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Abstract: Pattern recognition, machine learning and artificial intelligence approaches play an increasingly important role 

in rational drug design, screening and identification of candidate molecules and studies on quantitative structure-activity 

relationships (QSAR). In this review, we present an overview of basic concepts and methodology in the fields of machine 

learning and artificial intelligence (AI). An emphasis is put on methods that enable an intuitive interpretation of the results 

and facilitate gaining an insight into the structure of the problem at hand. We also discuss representative applications of 

AI methods to docking, screening and QSAR studies. The growing trend to integrate computational and experimental 

efforts in that regard and some future developments are discussed. In addition, we comment on a broader role of machine 

learning and artificial intelligence approaches in biomedical research.  
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INTRODUCTION 

 Artificial Intelligence (AI) is defined here in very broad 

terms as a field that deals with the design and application of 

algorithms for analysis of, learning from and interpreting 

data. Thus, broadly defined AI encompasses many branches 

of statistical and machine learning, pattern recognition, 

clustering, similarity-based methods, logics and probability 

theory, as well as biologically motivated approaches, such as 

neural networks, evolutionary computing or fuzzy modeling, 

collectively described as “computational intelligence” [1-5]. 

Typical applications of AI methods involve selection of 

relevant information, data modeling, classification and 

regression, optimization and prediction. In this review, we 

focus on those aspects of AI methodology that are relevant 

for drug design and discovery. 

 Many AI problems involve capturing complex relations 

between relevant descriptors (attributes used to represent 

objects of interest or similarities between these objects), and 

observed outcomes (e.g. biological activity of a chemical 

compound [6]). Multiple examples of such relationships are 

often available as a result of experimental studies, e.g., on 

complex molecular systems and processes. The advantage of 

AI approaches is that they can be applied to learn from exam-

ples and develop predictive models even when our under- 

standing of the underlying molecular processes is limited, or 

when computational simulations based on fundamental 

physical models are too expensive to carry out (for general 

overview of machine learning in science see, e.g. [7]). 

Canonical examples of successful applications of statistical 

and machine learning methods include gene prediction from 
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the primary DNA sequence [8-10], and prediction of second- 

ary structures from the amino acid sequence [11].  

 In the realm of drug design, AI techniques are being used 

to classify candidate compounds in terms of their activity 

and other properties. For example, a predictive model 

capable of approximating the strength of binding for candi- 

date molecules may be developed based on experimentally 

measured binding affinities for a range of substrates. Such 

predictors can subsequently be used for fast in silico 

screening and identification of potential drugs with desired 

properties [12]. Moreover, AI methods are also being used to 

identify informative biomarkers that correlate with tested 

outcomes. Food and Drug Administration (FDA) allows for 

monitoring the effectiveness of drugs using such biomarkers. 

For example, changes in cholesterol levels may be used to 

measure the effectiveness of some drugs because low choles- 

terol level correlates well with a healthy cardiovascular sys- 

tem. On the other hand, traditional drug development process 

takes many years and is very costly, relying on clinical eva- 

luation of efficacy and safety of new drugs, their influence 

on clinical symptoms and mortality rates.  

 The structure of the review is as follows. In the next 

section, general concepts pertaining to machine learning and 

more broadly AI are introduced, with focus on learning from 

examples with known outcomes (supervised learning). 

Several AI approaches that are widely used in the field of 

drug design, including regression and classification problems 

and techniques to solve them, are briefly revisited. In the 

third section, the issues of finding appropriate representation 

of the problem, model complexity as well as understanding 

and interpretation of the results of data analysis are 

discussed. In the next part, an overview of applications of AI 

methods to QSAR, docking and other problems in drug 

saif
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design and discover is given, followed by discussion of 

future directions and challenges in the field. 

OVERVIEW OF AI APPROACHES 

 There are many alternative methods and formulations for 

learning a predictor from data and for other relevant appli- 

cations of AI methods considered here. Moreover, there is a 

variety of existing implementations and software packages 

that can be applied, e.g., when solving specific data mining 

and analysis problems in the context of drug design and 

discovery. Consequently, it is often difficult (especially for a 

non-specialist) to assess the usefulness and limitations of a 

particular method for the problem at hand. One of the goals 

of this review is to provide the reader with a conceptual and 

practical framework to better navigate this field. We start by 

informally introducing some central concepts, including 

supervised and unsupervised learning, classification and 

regression, as well as feature selection and aggregation. Next, 

a brief non-technical introduction to selected AI methods is 

provided, with emphasis on underlying ideas, advantages 

and limitations of different approaches.  

 In order to introduce some basic concepts, let us assume 

that our goal is to predict various characteristics of candidate 

compounds, such as their toxicity or affinity for binding to 

their targets. These characteristics will be represented by 

“target variables”, with values indicating the type (class) or 

continuous attributes of candidate compounds. Specifically, 

if the target variable to be predicted has a few symbolic or 

numerical values the problem is of the classification type, 

and if the target value is continuous or has many numerical 

values the problem is of the regression type. If each data 

sample is given a label or has an associated target value, then 

supervised learning techniques for classification or regress- 

ion can be used to develop a predictor. If no such informa- 

tion is available for known data samples, then unsupervised 

learning techniques are used to discover interesting struc- 

tures in data, e.g., clusters or patterns. The essence of super- 

vised learning approach, which is the focus of this review, is 

to learn from known examples in order to subsequently make 

predictions for new instances of data. In the case of classi- 

fication problems, the training examples are assigned class 

labels (e.g. active vs. inactive for a chemical compound 

considered as a potential drug) and the task is to train a 

system that can be used to classify new data points. 

 Another crucial consideration is the choice of an appro- 

priate representation of the problem at hand. The most 

common representation is based on a vector X of numerical 

and/or symbolic values Xi of a set of attributes (or features) 

that describe objects (such as molecules or amino acid 

residues) or states to be classified. If large amount of infor- 

mation is provided, then relevant features should be first 

identified (feature selection) or extracted (feature aggrega- 

tion or transformation). For example, an amino acid residue 

in a protein may be represented in terms of its physico-chem- 

ical properties or one can take into account the evolutionary 

context of this residue, e.g., by considering patterns of 

substitutions at that position in homologous proteins [11].  

 Most pattern recognition methods of classification and 

regression are formulated assuming a common vector space 

representation of all input attributes. It is important to 

realize, however, that many problems in drug design cannot 

be naturally represented using a common vector space. In 

particular, the molecules considered may be quite diverse, 

implying vectors of different size. Therefore, alternative 

approaches have been proposed that rely on similarities 

between classified molecules or their structural descriptor, 

e.g., defined in terms of trees or graphs to capture structural 

relations between chemical groups or individual atoms. 

Although methods based on structural representations are not 

yet common, in recent years several new approaches with 

numerous potential applications have been formulated [13-

15].  

 There are many learning algorithms that use different 

underlying formulations and models to construct a specific 

discriminatory function and the resulting decision boundaries 

to classify the data. In general, there are two groups of classi- 

ification methods: those that partition the “feature space” 

using hyperplanes (i.e. a plane in high-dimensional spaces) 

or non-linear surfaces into regions containing data from a 

single class, and those that use prototypes and similarity eva- 

luations to define such regions (frequently localized around 

the prototypes). For example, a simple linear “classifier” 

may be obtained in the “feature space” by finding a hyper- 

plane that separates two classes of training vectors, or, alter- 

natively, the most similar labeled prototypes may be used to 

classify a new data point. In the following, we present 

examples of both approaches. 

Linear Discriminant Analysis and Support Vector 

Machines 

 The name “Linear Discriminant Analysis” (LDA) refers 

to the one of the oldest groups of classification methods. 

These methods find a hyperplane in the vector space X that 

separates vectors of one group (e.g., toxic substances) from 

another group (non-toxic substances). Two-class problems 

are sufficient in most cases because if more than two classes 

are defined a single class may be separated from the 

remaining ones. A hyperplane W for N features Xi may be 

found using many algorithms [3-5], providing combination 

of feature values:  
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for vectors X from the first group, and Y<0 for vectors of the 

second group. Results on a new data that have not been used 

for determining coefficients W, will usually be better if the 

hyperplane decision border W is placed as far from the data 

as possible, increasing the margin between the decision 

boundary and data points. This idea is explored explicitly in 

linear support vector machines (SVMs), which may be 

regarded as generalizations of LDA classifiers and are based 

on a learning algorithm that selects all vectors close to the 

decision boundary to “support” the orientation of the hyper- 

plane W. When the information contained in features is not 
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sufficient to achieve linear separability, a tradeoff between 

the margin of separation and the misclassification error 

needs to be specified.  

