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Abstract. Neurocognitive processes responsible for representation of meaning 
and understanding of words are investigated. First a review of current knowl-
edge about word representation, recent experiments linking it to associative 
memory and to right hemisphere synchronous activity is presented. Various 
conjectures on how meaning arises and how reasoning and problem solving is 
done are presented. These inspirations are used to make systematic approxima-
tion to spreading activation in semantic memory networks. Using hierarchical 
ontologies representations of short texts are enhanced and it is shown that high-
dimensional vector models may be treated as a snapshot approximation of the 
neural activity. Clustering short medical texts into different categories is greatly 
enhanced by this process, thus facilitating understanding of the text. 

1   Introduction 

Low-level cognitive functions involving perception and motor control have reason-
able neural models at different level of complexity, from sophisticated spiking neuron 
biophysical models to quite approximate Hopfield-like and self-organized networks 
that provide qualitative ideas rather than detailed explanations. Unfortunately, despite 
great progress in neuroscience, the higher cognitive functions: language, thinking, 
reasoning, planning, problem solving, creativity, understanding of visual scenes are 
all poorly understood and lack good working models. Great progress in neuroimaging 
has not elucidated the precise mechanisms of high-level cognitive functions, because 
they depend on synchronization of processes at a single neuron or a microcircuit 
level. Attempts to elucidate such processes at present must be speculative. Even if 
they prove ultimately too simplistic they may still be fruitful by helping to formulate 
neurocognitive models of various higher cognitive functions. 

In this paper neurolinguistic insights are used to elucidate the process of text  
understanding and to find useful approximations to the spreading of brain activity 
during text comprehension. The connectionist approach to natural language has been 
introduced already in [1], where it was used to explain qualitatively a few linguistic 
phenomena. The only known system that can deal with linguistic structures is the hu-
man brain. The neurocognitive approach to linguistics “is an attempt to understand the 
linguistic system of the human brain, the system that makes it possible for us to speak 
and write, to understand speech and writing, to think using language …” [2].  
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Although this approach has been quite fruitful for understanding neuropsychological, 
language-related problems, it is relatively unknown in the natural language processing 
(NLP) community; no practical algorithms for large-scale text analysis have been 
derived from it.  

The basic assumption of neurocognitive computing is that words activate micro- 
feature-based associative networks and that the activation spreads to other parts of the 
network, which increases the probability of priming dynamic activations of states that 
facilitate semantic interpretation of words, concepts, sentences and episodes. Basic 
words and concepts label the action-perception subnetworks, acquiring the meaning 
directly through references to actions in the environment [3-4]. Constrained spreading 
activation techniques have recently been applied in information retrieval [5], semantic 
search techniques [6] and word sense disambiguation [7], although their application is 
still quite limited.  

A brief introduction to the putative neurocognitive processes behind higher cogni-
tive functions is presented in the next section. The section focuses on the use of words 
and symbols, analysis of priming experiments with pairwise word associations, and 
recent observations of insight states in the brain. Various approximations of the 
spreading activation processes in brain networks are discussed and related to the 
methods used in natural language processing. The challenge is to create approxima-
tions that could be used in large-scale, practical NLP projects. An example of how 
hierarchical ontologies can enhance the representation of short medical texts (sum-
mary discharges) illustrates the usefulness of simple approximations. Discussion of 
the results and their wider implications closes this paper. 

2   Representation of Words and Meanings 

Linguists have employed symbol manipulation, grammars and parsing techniques, 
trying to understand languages in conceptual terms. Progress in understanding lan-
guages in this way has been rather slow, which has led to the use of statistical tech-
niques to study patterns of language use in large corpora [8]. Although language is 
based on symbols, logical linguistic analysis may provide only an awkward approxi-
mation of the spreading activation and associative processes in the brain. The neuro-
cognitive approach to language draws its inspiration from brain research in trying to 
understand the processes that make language understanding and production possible. 

Sensory systems transform incoming stimuli by extracting from auditory and visual 
streams such basic quantized elements as phonemes in speech or edges with high  
contrast in vision. These elementary building blocks form larger patterns, building 
discrete representations of words and shapes, and in a hierarchical way filling the 
working memory with information about whole scenes and complex objects, some of 
them abstract and not even directly related to activation of sensory cortices [9]. The 
cortex has a layered, modular structure, with columns of about 105 densely intercon-
nected neurons, which communicate with other cortical columns in the neighborhood 
and sometimes also in quite distant areas across the brain, including the opposite 
hemisphere. Each column contains thousands of microcircuits with different proper-
ties (due to the different type of neurons, neurotransmitters and neuromodulators), 
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acting as local resonators that may respond to sensory signals, converting them into 
intricate patterns of excitations.  

