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Summary. An algorithm for filtering information based on the Pearsonχ2 test approach has
been implemented and tested on feature selection. This testis frequently used in biomedical
data analysis and should be used only for nominal (discretized) features. This algorithm has
only one parameter, statistical confidence level that two distributions are identical. Empiri-
cal comparisons with four other state-of-the-art featuresselection algorithms (FCBF, CorrSF,
ReliefF and ConnSF) are very encouraging.

1 Introduction

For large highly dimensional datasets feature ranking and feature selection algo-
rithms are usually of the filter type [1]. In the simplest casefeature filter is a function
(such as correlation or information content) returning a relevance indexJ(S|D, C)
that estimates, given the dataD, how relevant a given feature subsetS is for the task
C(usually classification or approximation of data). An algorithmic procedure, such
as building a decision tree or finding nearest neighbors, mayalso be used to estimate
this index. TheJ(S|D, C) filter index is calculated directly from data, without any
reference to the results of programs that are used for final data analysis. Since the
dataD and the taskC are usually fixed and only the subsetsS varies an abbreviated
form J(S) will be used.

Relevance indices computed for individual featuresXi, i = 1 . . .N establish
a ranking orderJ(Xi1) ≤ J(Xi2 ) · · · ≤ J(XiN

). Those features which have the
lowest ranks may be filtered out. For independent features this may be sufficient, but
if features are correlated many of them may be redundant. Moreover, for some data
distributions the best pair of features may not even includea single best feature [2]!
Thus ranking does not guarantee that the largest subset of important features will
be found. Methods that search for the best subset of featuresmay also use filters to
evaluate the usefulness of subsets of features.

The thresholds for feature rejection may be set either for relevance indices, or
by evaluation of reduced dimensionality results. Featuresare ranked by the filter, but



how many are finally taken may be determined using adaptive system as a wrapper.
Evaluation of the adaptive system performance (usually crossvalidation tests) are
done only for a few pre-selected feature sets, but still this“frapper” (filter-wrapper)
approach may be rather costly if many feature subsets are evaluated. What is needed
is a simple filter method that may be applied to a large datasets ranking and remov-
ing redundant features, parameterized in statistically well-established way. Such an
approach is described in this paper. Similar filter for reducting redundant continuous
features based on Kolmogoros-Smirnov test has been proposed in [3].

In the next section relevance index based on Pearson’sχ2 test to estimate corre-
lation between the distribution of feature values and the class labels is introduced.
Section 3 compares it with four state-of-the-art feature selection algorithms using
three bioinformatics datasets.

2 Relevance indices and algorithms

2.1 Correlation-Based Measures

For featureX with valuesx and classesC with valuesc, whereX, C are treated as
random variables, Pearson’s linear correlation coefficient is defined as [4]:

%(X, C) =
E(XC) − E(X)E(C)

√

σ2(X)σ2(C)
=

∑

i(xi − x̄i)(ci − c̄i)
√

∑

i(xi − x̄i)2
∑

j(cj − c̄j)2
. (1)

%(X, C) = ±1 if X andC are linearly dependent and zero if they are completely
uncorrelated. Probability that two variables are correlated is estimated using the er-

ror function [4]P(X ∼ C) = erf
(

|%(X, C)|
√

N/2
)

. The feature list ordered by

decreasing values of theP(X ∼ C) may serve as feature ranking. An alternative
approach is to useχ2 statistics, but in both cases for large number of samples prob-
ability P(X ∼ C) is so close to 1 that ranking becomes impossible due to the
finite numerical accuracy of computations. WithN = 1000 samples coefficients as
small as%(X, C) ≈ 0.02 give correlation probabilitiesP(X ∼ C) ≈ 0.5. The
%(X, C) or χ2 thresholds for the significance of a given feature may therefore be
taken from a large interval corresponding to almost the sameprobabilities of cor-
relation. Non-parametric, or Spearman’s rank correlationcoefficients is useful for
ordinal data types.