 An alternative approach is to add more features, either by 

measuring or calculating new properties, or combining exist- 

ing features (e.g. taking products or ratios). Extended fea- 

tures spaces may lead to some data becoming linearly 

separable. A simple trick to avoid explicit consideration of 

new features is to define a “kernel function” K(W,X) that 

computes the combination (scalar product) W
.
X in some 

high-dimensional space. Various classifiers known as 

“kernel machines”, including non-linear versions of SVMs, 

use this trick to achieve separability in the extended space. 

The separating hyperplane may subsequently be mapped 

back into the original feature space in order to obtain a non-

linear separating hypersurface (see Fig. 1). Popular choices 

for kernel functions are low-order polynomial functions 

K(W,X)=(W
.
X)

n
 or Gaussian functions K(W,X)=exp 

( |W X|
2
). More sophisticated kernels, reflecting some prior 

knowledge about the specific problem analyzed, may be 

designed [16]. Due to their efficiency and overall excellent 

performance, such classifiers have achieved great popularity 

in recent years [17].  

Neural Networks 

 Another solution that goes beyond LDA is provided by 

neural networks (NNs). NNs can generate arbitrary non-

linear decision boundaries by addition of many simple func- 

tions. This is typically achieved by a multi-stage transfor- 

mation, which may be represented graphically as a network 

(directed graph) of interconnected layers of “computing” 

nodes that integrate input signals from previous layers. In 

particular, the input features (attributes), Xi , are represented 

by individual nodes in the input layer and are subsequently 

transformed into a new set of features using several 

hyperplanes, Wk, corresponding to the hidden layer nodes 

(here for simplicity we assume that only one hidden layer is 

used). In other words, the inputs for the hidden layer nodes 

are linear combinations of the original N inputs Xi, with the 

coefficients of the linear combination, Wik, associated with 

connections between the input node i and hidden layer node 

k. The hidden layer nodes transform these signals further, 

using some functions hk(X)= (Wk
.
X+Wk0), where the scalar 

functions (x) are usually chosen to be logistic functions i.e. 

they have a sigmoidal shape with output bounded by 

maximum and minimum values. As a result, the outputs are 

in general non-linear functions of inputs (see Fig. 2). 

 

 

Fig. (2). An example of a multilayer perceptron with one hidden 

layer and a binary output layer for two-class classification 
problems.  

 There is a distant analogy between NNs and the activity 

of biological neurons that sum input signals weighted by the 

strength of synaptic connections and send output signals that 

are bounded by some maximum values. For that reason NNs’ 

nodes are called artificial neurons or perceptrons. A number 

of these nodes connected to the same input form a layer that 

transforms the input vector X to the vector of hidden layer 

activities H. NNs with sigmoidal-shape activation functions 

are called “multilayered perceptrons” (MLP). In general, 

neural networks are basically function-mapping systems for 

classification and regression that can learn how to associate 

numerical inputs with arbitrary outputs, changing their 

internal parameters. Many training algorithms have been 

devised to find parameters W that fit inputs X to the desired 

outputs [3-5]. 

 

Fig. (1). Kernel-based approaches for classification: a) data distribution in the feature space X where no separating hyperplane exists; b) data 

distribution in the extended feature space H with one of the possible separating hyperplanes shown; c) non-linear decision boundary in the 

original feature space.  
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Self-Organizing Maps 

 Another type of neural network has been inspired by the 

self-organizing developmental processes that lead to the 

topographical organization of auditory, visual and somato- 

sensory cortex [1-2]. The Self-Organized Mapping (SOM, 

also called the Kohonen network) is a grid with nodes that 

adjust their parameters to the incoming data. After the 

presentation of a vector X to node i, with parameters Wi, the 

vector that is most similar to X is selected as a “winner” 

representing node i. At the same time, parameters of grid 

nodes that are close to the winning node i are adjusted to 

make them more similar to Wi. As a result of many presen- 

tations of input data, parameters of a whole group of nodes 

become clustered around the peaks of the data density in the 

feature space. Therefore, SOM can be regarded as a cluster- 

ing method and may also be used to visualize the structure of 

highly dimensional data, as reflected in activations of the 

nodes in the grid.  

Similarity Based Approaches 

 Kernel-based approaches use implicitly the notion of 

similarity between objects, e.g., in order to find the decision 

boundary in the feature space. There is a whole group of 

methods that use similarity (or dissimilarity, i.e., distance) to 

known samples (prototypes) directly. For example, the k-

nearest neighbors (k-NN) method [4] compares new cases to 

all known reference cases (prototypes) and assigns each 

point to the class represented by the majority of its k nearest 

neighbors, providing flexible decision boundaries. Variants 

of this method use different similarity functions, e.g., weigh- 

ing contributions of the reference vectors, selecting and 

optimizing reference vectors, adjusting cost functions for 

different types of errors, and other parameters and proce- 

dures [18]. Similarity-based models may be used for classi- 

fication, regression, clustering and to address the problem of 

missing feature values. They do not require an explicit 

numerical representation; just the distance matrix D(X,Y) 

between objects X, Y. Therefore, they may be used in con- 

junction with any method for evaluation of similarity in 

chemical applications [19].  

Logical Rules 

 Similarity based methods may also be used to elucidate 

the structure of data. In particular, the nearest neighbor 

approach may be represented in terms of decision rules, e.g., 

if D(X,R1) < D(X,R2) then X has the same class as the 

prototype R1 (and the class of the prototype R2 otherwise). 

Alternatively, a threshold rule may be introduced: if the 

distance D(X,R1) < 1 then X has the same class as R1. In the 

latter case, the decision boundaries are localized around the 

prototype R1. This type of rules may have strong exploratory 

power, provided that the number of prototypes is limited and 

the distance function is rather simple. Thus, finding informa- 

tive rules may require selecting prototypes and features in 

order to simplify similarity measures [20]. Decision trees try 

to achieve the same result splitting the data using subsets or 

intervals of single feature values, and thus partitioning the 

feature space into hyperboxes. Each of these boxes has a 

class label, providing classical prepositional logic rules. 

Many other methods to extract logical rules from data are 

reviewed in [21-24]. If the problem has an inherent logical 

structure they frequently provide the best and the most 

intuitive results. Furthermore, symbolic information may be 

handled in a natural way in this framework by using proba- 

bilistic data-dependent similarity measures and based on 

them logical rules. However, mixing features of different 

types makes the interpretation difficult in some applications.  

Graphical Probabilistic Models 

 Many classification and regression models that transform 

features characterizing objects to class labels or numerical 

values ignore the fact that local interdependencies between 

some features may exist. For example, some features may be 

first used in order to generate intermediate descriptors, with 

the goal of improving the final classification. A family of 

probabilistic graphical models may be used to capture such 

dependencies in an explicit way, directly reflecting the input 

data structures [25-26]. In particular, Bayesian networks 

allow one to incorporate conditional probabilities, with net- 

work connections representing variables that determine the 

probability distribution of a variable associated with a node. 

Hidden Markov Models (HMMs) provide one example of a 

successful realization of probabilistic graphical models, with 

applications in sequence modeling and other areas of bioin- 

formatics [27-28] It should be noted, however, that (as with 

NNs) the choice of an appropriate topology of the graph and 

the optimization of parameters (e.g. transition and emission 

probabilities) may be computationally quite demanding for 

these models.  

Inductive Logic Programming  

 Structured data may be described in terms of a set of 

relationships that can be expressed using logical formulas. 

Inductive Logic Programming (ILP) is a subfield of AI tech- 

niques that use the background knowledge to derive logical 

rules from positive and negative facts stored typically in 

relational databases. The language of predicate logic allows 

ILP approach to incorporate complex concepts, e.g., repre- 

senting all atoms, bonds, and other properties of a molecule. 

ILP has a great potential, especially for symbolic data. In 

addition, ILP has interesting connections with graphical 

models and stochastic grammars and may be combined with 

statistical approaches [29-30]. Unfortunately, even though 

ILP can inductively learn (in principle) any function, the 

space of all logical theories is extremely large, causing 

problems with the efficiency of learning.  

