
K-Separability

Włodzisław Duch

Department of Informatics, Nicolaus Copernicus University, Grudzia̧dzka 5, Toruń, Poland,
and School of Computer Engineering, Nanyang Technological University, Singapore

Google: Duch

Abstract. Neural networks use their hidden layers to transform input data into
linearly separable data clusters, with a linear or a perceptron type output layer
making the final projection on the line perpendicular to the discriminating hy-
perplane. For complex data with multimodal distributions this transformation is
difficult to learn. Projection on k ≥ 2 line segments is the simplest extension
of linear separability, defining much easier goal for the learning process. The
difficulty of learning non-linear data distributions is shifted to separation of line
intervals, making the main part of the transformation much simpler. For classifi-
cation of difficult Boolean problems, such as the parity problem, linear projection
combined with k-separability is sufficient.

1 Introduction

Many popular classifiers, including MLPs, RBFs, SVMs, decision trees [1], nearest
neighbor and other similarity based methods [2,3], require special approaches (architec-
tures, kernels) or cannot handle at all complex problems, such as those exemplified by
the parity problem: given a training set of binary strings {b1, b2...bn} determine if the
number of bits equal to 1 is odd or even. In principle universal approximators, such as
neural networks, are capable of handling such problems, and there is a whole literature
on architectures and neural activation functions that enable the solution of parity prob-
lem. However, solutions proposed so far are manually designed to solve this particular
problem, and thus will not work well for slightly different problems of similar kind.

Dealing with difficult learning problems like parity off-the-shelf algorithms (for ex-
ample those collected in Weka [4] or Ghostminer [5] packages) in the leave-one-out
or crossvalidation tests for more than 3-bit problems give results at the baserate (50%)
level. Knowing beforehand that the data represents parity problem allows for setting
an appropriate MLP architecture to solve it [6,7,8,9,10,11,12,13,14], but for large n
in real situation it will be very difficult to guess how to choose an appropriate model.
Learning Boolean functions similar to parity may indeed be a great test for methods that
try to evolve neural architecture to solve a given problem, but so far no such systems
are in sight. The reason for this failure is rather simple: neural and other classifiers try
to achieve linear separability, and non-linear separable data may require a non-trivial
transformation that is very difficult to learn. Looking at the image of the training data in
the space defined by the activity of the hidden layer neurons [15,16] one may notice that
a perfect solution is frequently found in the hidden space – all data falls into separate
clusters – but the clusters are non-separable, therefore the perceptron output layer is

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 188–197, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

K-Separability 189

unable to provide useful results. Changing the goal of learning from linear separability
to other forms of separability should make the learning process much easier.

It would be very useful to break the notion of non-linearly separable problems into
well defined classes of problems with increasing difficulty. This is done in the next
section, where the notion of k-separability is introduced. In the third section this notion
is combined with linear projections and applied to the analysis of Boolean functions.
Algorithms based on k-separability for general classification problems are outlined in
section four, with the last section containing a final discussion.

2 k-Separability

Adaptive systems, such as feedforward neural networks, SVMs, similarity-based meth-
ods and other classifiers, use composition of vector mappings

Y (X) = M (m)(M (m−1)...(M (2)(M (1)(X))...)) (1)

to assign a label Y to the vector X. To be completely general direct dependence of
mappings on inputs and previous transformations should be considered, for example
M (2)(M (1)(X),X), but for simplicity this will be omitted, considering only strictly
layered mappings. These mappings may include standardization, principal component
analysis, kernel projections, general basis function expansions or perceptron transfor-
mations. X(i) = M (i)(X(i−1)) is the result of mapping after i transformations steps.
For dichotomic problems considered below Y = X(m) = ±1.

If the last transformation Y = M (m)(X(m−1)) is based on a squashed linear trans-

formation, for example a perceptron mapping Y = tanh(
∑

i WiX
(m−1)
i), then the

values of Y are projections of X on the [−1, +1] interval, and a perfect separation of
classes means that for some threshold Y0 all vectors from the Y+ class are mapped to
one side and from the Y− class to the other side of the interval. This means that the
hyperplane W defined in the X(m−1) space divides samples from the two classes, and
W · X(m−1) is simply a projection on the line W perpendicular to this hyperplane,
squashed to the [−1, +1] interval by the hyperbolic tangent or similar function.