Hearing words activates a strongly linked subnetwork of microcircuits that bind ar-
ticulatory and acoustic representations of a spoken word. Such patterns of activation 
are localized in most brains in the left temporal cortex, with different word categories 
coded in the anterior and posterior parts [8-10]. Psycholinguistic experiments show 
that acoustic speech input is quickly changed into categorical, phonological represen-
tation. A small set of phonemes, quantized building blocks of phonological represen-
tations are linked together in an ordered string by a resonant state representing word 
form, and extended to include other microcircuits defining the semantic concept. 
From the N200 feature of auditory event-related potentials, it has been conjectured 
that phonological processing precedes semantic activations by about 90 ms [4]. 
Words seem to be organized in a lexicon, with similar phonological forms activating 
adjacent resonant microcircuits. Upon hearing a word, a string of connected resona-
tors is activated, creating representation of a series of phonemes that is categorized as 
a word. Spoken language has a number of syllables and longer chunks of sounds 
(morphemes) that are strongly associated with each other. They are easily activated 
when only part of the word is heard, creating the illusion that the whole word has 
been heard. Categorical auditory perception enables understanding of speaker-
independent speech and has clear advantages in a noisy environment, providing 
speaker-independent speech representation. Strong associations sometimes lead to 
activation of wrong representations. For example, when only a part of some personal 
name is heard, often a more common name is substituted. 

Phonological representations of words activate an extended network that binds 
symbols with related perceptions and actions, grounding the meaning of each word in 
a perception/action network. Various neuroimaging techniques confirm the existence 
of semantically extended phonological networks, which lends this model of word rep-
resentation strong experimental support [3,4,10,11]. Symbols in the brain are thus 
composed of several representations: their sound patterns, pronunciation (vocal motor 
programs), and their visual and motor associations. This does not resemble the tradi-
tional idea of a representation. Learning new concepts prompts minimal changes 
(convergence) of neural connections that assure unique dynamical states that have the 
correct relational properties. Hearing a word activates a string of phonemes, increas-
ing the activity (priming) of all candidate words and non-word combinations. A 
polysemic word probably has a single phonological representation that differs only in 
its semantic extensions. This encoding automatically ensures that many similarity 
relations between words, phonological as well as semantic, may automatically be re-
trieved. Meanings are stored as activations of associative subnetworks that may be 
categorized and processed further by other areas of the brain. Context priming selects 
an extended subnetwork corresponding to a unique word meaning, while competition 
and inhibition in the winner-takes-all processes leaves only the most active candidate 
networks. The meanings of concepts listed in thesauri or dictionaries are only ap-
proximations, because the actual meaning is always modified by the context. Over-
lapping patterns of brain activations for subnetworks coding word representations 
lead to strong transition probabilities between the words, and thus to semantic and 
phonological associations that easily “come to mind”. 



956 W. Duch, P. Matykiewicz, and J. Pestian 

 

During text comprehension, background knowledge stored in the semantic memory 
is activated, resulting in brain states that contain unique interpretations. Two ap-
proaches to knowledge representation prompted by semantic memory are 
Collins/Loftus spreading activation model [12], and Collins/Quillian’s hierarchical 
semantic memory model [13]. The first has been used in connectionist models of lan-
guage [1]; the second is the basis for various ontologies. No large-scale semantic net-
works capturing commonsense knowledge have been built for practical applications, 
although considerable theoretical work has been done in this area [14,15]. Collecting 
knowledge for semantic networks that would approximate associative processes in the 
brain has proved to be quite difficult, since lexical resources such as Wordnet [16] do 
not contain structural descriptions of concepts. Statistical approaches to context 
analysis are insufficient in this area because most common sense knowledge is ac-
quired through embodiment and perception, and is so obvious that it is never written 
down. Recent attempts to analyze machine-readable sources for the creation of large-
scale semantic memories have been examined in [17], and the use of word games and 
active dialogues to extend and correct such knowledge is promising [18]. Ontologies, 
on the other hand, though they offer taxonomies of concepts [19] that are useful for 
experts, do not reflect common sense knowledge and lateral associations.  