Evolutionary Computing  

 Many drug design and discovery approaches involve sol- 

ving global optimization problems. For example, sampling 

conformational space in order to find the optimal docking 

structure for a protein substrate involves finding a global 

maximum of a scoring function. Several biologically-ins- 

pired computational intelligence techniques are used to solve 

such optimization problems. For example, widely used evo- 

lutionary methods are based on the concept of “evolving” 
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improved (according to a fitness or scoring function) solu- 

tions from less accurate ones. Thus, a population of “struc- 

tures” (or, at a deeper level, population of “genes” that 

control programs creating “structures”) is modified mimick- 

ing “mutation” and “recombination” processes observed in 

biological systems. Evolutionary operators that represent 

these processes may frequently be tailored to a specific 

problem at hand. A fitness function is defined to evaluate 

each solution and to select a pool of the fittest (best scoring) 

solutions, which is subsequently expanded by producing an 

“offspring” generation [1-2, 31].  

 Because of their intuitive appeal and ability to solve hard 

optimization problems, evolutionary computing techniques 

have become popular among pharmaceutical companies. For 

example, Axys Pharmaceuticals, Daylight Chemical Infor- 

mation Systems, Nanodesign and Tripos offer products and 

services that are based on evolutionary algorithms. They are 

used to fit ligands into protein binding sites, design useful 

ligands, explore molecular conformations and assess simi- 

larity indices for optimal matching. Evolutionary Molecular 

Design (EMD) developed by Nanodesign, identifies the 

desired activity of a receptor and searches for the appropriate 

ligand structures using genetic algorithms. 

Support Vector Regression  

 Regression problems occur very frequently in the field of 

drug design. In particular, many applications of quantitative 

structure-activity relationship (QSAR) approaches involve 

solving (multiple) regression problems. Let us assume that 

observed binding affinities (or other numerical measures of 

activity), 
obs

k
Y , are given for a number of ligands represen- 

ted as vectors, 
k

X , in some feature space. The problem is to 

find a mapping Y that approximates the observed affinities, 

such that the differences between observed, 
obs

k
Y , and 

predicted values, )Y(X k , are minimized. If the mapping 

takes the form of a linear combination of input features, 

0
W+XW=)Y(X kiik , and the sum of squared errors 

between the predicted and observed values is minimized, 

then one obtains a classical least square (LS) regression 

problem [5] that may be solved using many standard 

packages. 

 Support Vector Regression (SVR) approach offers an- 

other solution to the regression problem. SVR is closely 

related to the SVMs for classification, offering similar ad- 

vantages. In particular, SVR problems may be solved using 

mathematical programming techniques which guarantee to 

find optimal solutions in polynomial time. Thus, SVR 

approach is numerically very efficient and can be applied to 

large-scale problems. In addition, SVR offers flexibility of 

the model, especially in conjunction with kernel approaches. 

In particular, the so-called -insensitive SVR model assumes 

that the error measure M(r), where | |)Y(XY=r k

obs

k , is 

set to zero if r<  and increase linearly otherwise (see Fig. 3). 

This allows one to define the error function in a flexible way, 

reflecting the expected level of errors by varying error bars, 

, for different types of training examples that may differ in 

their characteristics [32].  

 

 

Fig. (3). Support Vector Regression model with -insensitive 

definition of the error measure M(r).  

REPRESENTATIONS AND AI MODELS FOR DRUG 

DESIGN  

 Among issues to be considered when applying AI tech- 

niques are: the complexity of the model, as roughly defined 

by the type of its discriminatory function (e.g., linear vs. 

non-linear) and the number of free parameters to be opti- 

mized; design of appropriate (representative and non-redun-

dant) training and control sets; and careful validation of the 

results. Examples of parameters to be optimized are the 

weights of connections between the nodes (“neurons”) in 

NNs, or the coefficients defining a separating hyperplane in 

case of SVM. Typically, free parameters are optimized with 

the goal of minimizing the misclassification error in the 

training. Other criteria may involve estimates of generaliza- 

tion capabilities in order to avoid over-fitting [3-5]. The im- 

portance of the choice of an appropriate model and represen- 

tation for the problem at hand are illustrated here using 

several well established problems and examples of applica- 

tions of AI methods in structural bioinformatics. Structural 

bioinformatics deals primarily with protein and other macro- 

molecular structure and involves, for example, protein struc- 

ture and function prediction. Therefore, prediction methods 

developed in structural bioinformatics are relevant for drug 

design and discovery and are being integrated with modeling 

and docking techniques.  

AI Techniques for Structural Bioinformatics 

 Finding representations capable of capturing the underly- 

ing principles and correlations is critical for the success of 

applications of any AI technique. In order to illustrate the 

above point, let us revisit some classical problems in 

structural bioinformatics, such as the prediction of secondary 

structure of an amino acid residue in a protein. In fact, se- 

condary structure prediction was one of the first successful 

applications of machine learning techniques in the field of 
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protein structure prediction. In their pioneering work, Rost 

and Sander [11] demonstrated the importance of multiple 

alignment representation and used a neural network to train a 

successful classifier capable of assigning each residue to one 

of the three classes (helix, beta strand or coil) with over 70% 

classification accuracy.  

 Subsequent developments pushed the accuracy of secon- 

dary structure prediction to about 80%, which proved to be 

sufficient for many important applications, e.g., to protein 

folding simulations and prediction of protein 3D structure 

[33]. At the same time, however, these studies showed 

clearly that the multiple alignment representation is far more 

important than the type of a classifier used. In particular, 

differences in accuracy between top performing methods, 

based on NNs, SVMs or HMMs, are not statistically signi- 

ficant (see, e.g. [33]). Since then many different pattern 

recognition and machine learning techniques have been 

devised to improve protein structure and function prediction. 

For example, AI-based protein annotation protocols are being 

used to provide proteome-wide prediction and annotation of 

membrane domains, solvent accessibility, protein-protein in- 

teractions, post-translational modifications and other attri- 

butes that can be used to facilitate drug design and discovery 

(see, e.g., [34-40]).  

 As a further illustration of some of the issues arising 

when applying machine learning and AI techniques, let us 

consider the problem of predicting which amino acid resi- 

dues can undergo phosphorylation due to the enzymatic 

activity of protein kinases. In fact, kinases are targeted by 

many rational drug design efforts since phosphorylation 

plays an important role in cancer and other diseases by 

modulating structure and function of specific proteins, e.g., 

by affecting their interactions with co-factors. The computa- 

tional prediction of phosphorylation and other post-trans- 

lational modification sites, both from the structure and the 

primary amino acid sequence is an active field of research 

[41-46]. Examples of methods for phosphorylation site 

prediction are NetPhos [44], a NN-based predictor, Scansite 

[46], a sequence-motif based predictor, and DISPHOS [42], 

which uses indicators of intrinsic disorder, in addition to 

sequence information. It should be also noted that some 

“negative” sites might include those which have not (yet) 

been reported as phosphorylated, suggesting the importance 

of the so-called “one-class” machine learning protocols 

(using positive examples only) for prediction of phosphory- 

lation [17]. Next, we specifically address some of the above 

considerations in the context of the drug design field. 

Representation and Model Selection for Drug Design 

 Learning from examples may be simple if relations bet- 

ween attributes and outcomes are almost linear. However, in 

drug design the number of parameters that may have influ- 

ence on biological activity is typically high and relations 

may be strongly non-linear. Moreover, with limited number 

of experimental data, the predictive ability of statistical 

learning systems may suffer from the “curse of dimensio- 

nality” [3-5]: if m points are sufficient to obtain a reasonable 

approximation in each dimension, then m
N
 points are re- 

quired in N dimensions. For example, if m=10 points are 

sufficient to approximate the relation for each parameter, 

then for just N=20 parameters the number of examples that 

are required is equal to 10
20

. With a small number of 

examples a very large number of N-parameter functions may 

perfectly fit the data. This problem is addressed in compu- 

tational learning theory, where methods of selection of appro-

priate data models are provided. The choice of appropriate 

model is also related to the learning algorithm used and the 

representation of data. For example, model selection is very 

important for QSAR approaches that rely on solving 

explicitly the underlying (multiple) regression [6]. 

 As mentioned before, information about chemical com- 

pounds and other structured objects may be better represen- 

ted in the form of labeled graphs, rather than vectors. One 

common approach to represent molecular structures is to use 

“fingerprints”, i.e. long bit-strings (100-1000) encoding yes/ 

no answers about the presence or absence of various fea- 

tures, including substructures within the molecular structure 

of a chemical compound [20]. For each atom of the chemical 

compound, a depth-first search for substructures may be 

used. Each bit set to one in the string represents the presence 

of particular substructure in the search tree, or several bits 

are assigned to substructures using hashing techniques.  

