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Abstract: Computational systems are still far behind biological systems in object recognition, reasoning or analysis
of language structures. What kind of data structures can be learned from data with existing machine learning
algorithms? Neurocognitive inspirations show why existing learning systems cannot compete with biological
ones. They point the way to more efficient algorithms, generating simplest reliable models of data and capable
of object recognition with undetermined number of features. The goal of learning in neural networks and other
systems is to transform data into linearly separable data clusters. This is sufficient for relatively simple problems,
but makes learning almost impossible if the logic inherent in data is complex. New non-separable targets for
learning are introduced to simplify learning and to characterize non-separable problems into classes of growing
complexity. Neurobiological and formal justification for new learning targets are given and the case of Boolean
functions analyzed.
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1 Introduction

Learning is the key to general intelligence, a chance
to bootstrap the existing computational machinery to
a new level of human-like competence. Creating ar-
tificial systems that could learn in the same way as
people may be considered as the most important chal-
lenge facing science. Many fields of computer science
and engineering are concerned with learning from
data: computational intelligence (CI), soft comput-
ing, neural networks, pattern recognition, evolution-
ary computing, and statistics, to name a few [1]. Ma-
chine learning has been a subfield of artificial intel-
ligence (AI), initially concerned with learning rules
from symbolic data, but now covering all other meth-
ods [2]. Despite great progress in development of
machine learning algorithms problems that may be
solved using existing methods are still relatively sim-
ple. In this paper a neurocognitive perspective is
adopted, that is practical inspirations will be drawn
from current understanding how brains cope with dif-
ficult problems that require learning.

The key concept that is used in learning is lin-
ear separability [3, 4]. The simplest goal is to learn
to distinguish objects O that belong to some specific
category from all other objects O′, given a sufficient
number of labeled examples. Objects are usually char-
acterized by features that describe them and may be

represent by feature vectors X = X(O) or points in
some feature spaces, while categories of objects form
clusters in these spaces. Objects from category Ck are
linearly separable from all others if a hyperplane W
exists such that all points X representing objects from
category Ck are on one side of W ·X−θ (where the θ
parameter defines position where the hyperplane cuts
the W line), and all points representing objects from
different categories Ci, i �= k are on the other side of
this hyperplane. Problems that are linearly separable
(that is each class may be linearly separated from all
others) are quite easy to solve, and there are numerous
methods to do it [3, 4]. Problems that are “logically
separable” may be separated by hyperplanes that are
perpendicular to the axes and thus discriminate along
a single feature value [2] (that is, W has only one
non-zero coefficient), instead of using linear combina-
tion of features. Non-separable problems are changed
to separable by one of the three types of transforma-
tions: 1) topological deformation of probability den-
sity distributions; 2) disconnecting data from at least
one category into two or more sub-categories that may
be separated individually; 3) a combination of the two.
For many problems continuous topological transfor-
mation of data is sufficient to “flatten” non-linear de-
cision boundaries and make them linearly separable;
this is frequently achieved at the expense of compre-



hensibility by projections to high dimensional spaces
(as in the kernel learning, popular in Support Vector
Machines [5]), or by non-linear transformation using
combinations of basis set functions. Some problems
that are non-separable can be solved by creating sub-
categories that may be separated, if the number of
cases in each sub-category is sufficiently large to en-
sure reliability.

This is not the most general approach, as ob-
jects may have internal structure that cannot be eas-
ily represented by vectors, or may be sufficiently di-
verse making a description using a common set of
features quite difficult. A fruitful approach to such
problems is based on similarity measures S(O,O′)
that may be defined in quite general way, for exam-
ple by operational procedures, or even by subjective
judgments. Brains try to minimize energy; in ob-
ject recognition only those features are evaluated that
are needed to discriminate between a set of poten-
tial prototypes for different categories. Attention is
paid to different aspects of objects, building estima-
tion of (dis)similarity between those aspects of mem-
orized objects that are most helpful for discrimination.
This means that brains are actively searching for new
features that will reduce neural activation of all those
memorized prototypes that represent categories of ob-
jects of a different type. Selection of features and ob-
ject recognition are thus dynamically coupled, in con-
trast to pattern recognition systems. Similarities are
sufficient to categorize objects without the need for
numerical representation in feature spaces [6]-[8].