3   Words and Creative Processes 

Understanding of words can be regarded as a simple version of problem solving. Re-
cent experiments using the EEG and functional MRI techniques on the “Aha!” insight 
experience that accompanies some solutions have contrasted insight with analytical 
problem solving that does not require insight [20,21]. An increased activity in the 
right hemisphere anterior superior temporal gyrus (RH-aSTG) has been observed dur-
ing initial solving efforts and during insights. This area is probably involved in 
higher-level abstractions that can facilitate indirect associations. About 300 ms before 
insight, a burst of gamma activity was observed. This has been interpreted as “making 
connections across distantly related information during comprehension (…) that allow 
them to see connections that previously eluded them” [21]. Bowden et al. [20] per-
formed a series of experiments that confirmed the EEG results using fMRI tech-
niques. It is probable that the initial impasse in problem solving is due to the inability 
of the processes in the left hemisphere, focused on the precise representation of the 
problem, to make progress. This deadlock is removed when less-focused right hemi-
sphere projects back relevant activations, allowing new dynamical associations to be 
formed. An emotional component is needed to increase the plasticity of the brain and 
remember these associations. The “Aha!” experience may thus result from the activa-
tion of larger left hemisphere areas by the right hemisphere, with a gamma burst win-
ning the competition for working memory access and thus reaching consciousness. 
This process occurs more often when the activation of the left hemisphere decreases 
(giving up conscious efforts to solve the problem), perhaps leading to a short period 
of knowing that the solution has been found although it has not yet been formulated in 
symbolic terms. This last step requires synchronization between states in the left 
hemisphere, defining the transition from the start to the goal through intermediate 
states. 
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Such observations may be used as inspirations for neurocognitive models. The LH 
network codes phonological and visual representations in the visual word form area 
(VWFA) in the left unimodal occipitotemporal sulcus area. The adjacent lateral in-
ferotemporal multimodal area (LIMA) reacts to both auditory and visual stimulation, 
and has cross-modal phonemic and lexical links [22]. Extended representations reach 
to the sensory, motor and premotor cortices [3-4]. Distal connections between the left 
and right hemispheres require long projections, and therefore neurons in the right 
hemisphere may generalize over similar concepts and their relations. Most of these 
RH activations do not have phonological components; the activations result from di-
verse associations, temporal dependencies and statistical correlations that create cer-
tain expectations. For example, hearing the word “left lung” may activate several RH 
cortical areas that react to all concepts related to lungs and the left side of the upper 
part of the body, including the heart; hearing “left nose” or “left head” creates a 
strange feeling. It is not clear what brain mechanism is behind the signaling of this 
lack of familiarity, but one can assume that interpretation of text is greatly enhanced 
by “large receptive fields” in the RH, which can constrain possible interpretations, 
help in the disambiguation of concepts and provide ample stereotypes and prototypes 
that generate various expectations.  

Distributed activations in the right hemisphere also form configurations that acti-
vate larger regions of the left hemisphere. High-activity gamma bursts projected to the 
LH prime its subnetworks with sufficient strength to allow for synchronization of 
groups of neurons that create distant associations. In problem solving, this synchroni-
zation links the initial description D with partial or final solutions S. Such solutions 
may initially be difficult to justify, they become clear only when all intermediate 
states Tk between D and S are transversed. If each step from Tk to Tk+1 is an easy asso-
ciation, a series of such steps is accepted as an explanation. An RH gamma burst acti-
vates emotions, increasing the plasticity of the cortex and facilitating the formation of 
new associations between initially distal states. The same neural processes should be 
involved in sentence understanding, problem solving and creative thinking.  

According to these ideas, approximation of the spreading activation in the brain 
during language processing should require at least two networks activating each other. 
Given the word w = (wf,ws) with phonological/visual component wf and extended se-
mantic representation ws, and the context Cont, the meaning of the word results from 
spreading activation in the left semantic network LH coupled with the right semantic 
network RH, establishing a global state Ψ(w,Cont). This state changes with each new 
word received in sequence, with quasi-stationary states formed after each sentence is 
understood. It is quite difficult to decompose the Ψ(w,Cont) state into components, 
because the semantic representation ws is strongly modified by the context. The state 
Ψ(w,Cont) may be regarded as a quasi-stationary wave, with its core component cen-
tered on the phonological/visual brain activations wf and with quite variable extended 
representation ws. As a result the same word in a different sentence creates quite dif-
ferent states of activation, and the lexicographical meaning of the word may be only 
an approximation of an almost continuous process. To relate states Ψ(w,Cont) to lexi-
cographical meanings, one can clusterize all such states using dendrograms and use 
different cutoffs to define prototypes for different meanings.  
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4   Approximations to Brain States 