 “Molecular holograms” is a variant of fingerprinting tech- 

niques that uses integers to denote the number of fragments 

of a particular type. Some chemical databases include para- 

meters to generate useful fingerprint strings. The Tanimoto 

distance between pairs of bit strings generated by molecular 

fingerprinting is widely used to measure similarity in data- 

base searches. However, recent calculations on five bio 

-logical activity classes showed strong influence of the 

compound class-specific effects on the results [47]. Although 

molecular fingerprinting captures some structural similari- 

ties, based on it representations of chemical structures lack 

the information about the geometry and global properties of 

the molecule. On the other hand, coupling the universal en- 

coding with classification tasks should increase the efficacy 

in this context. For a review of other approaches to measure 

chemical similarity the reader is referred to [19]. Chemical 

information may also be encoded into kernel functions 

K(R,S) in SVMs [48]. These kernels effectively measure 

similarity between structures R and S. Several such kernels 

have been proposed recently, based on adjacency matrices, 

sequences of labels in subgraphs, the number of shared 

walks in subgraphs, and may be combined with molecular 

fingerprinting. Many variants of such kernels have been 

constructed and proved to be quite useful in screening for 

drugs that inhibit cancer cell growth [49].  

 Trees and directed acyclic graphs may also be used to 

represent chemical entities, often in conjunction with 

sequential processing, fragment after fragment, by neural 

nodes with recurrent connections [13-16, 48-52]. Recurrent 

connections are needed to preserve information about graph 

fragments that have already been processed. Each node s of 

the graph has some features X associated with it, and the 

function implemented by a neuron depends on W
.
X+h(X), 

where the extra term represents the sum of weighted outputs 
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from nodes that are connected to s. Such generalized re- 

current neurons are used to transform input graphs G into 

vectors X, and conventional NNs are used in this space for 

the classification. To use this approach for drug design all 

molecular structures must be decomposed, and become 

fragments of directed acyclic graphs (DAGs). The number of 

recurrent connections is equal to the maximum number of 

bonds for a given atom represented by the node. However, 

the decomposition process is not unique and depends on the 

starting point and orientation (for covalent bonds) chosen 

initially. 

 Inductive Logic Programming (ILP) is another approach 

that may be used to address some of the issues in model 

selection, especially in the context of symbolic attributes of 

molecular systems. ILP uses an expressive language and 

enables construction of new, interesting features [29]. How- 

ever, due to computational costs and other difficulties in 

learning, ILP-based models did not show clear advantage 

over QSAR in applications to mutagenicity, cancerogenicity, 

toxicology and biodegradability. Summary and bibliography 

of ILP applications to 3D protein structure, discovery of 

neuropeptides, chemical compound structure elucidation, 

diagnosis, mutagenesis, pharmacophore discovery for ACE 

inhibition, carcinogenicity, toxicology and other areas may 

be found at http://www-ai.ijs.si/~ilpnet2/apps/.  

AI AND QUANTITATIVE STRUCTURE-ACTIVITY 

RELATIONSHIPS 

QSAR Approach to Drug Design 

 In the past, drug identification was done largely through 

random experimentation and it was clearly not very effective 

[54]. Furthermore, the mechanism of action of a successful 

drug would typically remain obscured. It was in the 1960s 

that alternative approaches to drug design were beginning to 

be explored, with focus on Quantitative Structure-Activity 

Relationships (QSAR). The idea behind QSAR approaches is 

to use the known responses (activities) of simple compounds 

(structures) to predict the responses of complex compounds, 

made from different combinations of basic modules. Only 

compounds predicted to have desired properties would then 

be tested.  

 QSAR typically relies on electronic, hydrophobic and 

steric attributes of a molecule, as well as structural, quantum 

mechanical and other descriptors. A classical example is the 

Hammett’s study of the effect that different substituents have 

on the ionization of the carboxylic group in benzoic acid 

[55]. The effect on ionization was measured in terms of equi- 

librium (dissociation) constant for the reaction. Hammett 

discovered that equilibrium constants were higher for more 

electron-withdrawing substituents. This led to the formula-

tion of linear free energy relationships (LFERs) that motiva- 

ted subsequent development of many similar approaches for 

quantitatively describing structure-activity relationships[56].  

 Hydrophobicity and lipophilicity play a vital role in many 

biological processes, especially in receptor-ligand interac- 

tions. Therefore, QSAR methods often employ hydrophobi- 

city-related descriptors [57]. Another important set of QSAR 

descriptors are those related to steric effects, such as the 

molar refraction (MR) index, various parameters accounting 

for the shape of a compound [57] and descriptors indicating 

the presence or absence of certain structural features. 

Another QSAR approach that has gained a lot of momentum 

is the use of quantum-chemical descriptors, which theoreti-

cally can account (at least in principle) for other properties, 

both electronic and geometric [58]. The increase in the num- 

ber of parameters required the use of AI approaches to obtain 

correlations between the molecular and other attributes and 

observed activities. A typical QSAR study, would involve 

Hammett’s constants, partition coefficients, molar refractivi- 

ty and many other descriptors. Statistical and machine learn- 

ing techniques, such as multiple linear regression (MLR), 

principal component analysis (PCA) or partial least squares 

(PLS) [59] would then be used to solve the problem. It 

should be mentioned that MLR is still one of the most widely 

used AI techniques in QSAR studies [57-59].  

 Oftentimes, the structure of the target protein is not known. 

In such cases, the potential drugs may be analyzed using 

experimental techniques and common structural features 

called pharmacophores identified [61]. Such pharmacophore 

(or ligand)-based methods include the 3D-QSAR techniques, 

for instance [62]. Examples of popular 3D-QSAR methods 

are the comparative molecular field analysis (CoMFA) [63], 

the comparative molecular similarity indices analysis 

(CoMSIA) [64] and GRID [65]. For a more comprehensive 

list of representative methods and programs within this 

category, the reader is referred to [66]. The basic idea behind 

CoMFA is that the biological activity of molecules is related 

to its electrostatic and steric interactions. The molecules 

(ligands) that are being studied are aligned structurally on a 

3D grid. Using a probe atom, electrostatic and steric fields 

are determined at every point in the grid. CoMSIA, on the 

other hand, also takes into account hydrophobic parameters 

[66]. Such obtained descriptors are then analyzed using 

statistical methods, such as partial least squares (PLS), to 

obtain correlations between activity and the fields leading to 

a 3D-QSAR model of the ligand [58][66-67]. GRID is 

similar to CoMFA and may also be used to determine the 

interaction energies between the probe and the ligand. In 

addition, GRID can also be used to calculate hydrogen 

bonding energies [66].  

 3D-QSAR methods have been employed to design anti-

HIV-1 drugs [68], matrix metalloproteinase inhibitors [69], 

therapeutic agents for Alzheimer’s and Parkinson’s diseases 

[70] and anti-tuberculosis agents [71], to name a few. Fur- 

thermore, 3D-QSAR has been applied along with molecular 

modeling and molecular dynamics in the design of pteridine-

derived therapeutic agents [72], indolomorphinan derivatives 

[73] and in vaccinology studies [74]. A detailed review on 

the applications of CoMFA and CoMSIA has been presented 

by Bordas et al. [67]. In 4D-QSAR, the fourth dimension 

represents an ensemble of conformations, orientations, or 

protonation states for each molecule [75]. This reduces the 

bias that may come from the ligand alignment, but requires 

identification of the most likely bioactive conformation and 

orientation (or protonation state), frequently obtained using 
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evolutionary algorithms [31]. The 5-D QSAR carries this 

one step further, allowing for changes in the receptor binding 

pocket and ligand topology [76]. Adding solvation effects 

leads to 6D-QSAR, which allowed, in combination with 

flexible docking, for relatively accurate identification of the 

endocrine-disrupting potential associated with a drug candi- 

date [77].  

AI Methods in QSAR 

 Ligands may be represented by multiple structural and 

other descriptors. Thus, selection of key descriptors is an 

important step in any QSAR study. Another important step is 

the identification of patterns (predictive fingerprints or 

combinations of features) that correlate with activity. Fur- 

thermore, compounds exhibiting promising properties may 

be compared with other candidates in order to identify other 

potential drugs that share critical features. Therefore, it is 

evident that the AI approaches to feature-selection, pattern-

recognition, classification and clustering can be applied to 

the problems posed above [78-80].  