Information theory is frequently used to define relevance indices. The Shannon
information for distribution of feature values and classesis:

H(X) = −
∑

i

P(xi) logP(xi); H(C) = −
∑

i

P(ci) logP(ci) (2)

and the joint Shannon entropy is:

H(X, C) = −
∑

i,j

P(xi, cj) logP(xi, cj) (3)



Information filtering is frequently based on mutual information (MI):

MI(X, C) = H(X) + H(C) − H(X, C) (4)

or on the Symmetrical Uncertainty Coefficient (SU) with similar properties:

SU(X, C) = 2
MI(X, C)

H(X) + H(C)
(5)

If a group ofk featuresXk has already been selected, correlation coefficient may
be used to estimate correlation between this group and the class, including inter-
correlations between the features. Denoting the average correlation coefficient be-
tween these features and classes asrkc = %̄(Xk, C) and the average between differ-
ent features asrkk = %̄(Xk,Xk) the relevance of the feature subset is defined as:

J(Xk, C) =
krkc

√

k + (k − 1)rkk

. (6)

This formula has been used in the Correlation-based FeatureSelection (CFS) algo-
rithm [5] adding (forward selection) or deleting (backwardselection) one feature at
a time. A definition of predominant correlation proposed by Yu and Liu [6] for Fast
Correlation-Based Filter (FCBF) includes correlations beetwen feature and classes
and between pairs of features. The FCBF algorithm does a typical ranking using
SU coefficient (Eq. 5) to determine class-feature relevance, setting some threshold
valueSU ≥ δ or number of featuresxn log(n)y to determine how many features
should be taken. In the second part redundant features are removed by defining the
“predominant features”.

Selection method called ConnSF, based on inconsistency measure, has been pro-
posed by Dashet al. [7] and will be used for comparison in Sec. 3. Two identical
input vectors are inconsistent if they have identical classlabels (a similar concept is
used in rough set theory). Intuitively it is clear that inconsistency grows when the
number of features is reduced and that feature subsets that lead to high inconsistency
are not useful. If there aren samples in the dataset with identical feature valuesxi,
andnk among them belong to classk then the inconsistency count is defined as
n − maxk ck. The total inconsistency count for a feature subset is the sum of all
inconsistency counts for all data vectors.

A different way to find feature subsets is used in the Relief algorithm [8]. This al-
gorithm estimates weights of features according to how welltheir values distinguish
between data vectors that are near to each other. For a randomly selected vector
X from a data setS with k features Relief searches the dataset for its two nearest
neighbors: the nearest hitH from the same class and the nearest missM from an-
other class. For featurex and two input vectorsX, X ′ the contribution to the weight
Wx is proportional to theD(x, X, X ′) = 1− δ(X(x), X ′(x)) for binary or nominal
features, andD(x, X, X ′) = |X(x) − X ′(x)| for continuous features. The process
is repeatedm times, wherem is a user defined parameter. Normalization withm in
calculation ofWx guarantees that all weights are in the[−1, 1] interval. In Sec. 3 an
extension of this agorithm for multiclass problems, calledReliefF [8] has been used.



2.2 Pearson’s Redundancy Based Filters.

The Pearsonχ2 test measures the difference between the probability distribution
of two binned random variables. If a feature is redundant than the hypothesis that
its distribution is equal to already selected feature should have high probability.n
independent observations of two random variablesX, X ′ are given in the training
data, where for the Pearsonχ2 test to be validn should be more than 100. The test
for X, X ′ feature redundancy proceeds as follows:

• Frequenciesfi, f
′

i of occurrences of feature values in each bin are recorded
(counting unique feature values).

• Based on the frequency counts emiprical probability distributionsFi andF ′

i are
constructed andχ2(X, X ′) matrix is constructed:

χ2(X, X ′) =

k
∑

i=1

(Fi − F ′

i )
2

F ′

i

(7)

A large value ofχ2 or a different number of unique feature values indicates that
features are not redundant. When p-valuep(χ2) > α then the two distributions are
equivalent withα significance level, and thus one of the features is redundant. The
best p-value could be estimated indepedently for each classifier using crossvalidation
techniques. Below several estimates for different values of α are made to find the
optimal value for each classification method. This represents the frapper approach of
using filter for ranking and adding wrapper in the final determination of the number
of selected features.

Pearson’s Redundancy Based Filter (PRBF) algorithm is presented in Fig. 1 First,
the relevance is determined using the symmetrical uncertainty (other relevance crite-
ria may also be used), and thenχ2 test is applied to remove redundancy.