The high-dimensional vector model of language is a very crude approximation that 
does not reflect essential properties of the perception-action-naming activity of the 
brain [3-4]. The process of understanding words (spoken or read) starts from activa-
tion of the phonological or grapheme representations that stimulate networks contain-
ing prior knowledge used for disambiguation of meanings. This continuous process 
may be approximated through a series of snapshots of microcircuit activations 
φi(w,Cont) that may be treated as basis functions for the expansion of the state 
Ψ(w,Cont) = Σi αi φi(w,Cont), where the summation extends over all microcircuits that 
show significant activity resulting from presentation of the word w. The high-
dimensional vector model used in NLP measures only the co-occurrence of words Vij 
= 〈V(wi),V(wj)〉 in some window, averaged over all contexts. A better approximation 
of the brain processes involved in understanding words should be based on the over-
lap between waves 〈Ψ(w1,Cont) | Ψ(w2,Cont)〉 = Σij αi αj  〈φi(w1,Cont) | φj(w2,Cont)〉 
that depends on time. Systematic study of transformations between the two bases: 
activation of microcircuits φi and activation of complex patterns V(wi), has not yet 
been done. The use of waves to describe states makes this formalism similar to that 
used in quantum mechanics, although no real quantum effects are implied here. 

Spreading activation in semantic networks should provide enhanced representa-
tions that involve concepts not found directly in the text. Approximations of this 
process are of great practical and theoretical interest. The model should reflect activa-
tions of various concepts in the brain of an expert reading such texts. A few crude 
approximations to this process may be defined. First, semantic networks that capture 
many types of relations among different meanings of words and expressions may pro-
vide space on which words are projected and activation spread. Each node w in the 
semantic network represents the whole state Ψ(w,Cont) with various contexts cluster-
ized, leading to a collection of links that capture the particular meaning of the con-
cept. Usually only the main differences among the meanings of the words with the 
same phonological representation are represented in semantic networks (meanings 
listed in thesauruses), but the fine granularity of the meanings resulting from different 
contexts may be captured in the clusterization process and can be related to the 
weights of connections in semantic networks. The spreading activation process should 
involve excitation and inhibition, and “the winner takes most” processes. Current 
models of semantic networks used in NLP are only vaguely inspired by the associa-
tive processes in the brain and do not capture such details [14,15].  

Quite crude approximation to the spreading activation processes leads to enhance-
ment of the initial text being analyzed by adding new concepts linked by semantic or 
hierarchical ontological relations. Inhibition between concepts arising from the same 
phonological word forms should then lead to formation of graphs of consistent con-
cepts, applied recently to disambiguate concepts in medical domain [23]. The en-
hanced representations are very useful in document clusterization and categorization, 
as is illustrated using short medical texts in the next section. Vector models may  
be related to semantic networks by looking at snapshots of the activation of nodes 
after several steps of spreading the initial activations through the network. In view of 
the remarks about the role of the right hemisphere, larger “receptive fields” in the 
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linguistic domain should be defined and used to enhance text representations. This is 
much more difficult because many of these processes have no phonological compo-
nent and thus have representations that are less constrained and have no directly iden-
tifiable meaning. Internal representations formed by neural networks are also not 
meaningful to us, as only the final result of information processing or decision mak-
ing can be interpreted in symbolic terms. Defining prototypes for different categories 
of texts, clusterizing topics or adding prototypes that capture some a priori knowledge 
useful in document categorization [24], is a process that goes in the same direction.  

Relationships between creativity and associative memory processes have been no-
ticed long ago [25]. Further experimental support for the ideas described above may 
be found in pairwise word association experiments using different priming conditions. 
In [26] puzzling results from using nonsensical words were observed for people with 
high compared to those with low creativity levels. Analysis of these experiments pro-
vided in [27] reinforces the idea that creativity relies on associative memory, and in 
particular on the ability to link distant concepts together. Adding neural noise by pre-
senting nonsensical words in priming leads to activation of more brain circuits and 
facilitates in a stochastic resonance-like way a formation of distal connections for not 
obvious associations. This is possible only if weak connections through chains involv-
ing several synaptic links exist, as is presumably the case in creative brains. For sim-
ple associations the opposite effect is expected, with strong local activations requiring 
longer times for the inhibitory processes to form consistent interpretations. Such ex-
periments show that some effects cannot be captured at the symbolic level. It is thus 
quite likely that language comprehension and creative processes both require sub-
symbolic models of neural processes realized in the space of neural activities, reflect-
ing relations in some experiential domain, and therefore cannot be modeled using 
semantic networks with nodes representing whole concepts. Recent results on creation 
of novel words [27] give hope that some of this process can be approximated by sta-
tistical techniques at the morphological level. 