Learning methods search for one particular view
on data, and as a result current methods are restricted
to problems that are either linearly separable directly
in the input space, or in some topologically trans-
formed space, or are relatively easy non-separable
problems (like the XOR problem [3, 4]) where cre-
ating a few sub-categories is sufficient, or are solved
using special architectures and methods designed es-
pecially for a given type of problems. For exam-
ple, many specialized algorithms for learning parity
problem, a difficult but rather special Boolean func-
tion (given a string of n bits determine if the num-
ber of bits equal to 1 is even or odd), have been cre-
ated in recent years [9]–[18]. These methods are suit-
able only for the parity problem and will not work for
other problems where complex logical functions are
responsible for decisions. Dealing with difficult learn-
ing problems similar to parity all off-the-shelf algo-
rithms (for example those collected in popular Weka
[19] or Ghostminer [20] data mining packages) in the
leave-one-out or crossvalidation tests for more than 3-
bit parity problems give results at the baserate (50%)
level. Knowing beforehand that the data represents
parity problem allows for setting appropriate trans-

formations (for example, a multi-layer perceptron, or
MLP architecture [3, 4]) to solve it, but already for
a modest n it will be impossible to guess how to
choose appropriate transformations. In fact a vanish-
ingly small percentage of Boolean functions may be
learned by current systems! Learning Boolean func-
tions similar to parity may indeed be a great test for
methods that try to evolve neural architecture to solve
a given problem, but so far no such evolving systems
are in sight.

Biological neural networks are able to solve quite
complex learning problems inherent in optimization
of behavior, for example understanding of linguistic
patterns. A sentence with the same meaning may be
constructed in many different ways, but recognizing
equivalent meaning in different sentences is a non-
trivial task (see Recognizing Textual Entailment Chal-
lenge [21]. Therefore finding general algorithms ca-
pable of solving problems of similar complexity as
the parity problem is an important challenge and is
needed to open the doors for a new generation of
ambitious machine learning applications. However,
existing machine learning methods are not capable
of finding good solutions for problems with inherent
complex logic. Currently learning problems are di-
vided into quite easy linearly separable problems, and
more difficult linearly non-separable types, without
any further analysis of how hard the learning of non-
separable problems may be. It would be very useful
to break the notion of non-linearly separable problems
into well defined classes of problems with increas-
ing difficulty. The two goals – characterization of the
complexity of non-separable problems, and learning
of complex functions – may be reached through in-
troduction of new non-separable targets for learning.
Success of learning depends on the type of transfor-
mations that create internal representations or image
of data. Neural networks that have clear neurobio-
logical motivation create sparse, simple representa-
tion in their hidden layers [22]. Popular MLP neu-
ral networks are much simpler, they do not use in-
ternal inhibition and their only bias towards simple
solutions is based on regularization [23], smoothing
the mapping implemented by the network. This is not
an appropriate bias for problems with complex logi-
cal structure, therefore poor generalization should be
expected. Analysis of other useful biases and realistic
learning targets has never been attempted.

In the next section neurocognitive inspirations
that help to solve the problem of learning difficult
functions are outlined. The third section describes
formal motivations, introducing learning targets and
training algorithms. It is important to distinguish be-
tween capabilities of models that can provide simplest
description of data and the training procedures. The



fourth section is focused on learning of Boolean func-
tions, while the last section contains conclusions.

2 Biological motivations

Multi-layer perceptron (MLP) is the most successful
neural network model. It is based on a perceptron
model, or a neuron that performs soft threshold logic
operation using weighted sum of input signals [24].
This is a rough but useful abstraction of activity of
a single biological neuron. Logical threshold neu-
rons, for various noisy input signal distributions con-
centrated around some average values, estimate con-
ditional probabilities that change in a sigmoidal way,
depending on the strength of the signal [25]. Percep-
trons may thus be seen as logical devices operating on
noisy data.