Algorithm PRBF:
Relevance analysis
1. CalculateSU(X, C) relevance indices and create an ordered listS of features
according to the decreasing value of their relevance.
Redundancy analysis
2. Take asX the first feature from theS list
3. Find and remove all features for whichX is approximately equivalent according
to the Pearsonχ2 test
4. Set the next remaining feature in the list asX and repeat step 3 for all remaining
features in theS list.

Fig. 1. A two-step Pearson’s Redundancy Based Filter (PRBF) algorithm.

3 Empirical Studies.

To evaluate the performance of the PCBF algorithm both artificial and real datasets
have been used with a number of classification methods. Two artificial datasets,



Gauss4, and Gauss8, have been used in our previous study [9].Gauss4 is based on
sampling from 4 Gaussian functions with unit dispersion in 4dimensions, each clus-
ter representing a separate class. The first function is centered at(0, 0, 0, 0), the next
at (1, 1/2, 1/3, 1/4), (2, 1, 2/3, 1/2), and(3, 3/2, 3, 3/4), respectively. The dataset
contains 4000 vectors, 1000 per each class. In this case the ideal ranking should give
the following order:X1 > X2 > X3 > X4.

Gauss8 used here is an extension of Gauss4, adding 4 additional features that
are approximately linearly dependentXi+4 = 2Xi + ε, whereε is a uniform noise
with a unit variance. In this case the ideal ranking should give the following order:
X1 > X5 > X2 > X6 > X3 > X7 > X4 > X8 and the selection should reject all 4
linearly dependent features as redundant. The PRBF and the ConnSF [7] algorithms
had no problem with this task, but FCBF [6] selected only 3 features, CorrSF [5]
selected only first two, and ReliefF [8] left only feature 1 and 5, giving them both the
same weight 0.154 (for features 2 and 6 the weight was 0.060, dropping to 0.024 for
feature 3, 6 and to 0.017 for features 4, 8).

Title Selected features
Full set FCBF CorrSF ReliefF ConnSF PRBF

Features 1 to 8 1+2+3 1+2+5 1+5 1 to 4 1 to 4
C4.5 78.85 ± 0.36 79.21 ± 0.29 78.64 ± 0.31 76.15 ± 0.09 78.85 ± 0.36 78.85 ± 0.36

NBC 82.07 ± 0.07 81.57 ± 0.08 80.25 ± 0.07 76.98 ± 0.06 82.08 ± 0.07 82.07 ± 0.07

1NN 73.48 ± 0.25 73.57 ± 0.22 71.33 ± 0.25 68.19 ± 0.34 73.48 ± 0.25 73.48 ± 0.25

SVM 81.97 ± 0.08 81.54 ± 0.10 80.77 ± 0.07 76.98 ± 0.07 81.88 ± 0.08 81.87 ± 0.09

Average79.09 ± 0.19 78.97 ± 0.17 77.75 ± 0.18 74.57 ± 0.14 79.07 ± 0.19 79.07 ± 0.20

Table 1. Accuracy of 4 classifiers on selected subsets of features forthe Gauss8 dataset.

In Table 1 results of Naive Bayes Classifier (NBC) (Weka implementation, [10]),
the nearest neighbor algorithm (1NN) with Euclidean distance function, C4.5 tree
[12] and the Support Vector Machine with a linear kernel are given (Weka and SVM,
Ghostminer 3.0 implementation3).

Title FeaturesInstancesClasses
Lung-cancer (Lung) 58 32 3
Promoters 59 106 2
Splice 62 3190 3

Table 2. Summary of the datasets used in empirical studies.

For the initial comparison on real data three biomedical datasets from the UCI
Machine Learning Repository [11] were used. A summary of alldatasets is presented
in Table 2. They have rather modest number of nominal features and range from 32 to
3190 samples. Lungs dataset is extremely small and 5 out of 32instances containing

3 http://www.fqspl.com.pl/ghostminer/



missing values have been removed. The purpose is to see the influence of the number
of samples on the quality of results for similar number of nominal features.