General parity problems can be solved in many ways. The simplest solution [13]
is to look at the sign of the

∏n
i=1(xi − ti), with ti ∈ (0, 1), that is to use a product

neuron without any hidden neurons. This solution is very specific to the parity problem
and it cannot be generalized to other Boolean functions. Many such solutions that work
only for parity problem have been devised [6]–[14], but the challenge is to provide
more general solutions that work also for problems of similar or higher difficulty. Many
MLP training algorithms have already some difficulties to solve the XOR problem.
RBF network with Gaussian hidden units cannot solve it unless special tricks are used.
Solutions based on local functions require here a large number of nodes and examples
to learn, while non-local solutions may be expressed in a compact way and need only
a few examples (this has been already noted in [17]). Consider the noisy version of the
XOR problem (Fig. 1). RBF network with two Gaussian nodes with the same standard
deviation σ and linear output provides the following two transformations:

X → X(1) = (exp(−|X − μ1|/2σ, exp(−|X − μ2|/2σ) (2)

X(1) → Y = X(2) = W · X(1) (3)

190 W. Duch

The solution obtained using maximum likelihood approach [1] placed one basis func-
tion in the middle of left-corner cluster, and the other close to the center, as shown in
Fig. 1. Although the network fails to achieve linear separability of the data, it is clear
from Fig. 1 that all new data will be properly assigned to one of the 3 clusters formed
in the hidden space; in crossvalidation test 100% correct answers are obtained on this
basis (searching for the nearest neighbor in the hidden space), while the linear output
from the network achieves only 50% accuracy (base rate). If the target Y = X(2) = ±1
is desired the linear output provides a hyperplane (in this case a line) that tries to stay
at a distance one from all data points. If a separate linear output for each class is used
lines representing both outputs are parallel, with identical weights but shifted on two
units, as shown in the right Fig. 1. Projecting X(1) data on these lines gives one interval
with the data from first class surrounded by two intervals with the data from the second
class, separating the data into 3 intervals.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 1. Noisy XOR problem solved with two Gaussian functions. Left: data distribution and posi-
tion of two Gaussian functions after training using maximum likelihood principle; right: mapping
of the input data to the hidden space shows perfect clusterization, showing lines representing lin-
ear weights of the two output units.

In n dimensions a single linear unit W · X with all weights Wi = 1 easily achieves
separation into n + 1 groups, with 0, 1, 2 .. n bits equal to 1. This weight vector is the
diagonal connecting vertices [0, 0, . . .0] and [1, 1, . . .1], and W · X is the projection
on this line. Obviously using a single node with Y = cos(ωW · X) gives for ω = π
correct answer to all parity problems, +1 for even and −1 for odd number of bits. This
is the simplest general solution of the parity problem, using a single node network (this
solution has not bee found previously [6]–[14]). The importance of selection of appro-
priate transfer functions in neural networks is quite evident here (for a taxonomy of
transfer functions that may be used in neural networks see [18] and [17]). In the context
of Boolean functions periodic projection is useful only for parity and its negation ob-
tained by symmetric transformations of the hypercube with vertices labeled according
to their parity. Projections of other Boolean functions may not be periodic but certainly
will show several groups of vectors from alternating classes.

K-Separability 191

There is no particular reason why the target of learning should be linear separability.
The last transformation Y = M (m)(X(m−1)) may be designed in any way that will
make learning easier. If a projection separating two clusters on a line Y = W · X exist
the data is linearly separable. If it does not exist a projection forming 3 or more intervals
containing clusters from a single class should be sought.

Definition: dataset {Xi} of vectors that belong to two classes is called k-separable if
a direction W exist such that all points Yi = W · Xi are clustered in k intervals, each
containing vectors from a single class.