Hebbian learning leads to weight sharing, con-
straining parameters of neurons within layers. For ex-
ample, when the network performs the same feature
detection in different parts of an image shared weights
are very useful [26]. Mutual inhibition of neuron ac-
tivity within each layer is very important for achiev-
ing sparse internal representations, creating deep net-
works and solving complex problems. Inhibition may
be introduced either by adding inhibitory neurons or
by a simple k-winners-take-all (kWTA) mechanism
[22]. What happens if inhibition is added to a layer
of perceptrons trained using Hebbian principles? Two
perceptrons working on the same problem but inhibit-
ing each other share the same input signals xi, and
the same training targets yj . Hebbian learning updates
their weights by Δwij ∼ xiyj , making these weights
roughly identical. In effect inputs X will be projected
on the same line y = W ·X, with the two perceptrons
implementing σ(y − b1), σ(y − b2) functions. Inhibi-
tion should switch off one perceptron when the other
is active, leading to (1, 0) or (0, 1) output patterns,
but changing biases alone is not sufficient to achieve
it. For linearly separable data σ(y − b1), σ(−y + b2)
may give the desired outputs, but such solution cannot
be obtained using Hebbian learning, requiring weights
of opposite signs W,−W for the two perceptrons.
Incidentally such two perceptrons also solve the sim-
plest non-separable problem (XOR) if their outputs
are added and W = [1, 1] projection is used.

Perhaps single perceptrons are not the best ab-
straction for processing units of networks that learn
using biological principles. Not all neurons project
their activity to the next layer. They rather form
many strongly connected internal microcircuits found
in cortical columns, resonating with different frequen-
cies when an incoming signal X(t) appears. This
essentially projects the spatio-temporal signals into

high-dimensional spaces [27]. Neurons in the next
layer observing the activity of a column containing
many microcircuits learns to react to signals in an
interval around particular frequency in a supervised
way based on Hebbian principles. It is sufficient to
combine outputs from selected microcircuits corre-
lated with the category that is being learned. In case of
signals microcircuits may be treated as resonators spe-
cializing in discovering interesting signal structures,
such as Gabor filters in vision.

A parallel array of one-bit threshold quantizers
with sums of inputs is a crude approximation to such
model. It achieves not only optimal signal detection,
but even for suprathreshold input signals it improves
its performance when additional noise is added, a
phenomenon called “suprathreshold stochastic reso-
nance” [28]. In case of abstract reasoning combina-
tion of disjoint projections on the W · X line is more
useful than simple quantizers. Shared weights in net-
work layers that analyze large images [26] may ignore
inhibition at longer distances, but locally only one fea-
ture is present, therefore adjacent nodes should com-
pete with each other.

What is the simplest abstraction for processing el-
ements of networks that share weights and compete
with each other? A single perceptron defining the di-
rection of y = W · X projection, followed by a com-
bination of pairs of neurons that capture the activity
concentrated around particular values of y, in win-
dows defined by σ(y−b1)−σ(−y +b2), b2 > b1 (see
Fig. 1). Such elements restrict the non-local activity
of perceptrons from half-spaces to smaller, but still
unbound, areas of the input space. Partially localized
neurons avoid pitfalls of localized networks [29]. As
shown in [30] some problems require at least O(n2)
parameters using networks with localized functions
and only O(n) parameters when non-local functions
are used, and vice versa. Partially localized neurons
provide elements to build simplest models for data
with complex logic. A combination of two neurons
serves as an elementary microcircuit that “resonates”
only when a specific view of the data (W ·X) falls in
a specific “window”.