For each data set all five feature selection algorithms are compared (FCBF [6],
CorrSF [5], ReliefF [8], ConnSF [7], and PRBF) and the numberof features selected
by each algorithm is given. 5 neighbors, 30 instances and treshold 0.1 were used
for ReliefF, as suggested by Robnik-Sikonia and Kononenko [8]. For CorrSF and
ConnSF forward search strategy has been used, and for FCBF, ReliefF, and the PRBF
forward search strategy based on ranking.

Dataset Selected features
Full setFCBF CorrSFReliefF ConnSFPRBF

Lung-cancer 58 6 7 11 4 12
Splice 62 22 6 24 10 19
Promoters 59 6 4 12 4 6
Average 59.6 11.3 5.6 15.6 6 12.2

Table 3. The number of selected features for each algorithm; bold face – lowest number, italics
– highest number.

In Table 4 results of Naive Bayes Classifier (NBC) (Weka implementation, [10]),
the nearest neighbor algorithm (1NN) with Euclidean distance function, C4.5 tree
[12] and the Support Vector Machine with a linear kernel andC = 1 (estimated to
be close to optimal value for these datasets) are collected.The overall average bal-
anced accuracy (accuracy for each class, averaged over all classes) and the standard
deviation obtained from averaging 20 repetitions of 10-fold cross-validation calcu-
lations with different initializations is reported in Tables below. For datasets with
significant differences ina priori class distributions balanced accuracy is more sen-
sitive measure than the overall accuracy.

In Table 5 classification results for various sigificance levels are presented. Sur-
prisingly the best results have been obtained for a very small level α = 0.001, re-
moving the largest number of redundant features.

4 Conclusion

A new algorithm for finding non-redundant binned feature subsets based on the Pear-
sonχ2 test has been introduced. PRBF has only one parameter, statistical signifi-
cance or the probability that the hypothesis that distributions of two features is equiv-
alent is true. In the first step SU indices Eq. 5 have been used for ranking, and in the
second step redundant features are removed in an unsupervised way, because durn-
ing reduction of redundant features infromation about the classes is not used. Our
initial tests are encouraging: on the artificial data perfect ranking has been recreated
and redundant features rejected, while on the real data, with rather modest number of
features selected results are frequently the best, or closeto the best, comparing with
four state-of-the-art feature selection algorithms. The new algorithm seems to work
especially well with the linear SVM classifier. Computational demands of PRBF al-
gorithm are similar to other correlation-based filters, andmuch lower than ReliefF.



Method C 4.5 tree
Dataset Full set FCBF CorrSF ReliefF ConnSF PRBF0.001

Lung 80.52 ± 3.53 76.30± 2.88 80.52 ± 3.53 80.52 ± 3.53 80.52 ± 3.53 77.37 ± 3.49

Splice 94.16± 0.26 94.30 ± 0.24 93.07± 0.16 94.02 ± 0.19 93.83 ± 0.21 94.03 ± 0.22

Promoters79.20± 1.90 81.04 ± 1.81 80.85 ± 2.65 81.09 ± 2.06 80.47 ± 2.21 82.69 ± 1.57
Method Naive Bayes
Dataset Full set FCBF CorrSF ReliefF ConnSF PRBF0.001

Lung 61.27± 4.67 87.37 ± 2.10 90.98 ± 1.95 83.43 ± 2.55 71.28 ± 3.93 88.09 ± 1.96

Splice 94.95 ± 0.08 96.10 ± 0.06 93.33± 0.05 95.54 ± 0.08 94.30 ± 0.08 94.62 ± 0.08

Promoters90.47± 1.40 94.43± 0.52 94.58 ± 0.86 91.27 ± 1.18 92.45 ± 1.30 91.18 ± 0.93

Method 1 Nearest Neighbor
Dataset Full set FCBF CorrSF ReliefF ConnSF PRBF0.001

Lung 47.55± 5.61 78.83 ± 2.98 82.17 ± 4.23 78.59 ± 3.71 74.33 ± 5.11 70.60 ± 5.02

Splice 80.16± 0.47 85.14 ± 0.44 84.60 ± 2.19 83.54 ± 0.44 87.13 ± 0.64 84.37 ± 0.65

Promoters81.27± 2.40 85.24 ± 2.51 88.63 ± 1.90 81.04 ± 1.81 85.38 ± 2.62 85.33 ± 3.02