Linearly separable data is called 2-separable, while XOR belongs to the 3-separable
category of data distributions, with projection on the W = (1, 1) line from even, odd,
and again even class. This is the simplest extension of separability, replacing the final
mapping M (m)(·) by logical rule IF (Y ∈ [Y0, Y1] THEN even ELSE odd, and thus
making the non-linearity rather harmless. More sophisticated mappings from one, two
or higher number of dimensions may be devised as long as transformation M (m)(·)
is easy to set up, providing easier goals for the learning process. The Error Correcting
Output Codes (ECOC) [19] tries also to define easier learning targets, but it is still based
on linear separability, setting a number of binary targets that define a prototype “class
signature” vectors, and comparing the distance from the actual output to these class
prototypes. The change of the learning target advocated here is much more powerful.

A dataset that is k-separability may also be (k + m)-separable. Strictly speaking
the separability index for the data should be taken as the lowest k, but some learning
methods may generate solutions with larger number of clusters. For example, if the
data is k-separable into clusters with very small number of elements, or if the margin
separating the intervals between two such clusters is very small, (k + 1)-separability
that leads to larger minimum size of small clusters and their margins may be preferred.

Solving a k-separability problem requires finding the direction W and then setting
appropriate k − 1 thresholds defining intervals on the projection line.

Conjecture: the complexity of k-separable learning should be much easier then 2-
separable learning.

This is rather obvious; transforming the data into k-separability form should be much
easier because additional transformations are needed to achieve linear separability, and
the number of adaptive parameters may grow significantly. For example, the number of
hyperplanes that an MLP network needs for the n-parity problem is of the order of n
(see comparison of solutions in [13]), giving altogether O(n2) parameters, while treat-
ing it as a k-separable problem requires only n + k parameters. In general, cases when
transformation of decision borders in the original input space X based on continuous
deformations may flatten them linear separability will be sufficient, but if discontin-
uous transformations are needed, as in the case of learning most Boolean functions,
transformations that map data into k-separable form should be easier.

An interesting question is how many Boolean functions belong to the k-separable
category. For n-variables there are 22n

possible functions; only the bounds for the num-
ber of separable Boolean functions are known: the number is between 2n2−O(n) and
2n2

[20], a vanishing fraction of all functions. Unfortunately such estimations are not
yet known for the k-separable case.

192 W. Duch

For linearly separable data projections on W and −W generate symmetrical so-
lutions (Y+, Y−) and (Y−, Y+); in case of k-separability additional symmetries and
permutations are possible.

3 Boolean Functions

It is instructive to analyze in detail the case of learning Boolean functions with n = 2
to n = 4 bits with the simplest model based on linear projections. Several interesting
questions should be investigated: how many k-separability cases for a given direction
W are obtained; which direction gives the largest separation between projected clus-
ters; how many k-separability cases for each direction W exist; how many different
directions are needed to find all these cases.

The Boolean functions f(x1, x2, . . . xn) ∈ {−1, +1} are defined on the 2n vertices
of n-dimensional hypercube. Numbering these vertices from 0 to 2n − 1, they are eas-
ily identified converting decimal numbers to bits, for example vertex 3 corresponds
to b-bit string 00..011. There are 22n

possible Boolean functions, each corresponding
to a different distribution of ±1 values on hypercube vertices. There are always two
trivial cases corresponding to functions that are always true and always false, that is
1-separable functions. Each Boolean function may be identified by a number from 0 to
2n − 1, or a bit string from 00...0 to 11...1, where the value 0 stands for false or −1,
and 1 for true or +1. For example, function number 9 has 2n bits 00...1001, and is true
only on vertex number 0 and 3.

Values of Boolean functions may be represented as black (−1) or white (+1) vertices
of the hypercube. Learning a Boolean function is equivalent to separation of projections
of the black and white vertices of the hypercube. Separation into small number of well
separated clusters should lead to a good generalization when some function values are
not known. For two binary variables almost all non-canonical directions (not connecting
vertices of the square) avoid mapping vertices of different color to exactly the same
point (degeneracy) and give 6, 6 and 2 projections 2, 3 and 4-separated, respectively.
It is easy to find two directions that together learn all 12 linearly separable functions
(for example W(1/3,−1/2) and orthogonal direction W(1/3,2/9)). These directions and
W(1,1) that learns two 3-separable functions (XOR and its negation) are sufficient to
learn all Boolean functions.