Many microcircuits may become active in the cor-
tex when a new input is presented, but competition
and local inhibition will finally leave only a small
number of the most active circuits. This may corre-
spond to several views on the data, in each case dis-
covering a particular angle and projecting a large clus-
ter of similar (from this particular angle) cases. A sim-
ple threshold neuron may then read out the level of
activation of specific circuits, estimating to how many
large clusters from particular category the new item
belongs to. Similar idea is used in the liquid state ma-
chines [27] where many random oscillators are pos-
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Figure 1: Basic processing element replacing several
neurons that share weights and have inhibitory con-
nections.

tulated, projecting the signal into highly dimensional
space, and a threshold neuron is used to read out the
activity of the column and discriminate between dif-
ferent categories. In this paper only initialization is
random but weights are learned and the number of
units does not have to be large, in fact simplest but
reliable models of data are encouraged. These inspira-
tions are used below to construct practical algorithms.

3 Formal motivations
Adaptive systems, such as feedforward neural net-
works, SVMs, similarity-based methods and other
classifiers, use composition of vector mappings

Y (X) = M (m)(M (m−1)...(M (2)(M (1)(X))...))

to assign a label Y to the vector X. To be completely
general direct dependence of mappings on inputs and
previous transformations should be considered, for
example M(2)(M (1)(X),X), but for simplicity this
will be omitted, considering only strictly layered map-
pings. These mappings may include standardization,
principal component analysis, kernel projections, gen-
eral basis function expansions or perceptron transfor-
mations. X(i) = M (i)(X(i−1)) is the result of map-
ping after i transformations steps. For dichotomic
problems considered below Y = X(m) = ±1.

If the last transformation Y = M(m)(X(m−1))
is based on a squashed linear transforma-
tion, for example on perceptron mapping
Y = tanh(

∑
i WiX

(m−1)
i ), then the values of

Y are projections of X on the [−1,+1] interval, and
a perfect separation of classes means that for some
threshold Y0 all vectors from the Y+ class are mapped
to one side and from the Y− class to the other side
of the interval. This means that the hyperplane W
defined in the X(m−1) space divides samples from the
two classes, and W · X(m−1) is simply a projection

on the line W perpendicular to this hyperplane,
squashed to the [−1,+1] interval by the hyperbolic
tangent or similar function.

The role of the final transformation in the classi-
fication process is to compress information, find in-
teresting views on the data from the point of view
of certain goals, drastically reducing dimensionality.
The learning targets used in most CI methods for clas-
sification are aimed at linear separability. The final
linear transformation provides a hyperplane that di-
vides the data, transformed by a series of mappings
Tk(..T2(T1(X)...)), into two halfspaces. Linear trans-
formation is the simplest and quite natural if previ-
ous transformations increased the input dimensional-
ity and flattened decision borders, making the data lin-
early separable. However, for difficult problems, such
as learning of Boolean functions, this will not work.

Activity of hidden layer neurons visualized for all
training data shows [31, 32] that MLP and RBF net-
works clusterize input data correctly even in complex
cases when the network achieves only baserate accu-
racy and is not able to solve the problem. The fail-
ure may be traced to the use of simple perceptrons for
the output. This observation led to a definition of the
simplest target for good internal representations [33],
which is projection on segments of a line. Looking at
the image of the training data in the space defined by
the activity of the hidden layer neurons [31, 32] one
may notice that a perfect solution is frequently found
in the hidden space – all data falls into separate clus-
ters – but the clusters are non-separable, therefore the
perceptron output layer is unable to provide useful re-
sults.

In two dimensions parity is known as the XOR
problem, the prototypic non-separable problem. Most
MLP training algorithms have already some difficul-
ties to solve it, requiring multiple starts for conver-
gence. The most widely used RBF network with
Gaussian hidden units cannot solve it unless special
tricks are used. This is an example of a situation in
which solutions based on local functions require large
number of nodes and examples to learn, while non-
local solutions may be expressed in a compact way
and need only a few examples (this has been already
noted in [30], see also [38]). Consider the noisy ver-
sion of the XOR problem, replacing each input vector
with a small Gaussian cloud (Fig. 2). RBF network
with two Gaussian nodes with the same standard de-
viation σ and linear output provides the following two
transformations:

X → X(1) = (e−|X−μ1|/2σ, e−|X−μ2|/2σ) (1)

X(1) → Y = X(2) = W ·X(1) (2)
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Figure 2: Noisy XOR problem; original data and cen-
ters (big dots) of two Gaussian functions after training
using maximum likelihood principle is shown.