 In fact, various clustering methods (e.g., hierarchical di- 

visive clustering, hierarchical agglomerative clustering, non-

hierarchical clustering and multi-domain clustering) have 

been applied to such problems [78]. For example, clustering 

receptor proteins, based on their structural similarity, has 

been shown to improve docking studies and drug design 

[80]. Applications of clustering techniques and genetic 

algorithms towards predicting molecular interactions have 

been reviewed in [62]. The role of feature selection in QSAR 

has also been reviewed recently [79]. Furthermore, another 

method called consensus k-nearest neighbor (kNN) QSAR 

has been developed towards predicting estrogenic activity 

[81]. The concept behind this approach is that the activity 

can be estimated by averaging activities over k-nearest 

neighbors. Multiple models, each making use of different 

sets of descriptors, are then used to make the consensus 

prediction [81].  

 Many other studies have made use of machine learning 

techniques to address similar problems. In particular, NNs 

have been widely used to solve many problems in drug 

design. A comprehensive review of the applications of NNs 

in variety of QSAR problems, has been presented by 

Winkler [82]. The review discusses how NNs can be applied 

to the prediction of physicochemical, toxicological and 

pharmacokinetic parameters. In another study, the NN 

methods were compared with statistical approaches [83]. 

Self-organized maps (SOM) have been used for studying 

molecular diversity and employed in drug design [84]. In 

particular, the SOM-based method of comparative molecular 

surface analysis (CoMSA) has been presented in detail [84].  

 In recent years, SVMs have become relatively widely 

used. For example, Zhao et al. made use of SVMs for pre- 

dicting toxicity and found that this method yielded improved 

performance compared to multiple linear regression and 

radial basis function NNs [85]. A new method called least 

squares support vector machine (LSSVM) was employed to 

screen calcium channel antagonists in a QSAR study [86]. 

SVMs were also used (providing accuracies competitive 

with that of other QSAR approaches) to predict oral absorp- 

tion in humans involving molecular structure descriptors 

[87] and to calculate the activity of certain enzyme inhibitors 

[88], as well as many other investigations of similar type.  

 Furthermore, evolutionary QSAR techniques that employ 

genetic algorithms are being developed for docking and 

related studies. One example is the Multi-objective genetic 

QSAR (MoQSAR) that has been used to study neuronal 

nicotinic acetylcholine ion channel receptors (nAChRs) [70]. 

Other examples involve the use of genetic algorithms for 

prediction of binding affinities of receptor-ligands [89] and 

in classification-based SAR [91]. Another technique similar 

to evolutionary methods and inspired by biological pheno- 

mena is Particle Swarm Optimization (PSO) [92]. This tech- 

nique has been employed in many QSAR studies [93-95] and 

for biomarker selection [96]. Bayesian networks have also 

been used to solve different problems in the context of drug 

design, for examples see [97] and [98]. 

AI in Predictive Toxicology 

 Identification of potential toxic effects of candidate drugs 

using bioassays is a costly and time consuming procedure 

that often requires animal testing. Attrition rates due to the 

drug toxicity have already reached over 20%, and are 

quickly rising [99]. The problem of estimating the toxicity, 

mutagenicity and carcinogenicity of potential and existing 

drugs has been approached from three main perspectives: 

physical simulations using molecular modeling techniques, 

expert systems capable of reasoning about the domain, and 

data mining systems based on AI techniques. Reviews of 

these approaches are presented in several recent books [100-

102].  

 AI methods learn from data, and the quality of results is 

determined by availability of databases for training. The 

Distributed Structure-Searchable Toxicity (DSSTox) Data- 

base Network created by the U.S. Environmental Protection 

Agency's Computational Toxicology Program (http://www. 

epa.gov/nheerl/dsstox/) created a public data foundation for 

predictive toxicology research. Another database initiative, 

Vitic toxicity database, supported by a number of pharma- 

ceutical and chemical companies, has been initiated by the 

Health and Environmental Sciences Institute (HESI), as part 

of the International Life Sciences Institute (ILSI), and is 

being managed now by the Lhasa Limited (http://www. 

lhasalimited.org). These databases store various in-house 

toxicology data that may be re-analyzed using different 

techniques.  

 The availability of such databases and well annotated, 

large data sets makes it possible to develop and evaluate 

novel approaches. In particular, a number of challenges in 

data analysis have been proposed. Conclusions from predic- 

tive toxicology challenges [100] and recent work in this area 

[103-104] are very encouraging. Accuracy of computational 

approaches in some cases is in the range of 80-95%, com- 

parable to in vivo assessments.  
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Docking and AI Methods 

 The goal of docking methods is to determine the mode 

and strength of binding between a ligand and a receptor 

molecule (typically protein). Traditional docking studies that 

attempt to determine the binding between a few potential 

ligands and receptors have been extended in recent years to 

high-throughput docking (HTD), in which large-scale in 

silico screening of potential drugs for known receptors is 

employed [105] A variety of methods have been used to 

solve docking problems, involving improvements in terms of 

both: search algorithms and scoring functions.  

 The search for the optimal binding conformation in dock- 

ing methods leads, in general, to a global optimization 

problem. Many optimization algorithms are being used to 

find good solutions to this hard problem, including gradient-

based minimization, Molecular Dynamics protocols, Monte 

Carlo approaches, genetic algorithms and evolutionary pro- 

gramming techniques, fragment based methods, point com- 

plementary methods, tabu and systematic searches [105]. 

Scoring functions are equally important part of the docking 

protocol and can range from simple force fields used in MD 

to specifically optimized potentials [105]. For an excellent 

review of docking methods and programs the reader is 

referred to Taylor et al. [105]. There are many programs for 

docking, as listed in [106], for instance. Examples of 

applications of docking protocols to drug design in diabetes 

and cancer and also in QSAR have been discussed in [106]. 

Another recent review discusses in detail latest improve- 

ments in docking methods [107].  

 In analogy to pharmocophore methods, there are many 

steps in which AI methods come into play in the context of 

docking, including feature selection and extraction, classifi-

cation and regression for the design of scoring functions and 

the identification of putative binding sites [107]. Several 

recent examples include applications of probabilistic Naïve 

Bayes methods to improve scoring functions for docking 

[108], applications of NNs to virtual screening in combi- 

nation with docking methods [109], and combination of kNN 

and docking methods to achieve improved results in QSAR 

[110]. In general, one may observe a growing tendency to 

combine different techniques and use consensus-based 

methods, such as the lateral validation [111]. In addition, AI 

methods are being used to address the problems of absorp- 

tion, distribution, metabolism elimination and toxicology 

(ADMET) in pharmacokinetics [112]. Many drugs have 

failed to reach the market because of their ADMET proper- 

ties. Therefore, prediction methods are being used in order to 

identify these properties early in the drug design pipeline/ 

process [113]. 

DISCUSSION 

 Artificial Intelligence (AI) is broadly defined here as a 

field that deals with the design and application of algorithms 

for analysis of, learning from and interpretation of data. AI 

integrates many branches of statistical and machine learning, 

pattern recognition, logics and probability theory as well as 

biologically motivated approaches, such as neural networks, 

evolutionary computing or fuzzy modeling, collectively 

described as “computational intelligence” [1,2]. In the last 

decade, the barriers between these fields started to soften, 

with algorithms that use inspiration from many sources being 

applied to various problems, including drug design and 

discovery which is the focus of this review.  

 Drug design poses many challenging problems in terms 

of selection of relevant information, data modeling, classi- 

fication, prediction, and optimization [3-5] that stimulate the 

development and applications of tailored AI approaches. In 

fact, many AI methods reviewed here have only been for- 

mulated in recent years. Various challenges, such as the 

predictive toxicology challenge and the feature selection 

challenge, show on difficult, real life problems advantages of 

new approaches over the established statistical and pattern 

recognition methods [114,115]. Some of these new 

approaches have been summarized here. 

 The overall impact of computational methods on drug 

design, testing and discovery will certainly grow even 

further in the future. Already now many results show that 

computational methods are indispensable in drug design and 

pre-clinical evaluations. Efforts to combine predictive, data-

driven techniques with molecular modeling and simulations 

are likely to bring further progress in this field. Use of 

ontologies and analysis of symbolic, as well as textual data 

to build complex models of biological organisms, is another 

growing trend. For example, the EcoCyc model (http:// 

ecocyc.org/) of the Escherichia coli bacterium includes the 

entire genome, transcriptional regulation, transporters, and 

metabolic pathways. Other organisms are being annotated in 

a similar, integrated manner (see, e.g., http://biocyc.org/), 

with the potential to result in new approaches and enhanced 

tools for drug design.  