3.1 3-D Case

For 3 bits there are 8 vertices in the cube and 28 = 256 possible Boolean functions.
Functions f(x1, x2, x3), and their negations ¬f(x1, x2, x3), are related by the sign re-
versal symmetry or changing color of all vertices, therefore it is sufficient to consider
only 128 functions corresponding to all black vertices (1 case), one black vertex (8
cases), two blacks (

(8
2

)
= 28 cases), three blacks (

(8
3

)
= 56 cases), or four blacks

(
(8
4

)
= 70 cases, but only half are unique due to the sign reversal symmetry), so to-

gether there are 1+8+28+56+35=128 such unique functions.
Projections on coordinate directions W(001),W(010),W(100) separates only three

functions f(x1, x2, x3)= xk, k = 1, 2, 3 that belong to the 35 cases with 4 black and
4 white vertices. There are 6 projection directions along the diagonals of the cube’s

K-Separability 193

faces: W(110),W(1−10),W(101),W(10−1),W(011),W(01−1), and 4 projection direc-
tions along the longest diagonals of the cube: W(111),W(11−1),W(1−11),W(−111).
Together 13 canonical directions should be considered, and a “zero direction” to check
if there is only one class.

Consider now direction W(110). Two points, (0, 0, 0), (0, 0, 1) are projected to Y =
0, 4 points (1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1) are at Y =

√
2/2 and two points (1, 1, 0),

(1, 1, 1) are at Y =
√

2. Any Boolean function that has the same value for the first 6
points and an opposite value for the last 2 point, or vice versa, will be linearly sepa-
rable. There are 4 such functions. Any function that has the same value at the middle
4 vertices, and an opposite on the remaining 4 will be 3-separable. There are 2 such
functions. However, separation and size of the clusters should also be noted. For ex-
ample, function 27 (00011011) is separated by W = [0.75, 1, −0.25] into 000 11 0
11 segments with minimum gap of 1/4 and by W = [1, 0.25, −0.75] into 0 1 000 111
segments with the same minimum gap. The first projection contains only one group
with single 0, while the second contains two such groups, one with 0 and one with 1.
For Boolean functions with small number of bits generalization is meaningless (there
is no evidence to choose a particular function), but for larger number of bits avoiding
small clusters should give a better chance to find most probable functions even if some
values are missing. For example, for the n-bit parity if some of the values on vertices
with m ∈ [3, n − 2] bits 1 are missing projection on W = [11 . . .11] will still provide
the best explanation of the data separating it into n + 1 intervals.

If degeneracy is removed by slightly shifting 0, ±1 weight values of canonical direc-
tions (adding 0.01 to the first, 0.02 to the second and 0.03 to the weights W is sufficient)
for an arbitrary projection direction always the same number of 1 to 8-separable func-
tions is found: 2, 14, 42, 70, 70, 42, 14, 2. Thus for a projection on an arbitrary direction
most functions are 4 or 5-separable. Searching for the best projection for each function
using slightly perturbed canonical directions there are 2 cases of 1-separable functions,
and 102, 126 and 26 of 2, 3 and 4-separable functions. For more than half of the 3-bit
Boolean functions there is no linear projection that will separate the data. Almost half
(126) of all functions may be learned using 3-separability. Because there are 102 lin-
early separable functions and each projection can recognize only 14 of them at least 8
directions are needed to check whether the function is separable.

3.2 4-D Case

For the 4-bit problem there are 16 hypercube vertices, with Boolean functions corre-
sponding to 16-bit numbers, from 0 to 65535, or 64K functions. Projection on each
fixed direction gives symmetric distribution of the number of k-separability functions,
with the same number of functions for k and 17 − k separability. Two functions are
1-separable and two are 16-separable, changing periodically all 16 values from 0 to 1.
Linear separation (and 15-separability) is found only for 30 functions, 3-separability for
210, 4 to 8 separability for 910, 2730, 6006, 10010 and 12870 functions respectively.
Thus a random initialization of a single perceptron has the highest chance of creating 8
or 9 clusters in the 4-bit data.