The solution obtained using maximum likelihood
approach [4] places one basis function in the middle
of left-corner cluster, and the other close to the center,
as shown in Fig. 2. If the target Y = X(2) = ±1 is
used the linear network output provides a hyperplane
(a line in two dimensions) that tries to stay at a dis-
tance one from all data points. If a separate linear
output for each class is used lines representing both
outputs are parallel, with identical weights but shifted
on two units, as shown in Fig. 3. Projecting the image
data X(1) on these lines gives one interval with the
data from first class surrounded by two intervals with
the data from the second class, separating the data into
3 intervals. Although the standard RBF network with
two neurons fails to learn the problem, achieving 50%
accuracy (base rate), it is clear that all new data will
be properly assigned to one of the 3 clusters formed in
the hidden space. In crossvalidation test 100% correct
answers are obtained using a rule that checks if the
case lies in an interval that covers projection of the
large middle cluster, or is outside. Thus the networks
“knows, but is not able to tell”, because it cannot pro-
vide linear separability. This is a common situation
showing that linear separability is not the best target
for learning.

Instead of thinking about the decision hyperplane
it is better to focus on interesting projections or more
general transformations of data. For linearly separa-
ble data W · X projection creates two distinct clus-
ters. For non-separable data an easier target is to ob-
tain several well separated clusters. In the Error Cor-
recting Output Codes (ECOC) approach [35] learning
targets that are easier to distinguish are defined, set-
ting a number of binary targets that define a proto-
type “class signature” vectors. This helps to redefine
the target for learning, with the final non-linear trans-
formation comparing distances from actual output to
class prototypes. Thus instead of aiming at linear sep-
aration using the final transformation based on hyper-
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Figure 3: Noisy XOR problem mapped to the hidden
space of neural activities shows perfect clusterization;
lines represent linear weights of the two network out-
put units.

plane the goal of learning may be redefined by assum-
ing another well-defined final transformation. Map-
ping into separate intervals “disarms” the remaining
non-linearity in data, and greatly simplifies the task
of all previous transformations. Periodic or quasi-
periodic separability in one dimension is worth con-
sidering may help to avoid high number of intervals.
Mapping on the chessboard targets, or on localized
Voronoi cells defined by prototypes localized on a reg-
ular multidimensional grid, may handle directly quite
difficult non-linearities. As long as clusters are rather
large and separated such mapping will achieve high
level of generalization and may create a fairly simple
model of the data.

Thus two important ideas come from neurocog-
nitive inspirations. First, many views on the same
object should be considered, generating interesting
transformations Ti(X) that involve non-local projec-
tions W · X. Such projections are filtered through
localized functions Ti(X) = Gi(Wi · X) discov-
ering useful features specific for a given category.
There is no need for fixed number of features, as they
are dynamically generated until there is sufficient in-
formation to make decision. The interplay between
local and global analysis has been missing in neu-
ral networks and other types of machine learning al-
gorithms. Transformations Ti(X) indicate to which
large one-dimensional clusters the input case belongs
to and should be at least partially discriminative (ex-
clude some categories). Even a single large projected
cluster is sufficient for categorization if there is no
strong competition. The winner-takes-most mecha-
nism of biological networks should be approximated
to make final decision based on memberships in pro-
jected clusters [22]. Second, changing the goal of
learning from linear separability to other forms of sep-
arability should make the learning process much eas-
ier and should help to discover simplest models of



data. It is perhaps surprising that so far neural net-
works took only the simplest inspirations from biol-
ogy. In the following section the case of learning com-
plex Boolean functions is analyzed.