Method SVM
Dataset Full set FCBF CorrSF ReliefF ConnSF PRBF0.001

Lung 47.90± 5.71 84.48 ± 2.74 90.00 ± 0.00 90.00 ± 0.00 80.63 ± 2.07 80.78 ± 2.07

Splice 92.35± 0.31 95.78 ± 0.15 93.74 ± 0.03 95.49 ± 0.24 94.24 ± 0.16 94.99 ± 0.17

Promoters91.51 ± 1.65 93.68 ± 1.15 95.76 ± 0.94 87.78 ± 2.38 87.31± 1.08 90.66 ± 1.96

Table 4. Balanced accuracy for the 4 classification methods on features selected by each al-
gorithm; bold face – best results, italics – worst.

The χ2 test works well forn > 100 samples, therefore the results for very small
Lung-cancer data are rather poor.

For simplicity of interpretation only data with nominal features have been used,
avoiding discretization. Features were ranked according to the SU relevance index. In
real applications with very large number of features a cutoff point for ranking should
be defined and optimized using crossvalidation tests to determine optimal threshold
value. Further reduction of the selected feature subsets using tests for redundancy re-
quires another estimation of the significance parameter that may be done in crossval-
idation test and will depend on classifier used. Such frapper(filter-wrapper) approach
is not too costly and may be completely automatic. The same algorithm may be used
with other indices for relevance indication. Moreover, redundancy reduction based
on χ2 test may be used in unsupervised methods of data analysis. Various variants
of this and similar test exist [4], including versions for small samples. This combina-
tion of filters, wrappers and redundancy evaluation is a fertile ground for information
selection, with many possibilities that remain to be explored. Further tests on much
larger bioinformatics data will be reported soon.
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α 0.001 0.01 0.05 0.1 0.15 0.2

Lung 12 14 16 16 18 20

C4.5 77.37 ± 3.49 77.37 ± 3.49 77.37 ± 3.49 77.37 ± 3.49 77.37 ± 3.49 77.37 ± 3.49

NBC 88.09 ± 1.96 85.56 ± 1.14 83.22 ± 2.45 83.22 ± 2.45 84.89 ± 1.85 84.47 ± 2.04

1NN 70.60 ± 5.02 72.17 ± 4.64 68.49 ± 3.72 68.49 ± 3.75 65.88 ± 3.61 63.69 ± 4.37

SVM 80.78 ± 2.07 76.45 ± 3.33 75.08 ± 3.27 75.08 ± 3.27 72.16 ± 3.09 70.20 ± 4.04

Splice 19 24 27 28 30 31

C4.5 94.03 ± 0.22 94.03 ± 0.22 94.19 ± 0.21 94.19 ± 0.21 94.19 ± 0.21 94.22 ± 0.20

NBC 94.62 ± 0.08 94.62 ± 0.08 95.11 ± 0.11 95.08 ± 0.07 94.96 ± 0.10 95.25 ± 0.07

1NN 84.37 ± 0.65 84.37 ± 0.65 81.40 ± 0.48 80.46 ± 0.58 80.66 ± 0.42 81.14 ± 0.41

SVM 94.99 ± 0.17 95.00 ± 0.17 94.49 ± 0.22 94.44 ± 0.19 94.20 ± 0.17 94.42 ± 0.22

Promoters 6 8 11 13 13 14
C4.5 82.69 ± 1.57 82.41 ± 1.69 79.72 ± 2.09 79.77 ± 1.72 79.77 ± 1.72 79.53 ± 1.73

NBC 91.18 ± 0.93 91.98 ± 0.94 92.78 ± 1.24 91.65 ± 0.98 91.65 ± 0.98 92.45 ± 0.69

1NN 85.33 ± 3.02 85.10 ± 2.90 88.68 ± 1.81 86.13 ± 2.37 86.13 ± 2.37 85.33 ± 2.18

SVM 90.66 ± 1.96 90.09 ± 2.09 86.93 ± 2.04 87.88 ± 1.45 87.88 ± 1.45 88.35 ± 2.04

Table 5. Number of features for different levels of significance, andbalanced accuracy (bacc)
± std(bacc) for C4.5, NBC, 1NN and SVM clasiffiers.
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