Checking how many functions are k-separable requires learning the best direction
for a given data. For the 4-bit case searching for the best projection along canonical

194 W. Duch

directions (Wi = 0, ±1) that give lowest k-separability index gives 1228, 6836, 19110,
25198, 12014, 1132 and 16 projections with 2-8 clusters. These are not yet the lowest
separability indices for this data, as more detailed search allowing fractional values
(multiples of 1/3, 1/4, 1/5 and 1/6 in the [−1, +1] range) of the W direction coefficients
shows that the highest k is 5, confirming the suspicion that k = n + 1 is the highest
separability index. The number of linearly separable functions is 1880, or less than
3% of all functions, with about 22%, 45% and 29% being 3 to 5-separable. About
188 functions were found that seem to be either 4 or 5-separable, but in fact contain
projection of at least two hypercube vertices with different labels on the same point.
Although the percentage of linearly separated functions rapidly decreases relatively low
k-separability indices resolve most of the Boolean functions.

An algorithm that searches for lowest k but also maximizes minimum distance be-
tween projections of points with different labels finds projection directions (with min-
imum separation of 1/6 or more) that require k = 6 for these functions and gives sig-
nificantly larger separations between intervals containing vectors from a single class.
With only 30 linarly separable functions per one direction and 1880 separable functions
at least 63 different directions should be considered to find out if the function is really
linearly separable. Learning all these functions is already a difficult problem.

For 5-bits the number of all Boolean functions grows to 232, or over 4 billions (4G).
Direct search in 5-dimensional space for each of these functions is already prohibitively
expensive. It seems quite likely that for n-bit Boolean functions each projection direction
will separate the maximum number of functions for k ≈ 2n/2, and that learning the best
projection for a given function will give the largest number of functions separated into
n clusters, with percentage of linearly separable functions going quickly to zero. The
number of elements in most cluster quickly grows, therefore with such as simple model
it should be possible to learn them correctly even if only a subset of all values is given.

4 Algorithms Based on k-Separability

Linear projection combined with k-separability already gives quite powerful learning
system, but almost all computational intelligence algorithms may implement in some
form k-separability as a target for learning. It is recommended to search first for lin-
early separable solutions, and then to increase k searching for the simplest solution,
selecting the best model using crossvalidation or measures taking into account the size
and separation between projected clusters. Distribution of y(bX ;W) values allows for
calculation of P (y|Y±) class distributions and posterior probabilities using Bayesian
rules. Estimation of probability distributions in one dimension is easy and may be done
using Parzen-windows kernel methods.

The main difficulty in formulating a learning procedure is the fact that targets are not
fully specified; instead of a single target for Y+ class two or more labels Y+1, Y+2 may
be needed. This may actually be of some advantage, allowing for a better interpretation
of the results. It is clearly visible in the case of parity problems: each group differs not
only by the parity but also by different number of 1’s, providing an additional label.
Learning should therefore combine unsupervised and supervised components. In the
first step random initialization is performed several times, selecting the lowest k cluster

K-Separability 195

projection. Centers of these clusters ti, i = 1 . . . k are the target variables for learning,
and each center has a class label Y (ti). Slightly modified quadratic error function may
be used for learning:

E(W, t) =
1
2

∑

X

(y(X;W) − tj(X))2 ; (4)

j = argmin
i

{||ti − y(X;W)||, Y (ti) = Y (X)}

For each input X that belongs to the class Y (X) the nearest (on the projected line)
cluster center from the same class is taken as the learning target. A more complex cost
function may be devised that penalize for the number of clusters, for overlapping of
clusters, and for impurity of clusters, but this is beyond the scope of this article.

In the two-class case there are always two possibilities: either the first class vectors
are projected to the lowest Y values, leading to clusters Y+, Y−, Y+, . . . , or vice versa,
Y−, Y+, Y−, The 3-separable case is particularly simple and often encountered
in practice. If vectors from one of the classes represent unusual objects or states (for
example hypo and hiper-activity in some medical problems) projections with clusters
Y−, Y+, Y− are fairly common. This may be checked quite easily visualizing distribu-
tion of activations for a single perceptron (linear neuron is sufficient). Additional trans-
formations (network layers) are needed to reach linear separability, but 3-separability
may often be reached using just one node.