4 Parity problems, Boolean func-
tions and k-separability

Determining parity of a string of bits without count-
ing modulo 2 is quite hard. General parity problems
can be solved in many ways. The simplest solution
[9] is to look at the sign of the

∏n
i=1(xi − ti), with

ti ∈ (0, 1), that is to use a single product neuron with-
out any hidden neurons. This solution is very spe-
cific to the parity problem and it cannot be general-
ized to other Boolean functions. Many such solutions
that work only for parity problem have been devised
[10]-[18], but the challenge is to provide more gen-
eral solutions that work also for problems of similar
or higher complexity.

For n-dimensional parity problem a single linear
unit W · X with all weights Wi = 1 projects data
achieving their separation into n+1 groups, with 0, 1,
2 .. n bits equal to 1. The Wi = 1 weight vector rep-
resents diagonal connecting vertices [0, 0, . . . 0] and
[1, 1, . . . 1], and W · X is the projection on this line.
Obviously using a single node with Y = cos(ωW·X)
gives for ω = π correct answer to all parity problems,
+1 for even and −1 for odd number of bits. This is
the simplest general solution of the parity problem,
using a single node network that gives the network
ability to count, and adds modulo 2 counting through
the periodic function. This simple solution has been
missed by previous authors [9]-[18]. The importance
of selection of appropriate transfer functions in neural
networks is quite evident here (for taxonomy of trans-
fer functions that may be used in neural networks see
[30, 34]). In the context of Boolean functions periodic
projection is useful only for parity and its negation ob-
tained by symmetric transformations of the hypercube
with vertices labeled according to their parity. Projec-
tions of other Boolean functions may not be periodic
but certainly will show several clusters of vectors from
alternating classes.

Linear separability as the target of learning is not
so easy to achieve and in fact is not necessary. The last
transformation Y = M(m)(X(m−1)) may be designed
in any way that will make learning easier. If a projec-
tion separating two clusters on a line Y = W · X
exist the data is linearly separable. If it does not exist
a projection forming 3 or more intervals containing
clusters from a single class should be sought. How-
ever, a projection that alternates from one class to the
other, or has a large number of small clusters will not

generalize well.
Definition: dataset {Xi} of vectors that belong

to two classes is called k-separable if a direction W
exist such that all points Yi = W · Xi are clustered
in k intervals, each containing vectors from a single
class.

Linearly separable data is called 2-separable,
while the XOR problem belongs to the 3-separable
category, with projection on the W = (1, 1) line from
even, odd, and again even class. This is the simplest
extension of the separability concept, replacing the fi-
nal mapping M(m)(·) by logical rule:
IF (Y ∈ [Y0, Y1)] THEN even, ELSE odd,
and thus making the non-linearity rather harmless.
More sophisticated mappings from one, two or higher
number of dimensions may be devised as long as
transformation M(m)(·) is easy to set up, providing
easier goals for the learning process. The Error Cor-
recting Output Codes (ECOC) [35] tries also to define
easier learning targets, but it is still based on linear
separability, setting a number of binary targets that
define a prototype “class signature” vectors, and com-
paring the distance from the actual output to these
class prototypes. The change of the learning target
advocated here is much more powerful.

A dataset that is k-separable may also be (k+m)-
separable. The separability index for the data should
be taken as the lowest k, and learning algorithms that
generate solutions with small number of large and
well separated clusters should be preferred. If the
data is separable into k clusters with very small num-
ber of elements, or if the margin separating the inter-
vals between two such clusters is very small, (k + 1)-
separability that leads to larger minimum size of small
clusters and their margins may be preferred. Solving a
k-separable problem requires finding the direction W
and then setting appropriate k − 1 thresholds defining
intervals on the projection line.

Conjecture: the complexity of k-separable learn-
ing should be much easier then 2-separable learning.

