shape = body shape, or jacket
color = red, independent of the value of other features. There are 432 combi-
nations of the 6 symbolic attributes, and for the first problem 124 cases were
randomly selected for the training set. In [14] an MLP network solution of this
problem requiring 4 neurons has been presented. Our network required only two
window-like neurons to learn this problem and achieved 100% accuracy on the
test. Among sequential constructive methods only the sequential window learn-
ing algorithm with Hamming clustering has correct solution, but this required
conversion of 6 symbolic features to 15 binary ones.

Real World Problems. Creation of a separate network classifier for each class
of data allows to handle real-world multi-class datasets. The classification test
was performed on a few datasets obtained from UCI repository [15]. Three other
well known classifiers were used for comparison of results. Table 3 presents av-
eraged results over 10 runs of 10-fold cross-validation tests. Accuracy of our
networks is listed in the last column of the table called “c3sep”. Every node in
the hidden layer was initialized 10 times and the data was normalized before
training.

Table 1. Accuracy of the 10x10CV tests. Network parameters are λ1 = 0.5 , λ2 = 0.2.

dataset 1-NN Naive Bayes SVM c3sep

Appendicitis 81.3±1.5 85.3±1.0 86.5±0.3 85.3±1.0

Australian 78.0±0.2 80.0±0.3 85.0±0.1 86.3±0.6

Flag 50.1±1.1 41.1±1.1 51.1±1.1 53.6±1.8

Glass 68.2±1.7 47.4±1.7 66.7±0.9 61.1±1.3

Ionosphere 85.2±1.2 82.2±0.2 85.2±0.2 85.1±1.5

Iris 95.9±0.5 94.9±0.2 95.5±0.3 95.7±1.0

Pima-diabetes 70.5±0.5 75.2±0.5 70.3±1.0 76.3±0.4

Promoters 73.1±1.9 89.1±1.1 72.9±2.1 58.0±4.0

Sonar 86.8±1.8 67.8±1.2 84.2±1.1 77.9±2.4

Vowel 99.2±0.5 65.3±1.3 99.1±0.3 50.4±2.0

Wine 95.1±0.8 98.1±0.3 95.1±0.2 97.1±0.8

Table 2 shows the number of neurons that were created for a given datasets
for each of the classes. For most datasets the network was able to find very simple
solutions with only a few neurons, achieving quite good accuracy, comparable to
much more complex systems. It should be stressed that the goal here is to find
the simplest model, not the highest accuracy solution. The number of support
vectors for SVM models with comparable accuracy is much higher.



Table 2. Average number of hidden neurons created in the 10x10CV classification
test, and the number of support vectors used by SVM.

support
vectors

neurons
(total) average number of neurons per class

Appendicitis 32.1 4.2 2.2 2.0
Australian 207.2 8.8 4.5 4.3

Flag 315.2 26.7 5.1 6.1 4.0 2.1 2.7 3.6 1.1 1.6
Glass 295.8 14.0 1.4 3.9 1.0 2.8 1.9 2.8

Ionosphere 63.9 7.9 3.0 4.9
Iris 43.4 5.0 1.0 2.0 2.0

Pima-diabetes 365.3 9.1 4.2 4.8
Promotores 76.2 5.0 2.6 2.4

Sonar 109.7 8.5 4.5 4.0
Vowel 550.5 29.5 2.5 3.3 3.0 2.0 2.5 2.9 2.4 2.4 2.4 2.8 2.9
Wine 63.3 4.0 1.0 2.0 1.0

4 Discussion and Further Work

The approach presented here has been able to learn quite difficult Boolean func-
tions using a very simple model. Other learning systems, such as SVMs, decision
trees or similarity-based methods (including RBF networks) cannot deal with
such problems. There is a widespread belief that neural networks and kernel
classifiers, being universal approximators, should be able to learn any difficult
problem. They may learn it but will not be able to generalize, turning them-
selves into look-up tables, because they do not use the correct underlying model
to represent data.

The error function Eq. 5 with additional penalty and reward terms used
to train the constructive network shows more advantages when dealing with
complex logical problems. For many benchmark classification problems linear
solutions are almost optimal and there is not much to be gained. Small com-
putational costs of the constructive network training are a great advantage and
allow for exploration of many models created from different initializations, en-
abling search for the simplest models (in the k-separability sense) that can solve
the problem. Results obtained for the parity problem and the real-world data are
encouraging, although the real power of solutions based on k-separability targets
for learning should be seen only for data with inherent complex logics, such as
those arising from the natural language processing and problems in bioinformat-
ics (in preparation). The ability to solve such problems should open the door to
many new applications.

Efficient learning of Boolean functions of high complexity (large k) is still a
great challenge, although first steps towards this goal have been made here. Sub-
stitution of back-propagation learning by global minimization algorithms may
lead to better results for complex functions with large number of bits. One dis-
advantage of the present approach based on constructive network architecture
with modified error function is that the network is forced to create pure clusters
only for vectors from class c(x) = 1, while for many Boolean problems a better
solution may be obtained by looking for clusters of both classes simultaneously.



Another approach to improve learning is by additional transformation of input
data before training, for example extracting new features using the kernel func-
tions approach and adding them to the original dataset. The network trained on
such data should be able to choose original or transformed features of the data.
Many more ideas and applications are being currently explored.
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