For k = 3 these projections are in 3 intervals: [−∞, a], [a, b], [b, +∞]. Taking t =
(a + b)/2, and denoting YX = Y (X) a linear error function suitable for learning is:

E(a, b,W) =
∑

X

[T(y ≤ t)δ(YX , Y+)max(0, y − a) + δ(YX , Y−)max(0, a − y)

+T(y > t)δ(YX , Y+)max(0, b − y) + δ(YX , Y−)max(0, y − b)] (5)

where T(y > t) is 0 if false and 1 if true. This function admits a trivial W = 0 solution,
therefore either a condition ||W|| should be introduced, or a distance scale should be
fixed by requiring one of the components to be constant. It assumes that Y+ vectors
contribute to errors only outside of the [a, b] interval, with the error growing in a linear
way, and that Y− vectors contribute to error in the linear way only inside this interval.
It requires good initialization to map all Y+ vectors to correct side of t. Using this
function for 3-separable Boolean functions with multiple starts to find approximate 3-
separability projection quickly learns such functions using a simple gradient method.
To avoid threshold functions T(y > t) may be replaced by a logistic function σ(y − t).

3-separable backpropagation learning in purely neural architecture requires a single
perceptron for projection plus a combination of two neurons creating a “soft trapezoidal
window” type of function F (Y ; a, b) = σ(Y + a) − σ(Y + b) that implements interval
[a, b] [21]. These additional neurons (Fig. 2) have fixed weights (+1 and −1) and biases
a, b, adding only 2 adaptive parameters. An additional parameter determining the slope
of the window shoulders may be introduced to scale the Y values. The input layer may
of course be replaced by a hidden layer that implements additional mapping.

This network architecture has n + 2 parameters and is able to separate a single class
bordered by vectors from other classes. For n-dimensional problem with 3-separable

196 W. Duch

X1

X2

X3

X4

Y=W.X +1

−1

+1

+1

σ(W.X+a)

σ(W.X+b)
If Y∈[a,b] then 1

Fig. 2. MLP solution to the 3-separable case of 4-bit Boolean functions

structure standard architecture requires at least two hidden neurons connected to an
output neuron with 2(n + 1) + 3 parameters. For k-separability case this architecture
will simply add one additional neuron for each new interval, with one bias parameter.
n-bit parity problems require only n neurons (one linear perceptron and n − 1 neurons
with adaptive biases for intervals), while in the standard approach O(n2) parameters
are needed [13].

5 Discussion and Open Problems

A radically new approach to learning has been proposed, simplifying the process by
changing the goal of learning to easier target and handling the remaining nonlinearities
with well defined structure. k-separability is a powerful concept that will be very useful
for computational learning theory, breaking the space of non-separable functions into
subclasses that may be separated into more than two parts. Even the simplest linear
realization of k-separability with interval nonlinearities is quite powerful, allowing for
efficient learning of difficult Boolean functions. Multiple-threshold perceptrons [22]
may implement such intervals, although k-separability learning algorithms require more
than multiple-threshold step functions. So far there are no systems that can routinely
handle difficult Boolean functions, despite a lot of effort devoted to special Boolean
problems, such as the parity problem. Using neural algorithms or special error functions
described in the previous chapter almost all n = 4 Boolean functions have been learned
in less than 40 trials (Duch and Adamczak, in preparation).

Redefining the goal of learning may have some biological justification. Neurons in
association cortex form strongly connected microcuircuits found in minicolumns, res-
onating with different frequencies when an incoming signal X(t) appears. A perceptron
neuron observing the activity of a minicolumn containing many microcircuits learns to
react to signals in an interval around particular frequency. Combination of outputs from
selected perceptron neurons is used to discover a category. These outputs may come
from resonators of different frequencies, implementing an analogue to the combination
of disjoint projections on the W · X line.