 Among challenges in this field, one should consider the 

danger of hampering both basic and applied research by the 

growing tendency to patent specific findings, algorithmic 

solutions and even general ideas pertaining to drug discovery 

and design. For example, Axys Pharmaceuticals has a patent 

on a NN-based approach to designing new compounds and 

modeling their activity. Furthermore, Health Discovery 

Corporation owns over 80 patents for application of SVMs 

(which is also a patented technique [116]) and other AI 

algorithms to biomedical problems, such as the discovery of 

biomarkers [117]. Even techniques such as the principal 

component analysis, known for about 100 years, have been 

patented in applications to text analysis [118]. These unfor- 

tunate attempts to patent widely used and developed mostly 

in academic settings methods, as well as their obvious 

applications, may slow down the rate of scientific discovery 

in the field of drug design. 

 On the other hand, recent surge of interest in life sciences 

accelerates the development of new approaches. AI and 

related methods play already an essential role in mining and 

analysis of vast amounts of data being generated as a result 

of recent advances in genomics. Examples of new experi- 

mental techniques and applications generating massive am- 

ounts of data for analysis include: high throughput sequenc- 
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ing and genotyping for large-scale studies of genomic varia- 

tions, and genome-wide studies of gene expression profiles 

with microarrays. Such studies hold the promise of eluci- 

dating further the role of genetic variation in human disease, 

identifying novel drug targets and enabling personalized 

interventions with specifically optimized drugs and treat- 

ments. In this context, AI methods are being used to find 

correlations between patterns of genetic variations and 

expression profiles with clinical and other phenotypes and to 

identify predictive fingerprints of disease states, progression 

and results of therapeutic interventions. Such applications 

pose both challenges and opportunities for AI methods, 

stimulating their further development. 

REFERENCES 

[1] Engelbrecht AP. Computational intelligence: An introduction. New 
York: J. Wiley; 2003. 

[2] Konar A. Computational intelligence; principles, techniques and 
applications. Berlin: Springer 2005. 

[3] Duda RO, Hart PE, Stork DG. Pattern classification, New York: J. 
Wiley, 2nd ed 2001. 

[4] Webb A. Statistical pattern recognition. New York: J. Wiley 2002. 
[5] Hastie T, Tibshirani R, Friedman J. The elements of statistical 

learning. Springer 2001. 
[6] Devillers J. Eds. Neural Networks in QSAR and Drug Design an 

essential reference source for those on the frontiers of this field. 
Academic Press 1996. 

[7] Mjolsness E, DeCoste D. Machine learning for science: State of the 
art and future prospects. Science 2001; 293: 2051-5 

[8] Burge C, Karlin S. Finding the genes in genomic DNA. Curr Opin 
in Struct Biol 1998; 8: 346-54.  

[9] Krogh A, Mian S, Haussler D. A hidden Markov model that finds 
genes in E. coli DNA. Nucl Acid Res 1994; 22(22): 4768-78. 

[10] Solovyev VV, Salamov AA, Lawrence CB. Predicting internal 
exons by oligonucleotide composition and discriminant analysis of 

spliceable open reading frames. Nucl Acid Res 1994; 22: 5156-63. 
[11] Rost B, Sander C. Prediction of protein secondary structure at 

better than 70% accuracy. J Mol Biol 1993; 232: 584-99. 
[12] Kitchen DB, Stahura FL, Bajorath J. Computational techniques for 

diversity analysis and compound classification. Mini Rev Med 
Chem 2004; 4(10): 1029-39. 

[13] Frasconi P, Gori M, Sperduti, A. A general framework for adaptive 
processing of data structures. IEEE Trans Neural Netw 1998; 9(5): 

768-85. 
[14] Sperduti A, Starita A. Supervised neural networks for classification 

of structures. IEEE Trans Neural Netw 1997; 8(3): 714-35. 
[15] Sperduti A. In: Zurada J, Cloete I Eds, A tutorial on 

neurocomputing of structures. Knowledge-based neurocomputing. 
MIT Press 2000; 117-54. 

[16] Gärtner T, Lloyd JW, Flach PA. Kernels and distances for 
structured data. Mach Learn 2004; 57(3): 205-32 

[17] Schölkopf B, Smola AJ. Learning with kernels. MIT Press 2002. 
[18] Duch W. Similarity based methods: a general framework for 

classification, approximation and association. Control Cybern 
2000; 29(4): 937-68. 

[19] Nikolova N, Jaworska J. Approaches to measure chemical 
similarity - A review. QSAR Comb Sci 2003; 22: 1006-26. 

[20] Flower DR. On the properties of bit string-based measures of 
chemical similarity. J Chem Inf Comput Sci 1998; 38: 378-86. 

[21] Duch W, Blachnik M, Fuzzy rule-based systems derived from 
similarity to prototypes. Lect Notes Comput Sci 2004; 3316: 912-7. 

[22] Duch W, Gr bczewski K, Heterogeneous adaptive systems. IEEE 
World Congress on Computational Intelligence, Honolulu, May 

2002; 524-9. 
[23] Duch W, Adamczak R, Gr bczewski K. A new methodology of 

extraction, optimization and application of crisp and fuzzy logical 
rules. IEEE Trans Neural Netw 2001; 12: 277-306.  

[24] Duch W, Setiono R, Zurada JM. Computational intelligence 
methods for understanding of data. Proc IEEE 2004; 92(5): 771- 

805. 

[25] Jordan M, Sejnowski TJ Eds. Graphical models. Foundations of 

neural computation. MIT Press, 2001. 
[26] Jensen FV, Jensen FB. Bayesian networks and decision graphs. 

Springer Verlag, 2001. 
[27] Baldi P, Brunak S. Bioinformatics: The machine learning approach 

(Adaptive computation and machine learning series), MIT Press, 
2nd ed, 2001.  

[28] Yanover C, Weiss Y. Approximate inference and protein-folding. 
Adv NIPS 2002; 15: 1457-64. 

[29] Srinivasan A, King RD. Feature construction with inductive logic 
programming: A study of quantitative predictions of biological 

activity aided by structural attributes. Data Min Knowl Discov 
1999; 3(1): 37-57. 

[30] Page D, Srinivasan A. ILP: A short look back and a longer look 
forward. J Mach Learn Res 2003; 1: 1-16. 

[31] Devillers J Ed. Genetic algorithms in molecular modeling. 
Academic Press: New York, 1996. 

[32] Wagner M, Adamczak R, Porollo A, Meller J. Linear regression 
models for solvent accessibility prediction in proteins. J Comput 

Biol 2005; 12(3): 355-69. 
[33] Przybylski D, Rost B. Alignments grow, secondary structure 

prediction improves. Proteins 2002; 47: 197-205. 
[34] Krogh A, Larsson B, von Heijne G, Sonnhammer E. Predicting 

transmembrane protein topology with a hidden markov model: 
Applications to complete genomes. J Mol Biol 2001; 305(3): 567-

80. 
[35] Fariselli P, Pazos F, Valencia A, Casadio R. Prediction of protein-

protein interaction sites in heterocomplexes with neural networks. 
Eur J Biochem 2002; 269: 1356-61.  

[36] Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S. 
Prediction of post-translational glycosylation and phosphorylation 

of proteins from the amino acid sequence. Proteomics 2004; 4: 
1633-49.  

[37] Bigelow HR, Petrey DS, Liu J, Przybylski, D, Rost, B. Predicting 
transmembrane beta-barrels in proteomes. Nucleic Acids Res 2004; 

32: 2566-77. 
[38] Adamczak R, Porollo A, Meller J. Accurate prediction of solvent 

accessibility using neural networks based regression. Proteins 
2004; 56: 753-67.  

[39] Cao B, Porollo A, Adamczak R, Jarrell M, Meller J. Enhanced 
recognition of protein transmembrane domains with prediction-

based structural profiles. Bioinformatics 2006; 22 (3): 303-9.  
[40] Brunak S, Hansen JE, Lund O, Tolstrup N, Gooley AA, Williams 

KL. NetOglyc: prediction of mucin type O-glycosylation sites 
based on sequence context and surface accessibility. Glycoconj J 

1998; 15: 115-30. 
[41] Berry EA, Dalby AR, Yang ZR. Reduced bio basis function neural 

network for identification of protein phosphorylation sites: 
comparison with pattern recognition algorithms. Comput Biol 

Chem 2004; 28: 75-85. 
[42] Dunker AK, Iakoucheva LM, Radivojac P, Brown CJ, O'Connor 

TR, Sikes JG, et al. The importance of intrinsic disorder for protein 
phosphorylation. Nucleic Acids Res 2004; 32: 1037-49. 