5   Visualization of Semantic Similarity 

The time-dependent state of the brain Ψ(wi,Cont) that arises after reading or hearing 
texts that are understood by the experts should show high similarity for documents of 
the same category and should be different if documents from other categories are 
processed. Documents have usually quite sparse representation; for example, hospital 
discharge summaries by different specialties, but for the same disease, may use com-
pletely different vocabularies. Therefore, agglomerative hierarchical clustering meth-
ods will show a poor performance in document clustering. The simplest extension is 
to replace single words (terms) by associations based on synonyms, for example by 
using the Wordnet synsets [16]. This simulates some of the spreading activation proc-
esses in the brain increasing the similarity of documents that use different words to 
describe the same topic. However, synsets are not useful for very specific concepts 
that have no synonyms, such as medical concepts used in discharge summaries. To 
avoid problems with shared common words, only specific concepts that belong to 
selected semantic types may be used – the process presumably facilitated by the RH. 
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A better approximation to spreading activation in brain networks is afforded by soft 
evaluation of the similarity of different terms. Distributional hypothesis assumes that 
similarity of terms results from similar linguistic contexts [8]. However, in the medical 
domain and other specialized areas it may be quite difficult to estimate similarity relia-
bly on the basis of co-occurrence, because there are so many specific concepts that 
there will never be sufficient data to do that. Statistical approaches cannot replace sys-
tematic, structured knowledge describing medical concepts. To illustrate that process, 
two-steps of spreading activation have been made in a network built from ontological 
relations found in the Systematized Nomenclature of Medicine –Clinical Terms 
(SNOMED CT) section of the National Library of Medicine’s Unified Medical Lan-
guage System (UMLS) [19]. Discharge summaries for 10 initial diagnoses are repre-
sented by a carefully selected semantic feature space (described in [24]). Figs. 1-3 
show Multidimensional Scaling (MDS) visualization of records from three strongly 
overlapping classes only to improve legibility: pneumonia (class 1, 609 records), juve-
nile rheumatoid arthritis (class 6, 41 records) and otitis media (class 9, 493 records).  

 
 

       Fig. 1. MDS for original data                          Fig. 2. MDS after first enhancement 

 
Initial feature space is composed from 488 SNOMED CT concepts with high fea-

ture-class correlation coefficient (CC>0.5). Visualization of these documents using 
multi-dimensional scaling (Fig. 1) shows great mixing of documents. A single step of 
spreading activation through the network, followed by feature selection based on CC 
> 0.27 extends the feature space to 761 concepts. MDS in this space (Fig. 2) already 
shows a clear cluster structure. The second iteration with CC>0.5 increases the space 
to 1138 features and shows even more detailed and fine-grained structure, identifying 
different subclusters within each category (Fig. 3). For example, bacterial infections 
may come from Yersinia, Salmonella, Streptococcal and other infections, increasing 
similarity of all diseases caused by bacteria. In the extended spaces accuracy of classi-
fication is also greatly improved – for the 3 classes presented here from about 81% to 
87% and 88±4% in crossvalidation tests using linear SVM (for the 10-class case the 
improvement is on more than 20%). Even quite simple approximations of the spread-
ing of neural activation leads to a significantly improved accuracy in classification. 
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6   Conclusion 

Although linguistic processes are not yet completely understood, following neurolin-
guistic inspirations may be quite fruitful, allowing one to formulate some crude mod-
els of the processes that are responsible for text understanding in real brains. Various 
approximations to the putative brain processes responsible for language comprehen-
sion have been considered, leading to useful algorithms for text analysis. Vector rep-
resentations of concepts may be regarded as a snapshot of activity patterns, defining 
connections with other concepts. Relations between spreading activation in neural and 
in semantic networks, and the vector model of concepts have been elucidated. The 
role of the right hemisphere, which constrains and guides the spreading activation 
processes by providing “large receptive fields” for concepts, has been discussed. 

It is perhaps surprising that even a crude approximation using two steps of spread-
ing activation with feedback loops leads to such good clusterization and to great im-
provement in classification on a very difficult problem of summary discharge catego-
rization [24]. Background knowledge has been derived here from synsets, statistical 
co-occurrences and ontologies. In [24] prototypes of concepts representing a priori 
medical knowledge were used, providing crude approximation of the activity of neu-
ral cell assemblies in the brain of a medical expert who thinks about a particular dis-
ease. Creating numerical representations of various concepts that may be useful in 
large-scale NLP applications is an interesting challenge. Neurocognitive inspirations 
lead here to many ideas that will be explored in future work. 
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