An interesting concept creates many open problems. How many boolean function
each direction k-separates in general case? What minimal k is sufficient for n-bit prob-
lems? How will different cost functions perform in practice? What other simple ways

K-Separability 197

to “disarm” linearites, besides projection on a k-segment line, may be used? These and
many other questions will be addressed soon.

Acknowledgement. Support by the Polish Committee for Scientific Research, research
grant 2005-2007, is gratefully acknowledged.

References

1. Duda, R.O., Hart, P.E., Stork, D.: Patter Classification. J. Wiley & Sons, New York (2001)
2. Duch, W.: Similarity based methods: a general framework for classification, approximation

and association. Control and Cybernetics 29 (2000) 937–968
3. Duch, W., Adamczak, R., Diercksen, G.: Classification, association and pattern completion

using neural similarity based methods. Applied Math. & Comp. Science 10 (2000) 101–120
4. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan

Kaufmann, San Francisco (2nd Ed, 2005)
5. Jankowski, N., Gra̧bczewski, K., Duch, W., Naud, Adamczak, R.: Ghostminer data mining

software. Technical report (2000-2005) http://www.fqspl.com.pl/ghostminer/.
6. Stork, D., Allen, J.: How to solve the n-bit parity problem with two hidden units. Neural

Networks 5 (1992) 923–926
7. Minor, J.: Parity with two layer feedforward nets. Neural Networks 6 (1993) 705–707
8. Setiono, R.: On the solution of the parity problem by a single hidden layer feedforward

neural network. Neurocomputing 16 (1997) 225–235
9. Lavretsky, E.: On the exact solution of the parity-n problem using ordered neural networks.

Neural Networks 13 (2000) 643–649
10. Arslanov, M., Ashigaliev, D., Ismail, E.: N -bit parity ordered neural networks. Neurocom-

puting 48 (2002) 1053–1056
11. Liu, D., Hohil, M., Smith, S.: N -bit parity neural networks: new solutions based on linear

programming. Neurocomputing 48 (2002) 477–488
12. Torres-Moreno, J., Aguilar, J., Gordon, M.: The minimum number of errors in the n-parity

and its solution with an incremental neural network. Neural Proc. Letters 16 (2002) 201–210
13. Iyoda, E., Nobuhara, H., Hirota, K.: A solution for the n-bit parity problem using a single

translated multiplicative neuron. Neural Processing Letters 18 (2003) 233–238
14. Wilamowski, B., Hunter, D.: Solving parity-n problems with feedforward neural network.

Int. Joint Conf. on Neural Networks (IJCNN’03), Portland, Oregon 2003, Vol I, 2546–2551
15. Duch, W.: Visualization of hidden node activity in neural networks: I. Visualization methods.

II. Application to RBF networks. Springer Lecture Notes in AI 3070 (2004) 38–49
16. Duch, W.: Coloring black boxes: visualization of neural network decisions. In: Int. Joint

Conf. on Neural Networks, Portland, Oregon. IEEE Press Vol I (2003) 1735–1740
17. Duch, W., Jankowski, N.: Survey of neural transfer functions. Neural Computing Surveys 2

(1999) 163-213
18. Duch, W., Jankowski, N.: Taxonomy of neural transfer functions. In: International Joint

Conference on Neural Networks. Como, Italy, IEEE Press Vol III (2000) 477–484
19. Dietterich, T., Bakiri, G.: Solving multiclass learning problems via error-correcting output

codes. Journal Of Artificial Intelligence Research 2 (1995) 263–286
20. Zuyev, Y.: Asymptotics of the logarithm of the number of threshold functions of the algebra

of logic. Soviet Mathematics Doklady 39 (1989)
21. Duch, W., Adamczak, R., Gra̧bczewski, K.: A new methodology of extraction, optimization

and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks 12
(2001) 277–306

22. Ngom, A., Stojmenovic I., Zunic, J.: On the Number of Multilinear Partitions and the Com-
puting Capacity of Multiple-Valued Multiple-Threshold Perceptrons, IEEE Transactions on
Neural Networks 14 (2003) 469–477

	Introduction
	k-Separability
	Boolean Functions
	3-D Case
	4-D Case

	Algorithms Based on k-Separability
	Discussion and Open Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