[43] Yao X, Zhou FF, Xue Y, Chen GL. GPS: a novel group-based 
phosphorylation predicting and scoring method. Biochem Biophys 

Res Commun 2004; 325: 1443-8. 
[44] Blom N, Gammeltoft S, Brunak S. Sequence and structure-based 

prediction of eukaryotic protein phosphorylation sites. J Mol Biol 
1999; 294: 1351-62. 

[45] Yaffe MB, Leparc GG, Lai J, Obata T, Volinia S, Cantley LC. A 
motif-based profile scanning approach for genome-wide prediction 

of signaling pathways. Nat Biotechnol 2001; 19: 348-53. 
[46] Yaffe MB, Obenauer JC, Cantley LC. Scansite 2.0: Proteome-wide 

prediction of cell signaling interactions using short sequence 
motifs. Nucleic Acids Res 2003; 31: 3635-41.  

[47] Godden JW, Stahura FL, Bajorath J. Anatomy of fingerprint search 
calculations on structurally diverse sets of active compounds. J 

Chem Inform Model 2005; 45(6): 1812-9. 
[48] Hammer B, Saunders C, Sperduti A Eds. Special issue on neural 

networks and kernel methods for structured domains. Neural Netw 
2005; 18(8). 

[49] Bianucci AM, Micheli A, Sperduti A, Starita A. In: Sztandera L, 
Cartwright H, Eds. A novel approach to QSPR/QSAR based on 

neural networks for structures, in soft computing approaches in 
chemistry. Studies in fuzziness and soft computing, Springer-

Verlag 2003; 120: 265-96.  



Artificial Intelligence Approaches for Rational Drug Design Current Pharmaceutical Design, 2007, Vol. 13, No. 00    11 

[50] Bianucci AM, Micheli A, Sperduti A, Starita A. Analysis of the 

internal representations developed by neural networks for 
structures applied to QSAR studies of benzodiazepines. J Chem 

Inform Comput Sci 2001; 41(1): 202-18. 
[51] Ceroni A, Frasconi P, Pollastri G. Learning protein secondary 

structure from sequential and relational data. Neural Netw 2005; 
18(8): 1029-39. 

[52] Vullo, A. and Frasconi, P. Prediction of protein coarse contact 
maps. J Bioinform Comput Biol 2003; 1(2): 411-31. 

[53] Ralaivolaa L, Swamidassa SJ, Saigoa H, Baldi P, Graph kernels for 
chemical informatics. Neural Netw 2005; 18 (8): 1093-110. 

[54] Reddy MR, Parrill AL. Overview of rational drug design. rational 
drug design, ACS Symposium Series 719, American Chemical 

Society, Washington, DC 1999; 1-11. 
[55] Hammett LP. Reaction rates and indicator acidities. Chem. Rev 

1935; 17(1): 67-79. 
[56] Hammett LP. Physical organic chemistry: Reaction rates, 

equilibria, and mechanisms. McGraw-Hill Book Co., New York, 
2nd ed. 1970. 

[57] Selassie CD. History of quantitative structure-activity relationships. 
Burger’s medicinal chemistry and drug discovery, 6th ed 2003; 1: 

1-48. 
[58] Karelson M, Lobanov VS, Katritzky AR. Quantum-chemical 

descriptors in QSAR/QSPR studies. Chem Rev 1996; 96(3): 1027-
44. 

[59] Leonard JT, Roy K. QSAR by LFER model of HIV protease 
inhibitor mannitol derivatives using FA-MLR, PCRA, and PLS 

techniques. Bioorg Med Chem 2005; 14: 1039-46. 
[60] Melagraki G, Afantitis A, Sarimveis H, Igglessi-Markopoulou O, 

Supuran CT. QSAR study on para-substituted aromatic 
sulfonamides as carbonic anhydrase II inhibitors using topological 

information indices. Bioorg Med Chem 2006; 14(4): 1108-14. 
[61] Guner OF. History and evolution of the pharmacophore concept in 

computer-aided drug design. Curr Top Med Chem 2002; 2(12): 
1321-32. 

[62] Dror O, Shulman-Peleg A, Nussinov R, Wolfson HJ. Predicting 
molecular interactions in silico: I. A guide to pharmacophore 

identification and its applications to drug design. Curr Med Chem 
2004; 11(1): 71-90. 

[63] Cramer RD, DePriest SA, Patterson DE, Hecht P. In: Kubinyi H 
Ed, The developing practice of comparative molecular field 

analysis, in 3D QSAR in drug design: theory, methods and 
applications. ESCOM, Netherlands 1993; 443-85. 

[64] Klebe G, Abraham U, Mietzner T. Molecular similarity indices in a 
comparative analysis (CoMSIA) of drug molecules to correlate and 

predict their biological activity. J Med Chem 1994; 37: 4130-46. 
[65] Goodford PJ. A computational procedure for determining 

energetically favorable binding sites on biologically important 
macromolecules. J Am Chem Soc 1985; 28: 849-57. 

[66] Akamatsu M. Curr state and perspectives of 3D-QSAR. Curr Top 
Med Chem 2002; 2(12): 1381-94. 

[67] Bordas B, Komives T, Lopata A. Ligand-based computer-aided 
pesticide design. A review of applications of the CoMFA and 

CoMSIA methodologies. Pest Manag Sci 2003; 59(4): 393-400. 
[68] Debnath AK. Application of 3D-QSAR techniques in anti-HIV-1 

drug design  an overview. Curr Pharm Des 2005; 11(24): 3091-
110. 

[69] Kontogiorgis CA, Papaioannou P, Hadjipavlou-Litina DJ. Matrix 
metalloproteinase inhibitors: a review on pharmacophore mapping 

and (Q)SARs results. Curr Med Chem 2005; 12(3): 339-55. 
[70] Nicolotti O, Altomare C, Pellegrini-Calace M, Carotti A. Neuronal 

nicotinic acetylcholine receptor agonists: pharmacophores, 
evolutionary QSAR and 3D-QSAR models. Curr Top Med Chem 

2004; 4(3): 335-60. 
[71] Nayyar A, Malde A, Jain R, Coutinho E. 3D-QSAR study of ring 

substituted quinoline class of anti-tuberculosis agents. Bioorg Med 
Chem 2006; 14(3): 847-56. 

[72] Matter H, Kotsonis P. Biology and chemistry of the inhibition of 
nitric oxide synthases by pteridine-derivatives as therapeutic 

agents. Med Res Rev 2004; 24(5): 662-84. 
[73] Li W, Tang Y, Zheng YL, Qiu ZB. Molecular modeling and 3D-

QSAR studies of indolomorphinan derivatives as kappa opioid 
antagonists. Bioorg Med Chem 2006; 14(3): 601-10. 

[74] Flower DR, McSparron H, Blythe MJ, Zygouri C, Taylor D, Guan 
P, et al. Computational vaccinology: quantitative approaches. 

Novartis Found Symp 2003; 254: 102-20; discussion 120-5, 216-

22, 250-2. 
[75] Vedani A, Briem H, Dobler M, Dollinger H, McMasters DR. 

Multiple conformation and protonation-state representation in 4D-
QSAR: The neurokinin-1 receptor system. J Med Chem 2000; 43: 

4416-27. 
[76] Vedani A, Dobler M. 5D-QSAR: The key for simulating induced 

fit? J Med Chem 2002; 45: 2139-49. 
[77] Vedani A, Dobler M, Lill MA. Combining protein modeling and 

6D-QSAR - Simulating the binding of structurally diverse ligands 
to the estrogen receptor. J Med Chem 2005; 48: 3700-3. 

[78] Kitchen DB, Stahura FL, Bajorath J. Computational techniques for 
diversity analysis and compound classification. Mini Rev Med 

Chem 2004; 4(10): 1029-39.  
[79] Walters WP, Goldman BB. Feature selection in quantitative 

structure-activity relationships. Curr Opin Drug Discov Devel 
2005; 8(3): 329-33. 

[80] Koch MA, Waldmann H. Protein structure similarity clustering and 
natural product structure as guiding principles in drug discovery. 