This is rather obvious; transforming the data into
k-separability form should be much easier because ad-
ditional transformations are needed to achieve linear
separability, and the number of adaptive parameters
may grow significantly. For example, the number of
hyperplanes that an MLP network needs for the n-
parity problem is of the order of n (see comparison
of solutions in [9]), giving altogether O(n2) param-
eters, while treating it as a k-separable problem re-
quires only n + k parameters. In general, cases when
transformation of decision borders in the original in-
put space X based on continuous deformations may
flatten them linear separability will be sufficient, but
if clusters are disconnected, as in the case of learn-
ing most Boolean functions, transformations that map



data into k-separable form should be easier, providing
simpler model of the data.

An interesting question is how many Boolean
functions belong to the k-separable category. For n-
variables there are 22n

possible functions; only the
bounds for the number of separable Boolean func-
tions are known: the number is between 2n

2−O(n) and
2n2

[39], a vanishing fraction of all functions. Un-
fortunately such estimations are not yet known for the
k-separable case. For linearly separable data projec-
tions on W and −W generate symmetrical solutions
(Y+, Y−) and (Y−, Y+); in case of k-separability ad-
ditional symmetries and permutations are possible.

It is instructive to analyze in detail the case of
learning Boolean functions with n = 2 to n = 4
bits with the simplest model based on linear projec-
tions. Several interesting questions should be investi-
gated: how many k-separable cases for a given direc-
tion W are obtained; which direction gives the largest
separation between projected clusters; how many k-
separable cases for each direction W exist; how many
different directions are needed to find all these cases.
This has recently been done in [33], therefore only a
brief summary is provided below.

The Boolean functions f(x1, x2, . . . xn) ∈
{−1,+1} are defined on the 2n vertices of n-
dimensional hypercube. Numbering these vertices
from 0 to 2n − 1, they are easily identified converting
decimal numbers to bits, for example vertex 3 corre-
sponds to b-bit string 00..011. There are 22

n
possi-

ble Boolean functions, each corresponding to a differ-
ent distribution of ±1 values on hypercube vertices.
There are always two trivial cases corresponding to
functions that are always true and always false, that is
1-separable functions. Each Boolean function may be
identified by a number from 0 to 2n −1, or a bit string
from 00...0 to 11...1, where the value 0 stands for false
or −1, and 1 for true or +1. For example, function
number 9 has 2n bits 00...1001, and is true only on
vertex number 0 and 3. For n = 5 there are already
232 = 4294967296 functions and the percent of lin-
early separable functions is close to zero. It is rather
difficult to estimate the exact number of k-separable
functions already for four bits (Table 1); the number
of linearly separable functions is less than 3% while
the number of functions that are 5 and more separa-
ble is about 60%. This is bad news showing that even
for relatively simple problems learning of most logical
functions will be quite hard.

Linear projection combined with k-separability
already gives quite powerful learning system, but al-
most all computational intelligence algorithms may
implement in some form k-separability as a target for
learning. It is recommended to search first for linearly

Table 1: Total number of Boolean functions that are
k-separable, for n = 4 only estimations.
n No. func. 2-sep 3-sep 4-sep higher
2 16 12 4 0 0
3 256 102 126 26 0
4 65535 1880 ∼ 6836 ∼ 19110 ∼ 38360

separable solutions, and then to increase k searching
for the simplest solution, selecting the best model us-
ing crossvalidation or measures taking into account
the size and separation between projected clusters.
Distribution of y(X;W) values allows for calculation
of P (y|Y±) class distributions and posterior proba-
bilities using Bayesian rules. Estimation of probabil-
ity distributions in one dimension is easy and may be
done using Parzen-windows kernel methods.

The main difficulty in formulating a learning pro-
cedure is the fact that targets are not fully specified;
instead of a single target for Y+ class two or more la-
bels Y+1, Y+2 may be needed. This may actually be
of some advantage, allowing for a better interpreta-
tion of the results. It is clearly visible in the case of
parity problems: each group differs not only by the
parity but also by different number of 1’s, providing
an additional label. Learning should therefore com-
bine unsupervised and supervised components. Net-
work with a single neuron and n + 2 parameters and
is able to separate a single class bordered by vectors
from other classes. For n-dimensional problem that
is 3-separable standard MLP architecture requires at
least two hidden neurons connected to an output neu-
ron with 2(n+1)+3 parameters. In k-separability ap-
proach one neuron may solve all problems for higher
k, simply adding more intervals. The problem may
be solved by a fully neural architecture that provides
“windows” for intervals (as in Fig. 1), for n-bit parity
problems using only n neurons (one linear perceptron
and n − 1 neurons with frozen weights but adaptive
biases for intervals), while in the standard MLP ap-
proach O(n2) parameters are needed [9]. Several new
learning algorithms based on these ideas will be pub-
lished soon (Grochowski and Duch, in preparation).

5 Discussion and open problems

Neurocognitive informatics draws inspirations from
neurobiological processes responsible for learning.
So far only a few general inspirations have been used
in computational intelligence: threshold neurons that
perform parallel distributed processing, organized in
networks. Even with our limited understanding of
the brain many more inspirations may be drawn and



used in practical learning and object recognition al-
gorithms. Here several such inspirations were identi-
fied, and recently some interesting algorithms based
on neurolinguistic inspirations were introduced [36].

Neurons in association cortex form strongly con-
nected microcuircuits found in minicolumns, resonat-
ing with different frequencies when an incoming sig-
nal X(t) appears. A perceptron neuron observing the
activity of a minicolumn containing many microcir-
cuits learns to react to signals in an interval around
particular frequency. Combination of outputs from se-
lected perceptron neurons is used to discover a cate-
gory. These outputs may come from resonators of dif-
ferent frequencies, implementing an analogue to the
combination of disjoint projections on the W ·X line.
The simplest abstraction of this process is given by
a combination of two neurons that creates a particu-
lar filter for certain aspects of perception. The brain
does not use fixed number of features, as most pattern
recognition algorithms do, but starting from a small
number of features actively searches for new, most
discriminative features that neural filters may provide.
Objects are recognized using different features that
characterize them. Thus feature selection and con-
struction is not separable from the actual process of
categorization and learning. The final goal of learn-
ing is to categorize, but the intermediate representa-
tion is also important. Finding interesting views on
the data, or constructing interesting information filters
is the most important thing. Instead of using networks
with fixed number of inputs systems that actively sam-
ple data, trying to “see it” through their filters, are
needed. Once they have enough information to cat-
egorize data structures they have done their job. This
opens the way to new algorithms that may learn from
objects that have diverse structures, or many missing
values.

Another idea that follows from neural inspiration
is the change in the learning targets. It is much easier
to achieve non-linear separability in the hidden lay-
ers of neural networks then linear separability. If the
structure of non-linear mapping that creates image of
data is known it may be then analyzed and understood.
The most important part for good generalization in
learning systems is to create large clusters, as small
clusters are not reliable and will be washed out by neu-
ral noise. The simplest concept abstracted from that is
k-separability, a powerful concept that is very useful
for computational learning theory, breaking the space
of non-separable functions into subclasses that may
be separated into more than two parts. A radically
new approach to learning has been proposed, simpli-
fying the process by changing the goal of learning to
easier target and handling the remaining nonlinearities
with well defined structure. Even the simplest linear

realization of k-separability with interval nonlineari-
ties is quite powerful, allowing for efficient learning
of difficult Boolean functions. So far there are no sys-
tems that can routinely handle such cases, despite a lot
of effort devoted to special Boolean problems, such
as the parity problem [9]-[18]. One should not sup-
pose that humans are able to learn all Boolean func-
tions from samples. In fact even simple categoriza-
tion problems with more than 3 dimensions are rather
difficult to learn if complex logic is behind decisions
[37]. Thus in this area a superhuman learning abilities
should be possible, opening many new applications.

In this paper new solutions (based on linear pro-
jections and neural architectures) have been proposed
not only to the parity problem, but also to learning
all kinds of data with inherent complex logic. We are
building a new generation of data mining tools based
on these and other principles [?]. Many specific al-
gorithms are going to be based on the neurocognitive
informatics approach.
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