Drug Discov Today 2005; 10(7): 471-83. 
[81] Asikainen AH, Ruuskanen J, Tuppurainen KA. Performance of 

(consensus) kNN QSAR for predicting estrogenic activity in a large 
diverse set of organic compounds. SAR QSAR Environ Res 2004; 

15(1): 19-32. 
[82] Winkler DA. Neural networks as robust tools in drug lead 

discovery and development. Mol Biotechnol 2004; 27(2): 139-68. 
[83] Douali L, Villemin D, Cherqaoui D. Comparative QSAR based on 

neural networks for the anti-HIV activity of HEPT derivatives. 
Curr Pharm Des 2003; 9(22): 1817-26.  

[84] Polanski J, Gieleciak R. Comparative molecular surface analysis: a 
novel tool for drug design and molecular diversity studies. Mol 

Divers 2003; 7(1): 45-59. 
[85] Zhao CY, Zhang HX, Zhang XY, Liu MC, Hu ZD, Fan BT. 

Application of support vector machine (SVM) for prediction toxic 
activity of different data sets. Toxicology 2006; 217(2-3): 105-19. 

[86] Yao X, Liu H, Zhang R, Liu M, Hu Z, Panaye A, et al. QSAR and 
classification study of 1,4-dihydropyridine calcium channel 

antagonists based on least squares support vector machines. Mol 
Pharm 2005; 2(5): 348-56. 

[87] Liu HX, Hu RJ, Zhang RS, Yao XJ, Liu MC, Hu ZD, et al. The 
prediction of human oral absorption for diffusion rate-limited drugs 

based on heuristic method and support vector machine. J Comput 
Aided Mol Des 2005; 19(1): 33-46. 

[88] Zernov VV, Balakin KV, Ivaschenko AA, Savchuk NP, Pletnev IV. 
Drug discovery using support vector machines. The case studies of 

drug-likeness, agrochemical-likeness, and enzyme inhibition 
predictions. J Chem Inf Comput Sci 2003; 43(6): 2048-56. 

[89] Deng W, Breneman C, Embrechts MJ. Predicting protein-ligand 
binding affinities using novel geometrical descriptors and machine-

learning methods. J Chem Inf Comput Sci 2004; 44(2): 699-703. 
[90] Sutherland JJ, O'Brien LA, Weaver DF. Spline-fitting with a 

genetic algorithm: a method for developing classification structure-
activity relationships. J Chem Inf Comput Sci 2003; 43(6): 1906-

15. 
[91] Lu Q, Wu H, Yu R, Shen G. The lifetime of CFC substitutes 

studied by a network trained with chaotic mapping modified 
genetic algorithm and DFT calculations. SAR QSAR Environ Res 

2004; 15(4): 279-92. 
[92] Kennedy J, Eberhart RC. Particle swarm optimization. Proceedings 

of IEEE International Conference on Neural Networks, Piscataway, 
NJ 1995; 1942-8. 

[93] Lin L, Lin WQ, Jiang JH, Shen GL, Yu RQ. QSAR analysis of 
substituted bis[(acridine-4-carboxamide)propyl]methylamines using 

optimized block-wise variable combination by particle swarm 
optimization for partial least squares modeling. Eur J Pharm Sci 

2005; 25(2-3): 245-54. 
[94] Shen Q, Jiang JH, Jiao CX, Huan SY, Shen GL, Yu RQ. Optimized 

partition of minimum spanning tree for piecewise modeling by 
particle swarm algorithm. QSAR studies of antagonism of 

angiotensin II antagonists. J Chem Inf Comput Sci 2004; 44(6): 
2027-31. 

[95] Shen Q, Jiang JH, Jiao CX, Lin WQ, Shen GL, Yu RQ. Hybridized 
particle swarm algorithm for adaptive structure training of 

multilayer feed-forward neural network: QSAR studies of 
bioactivity of organic compounds. J Comput Chem 2004; 25(14): 

1726-35. 



12    Current Pharmaceutical Design, 2007, Vol. 13, No. 00 Duch et al. 

[96] Ressom HW, Varghese RS, Abdel-Hamid M, Eissa SA, Saha D, 

Goldman L, et al. Analysis of mass spectral serum profiles for 
biomarker selection. Bioinformatics 2005; 21(21): 4039-45. 

[97] Caballero J, Fernandez M. Linear and nonlinear modeling of 
antifungal activity of some heterocyclic ring derivatives using 

multiple linear regression and Bayesian-regularized neural 
networks. J Mol Model 2006; 12(2): 168-81. 

[98] Wang YH, Li Y, Yang SL, Yang L. An in silico approach for 
screening flavonoids as P-glycoprotein inhibitors based on a 

Bayesian-regularized neural network. J Comput Aided Mol Des 
2005; 19(3): 137-47. 

[99] Kola I, Landis J. Can pharmaceutical industry reduce attrition 
rates? Nat Rev Drug Discov 2004; 3: 711-5.  

[100] Helma C Ed. Predictive toxicology. Marcel Dekker, New York 
2005. 

[101] Cronin M, Livingstone D Eds. Predicting Chemical Toxicity and 
Fate. CRC Press, Boca Raton, Florida 2004. 

[102] Benigni R Ed. Quantitative structure-activity relationship (QSAR) 
models of mutagens and carcinogens. CRC Press, Boca Raton, 

Florida 2003. 
[103] Matthews E, Kruhlak N, Benz R, Contrera J. Assessment of the 

health effects of chemicals in humans: I. QSAR estimation of the 
maximum recommended therapeutic dose (MRTD) and no effect 

level (NOEL) of organic chemicals based on clinical trial data. 
Curr Drug Discov Technol 2004; 1: 61-76. 

[104] Cheng A, Dixon S. In silico models for the prediction of dose-
dependent human hepatotoxicity. J Comput Aided Mol Des 2004; 

17: 811-23. 
[105] Taylor RD, Jewsbury PJ, Essex JW. A review of protein-small 

molecule docking methods. J Comput Aided Mol Des 2002; 16(3): 
151-66. 

[106] Glen RC, Allen SC. Ligand-protein docking: cancer Res at the 
interface between biology and chemistry. Curr Med Chem 2003; 

10(9): 763-7. 
[107] Schneidman-Duhovny D, Nussinov R, Wolfson HJ. Predicting 

molecular interactions in silico: II. Protein-protein and protein-drug 
docking. Curr Med Chem 2004; 11(1): 91-107. 

[108] Klon AE, Glick M, Thoma M, Acklin P, Davies JW. Finding more 

needles in the haystack: A simple and efficient method for 
improving high-throughput docking results. J Med Chem 2004; 

47(11): 2743-9. 
[109] Sangma C, Chuakheaw D, Jongkon N, Saenbandit K, Nunrium P, 

Uthayopas P, et al. Virtual screening for anti-HIV-1 RT and anti-
HIV-1 PR inhibitors from the Thai medicinal plants database: a 

combined docking with neural networks approach. Comb Chem 
High Throughput Screen 2005; 8(5): 417-29. 

[110] Medina-Franco JL, Golbraikh A, Oloff S, Castillo R, Tropsha A. 
Quantitative structure-activity relationship analysis of pyridinone 

HIV-1 reverse transcriptase inhibitors using the k-nearest neighbor 
method and QSAR-based database mining. J Comput Aided Mol 

Des 2005; 19(4): 229-42. 
[111] Doytchinova IA, Guan P, Flower DR. Quantitative structure-

activity relationships and the prediction of MHC supermotifs. 
Methods 2004; 34(4): 444-53. 

[112] Yamashita F, Hashida M. In silico approaches for predicting 
ADME properties of drugs. Drug Metab Pharmacokinet 2004; 

19(5): 327-38. 
[113] Davis AM, Riley RJ. Predictive ADMET studies, the challenges 

and the opportunities. Curr Opin Chem Biol 2004; 8(4): 378-86. 
[114] Toivonen H, Srinivasan A, King RD, Kramer S, Helma C. 

Statistical evaluation of the predictive toxicology challenge 2000-
2001, Bioinformatics 2003; 19(10): 1183-93.  

[115] Guyon I, Gunn S, Nikravesh M, Zadeh L Eds, Feature extraction: 
foundations and applications. NIPS 2003 challenge on feature 

extraction, Springer Verlag 2005. 
[116] Boser B, Guyon I, Vapnik V. Pattern recognition system using 

support vectors. US Patent 5,649,068, 1997.  
[117] Health Discovery Corporation, http: //www.healthdiscoverycorp. 

com 
[118] Deerwester; SC, Dumais ST, Furnas GW, Harshman RA, Landauer 

TK, et al. Computer information retrieval using latent semantic 
structure. U. S. Patent No. 4,839,853, 1989. 

 

 


