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Abstract

Information selection filters use various relevancy criteria, such as Bayesian consistency,
correlation coefficient or mutual information, to determine usefulness of features. Several
new ranking indices are introduced. Instead of using all vectors to calculate ranking index
margins excluding vectors from strongly overlapping regions are used, sacrificing training
accuracy for generalization in ranking of features. This technique is especially useful for
microarray gene expression data, where the number of features is very large and the number
of samples is very small. Feature selection for three such datasets shows that a relatively
small number of genes give the best performance.
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1 Introduction.

Biological and medical experiments are frequently very costly and therefore the number of
data samples available for analysis is very small. On the other hand information gathered about
each case may be very rich. Typical examples analyzed in this paper have less than 100 cases
with thousands or tens of thousands features. These features represent intensities of microarray
cells interacting with biological tissue, measuring the activity (expression) of particular genes.
With such small samples and huge features spaces there is an infinitely many ways to fit the
data correctly, and exhaustive searching for good data models may discover many models that
by pure chance also fit all known data correctly. Therefore reference models based on the sim-
plest possible description of the data are needed, using only the most robust features and rules
(decisions) with significant support. In the recent study of many medical and technical data [1]
small sets of logical rules proved to be more accurate than all sophisticated classifiers. Logi-
cal descriptions are also highly informative, using only a few important features and providing
understandable description of the data.



It is doubtful that analysis of very small datasets using sophisticated methods will have
much value. Before sophisticated neural or statistical models are applied to bioinformatics data
simplest rule based methods should be tried first. The rule-based description makes overfitting
easy to control and will be especially important for bioinformatics data. Bayesian rules defined
for each feature may be a good measure of their relevancy. With a large number of features
some conditional probability distributions p(Xk|C) of feature values may by chance be sepa-
rable, while others may accidentally have unusual concentration of samples in the tail of their
distribution. In the SVM linear discrimination classification margins are used to increase gener-
alization. Margins may be used in many ways in feature selection. In the next section theoretical
framework is presented, while section three contains results of experiments performed on several
bioinformatics databases.

2 Theoretical framework.

An information filter [2] is defined by the relevancy coefficient J(f) which gives a measure
of dependency between features (f ) and classes (C), and is computed for each feature f ∈ F
individually. Pearson’s linear correlation coefficient is probably the simplest such index and
therefore should always be used as a reference. For feature X with values x and classes C with
values c, where X,C are treated as random variables, correlation coefficient is defined as [3]:

�(X,C) =
E(XC) − E(X)E(C)√

σ2(X)σ2(C)
(1)

�(X,C) is equal to ±1 if X and C are linearly dependent and zero if they are completely
uncorrelated. The simplest test estimating significance of the differences in �(X,C) values is
based on the probability that two variables are correlated [3]:

P(X ∼ C) = erf
(
|�(X,C)|

√
n/2

)
, (2)

where erf is the error function. The feature list ordered by decreasing values of the P(X ∼ C)
provides feature ranking.

Linear correlation does not work correctly if the relation between class labels and feature
values is not monotonic. A very simple ranking index Is that works well also for non-monotonic
relations is defined as follows. Order the feature values in non-decreasing sequence xi ≤ xi+1,
add +1 for each Ci = Ci+1 case, and subtract −1 if Ci �= Ci+1; if there is a mixed group with
k1 class C1 and k2 ≥ k1 class C2 cases with identical feature values xi = xi+k, k = k1 + k2,
treat it as the worst case, subtracting 3k1 − k2 + 1. This index is very easy to compute and may
be modified in various ways, for example adding distance-dependent contributions, but here it
will be used in its simplest form.

Information theory is frequently used to define relevance indices. The joint Shannon infor-
mation is:

H(X,C) = −
∑
i,j

P(xi, cj) logP(xi, cj) (3)



Mutual Information (MI) is the basic quantity used for information filtering:

MI(X,C) = H(X) + H(C) − H(X,C) (4)

Symmetrical Uncertainty Coefficient (SU) has similar properties to mutual information:

SU(X,C) = 2MI(X,C)/ (H(X) + H(C)) (5)

Estimation of probabilities for small number of data samples is non-trivial. The Parzen
window density estimate of a continuous feature X can be used to approximate the probability
density p(x) of a distribution [4], where x is a value of feature X. It involves a superposition
of normalized window function centered on a training samples. Given a set of n feature values
X = {x1, x2, ..., xn}, the pdf estimate using Parzen window is given by:

p̂(x) =
1
n

n∑
i=1

φ (x − xi, h) (6)

where φ(·) is the window function and h is the window width parameter. Using Gaussian win-
dow functions φ(x;σ) the p̂(·) estimate converges to the true density [4]; here σ is the standard
deviation. Several values of σ2 = 0.3, 0.6, and 0.9 were used in the tests reported below, but
because results were not too sensitive to this value only σ =

√
0.3 results are reported below.

Decision trees offer another approach to calculate useful relevancy indices. A continuous
feature Xi is split using a test Xi < t, in effect changing it into a logical variable z = True(Xi <
t), with z =True or z =False values. This is equivalent to a one-dimensional, single condition
logical rule, predicting class C1 if z is true, otherwise the class is C2.

Given a two class problem and a single feature optimal decisions should be based on the
Bayesian Classifier (BC) using the maximum a posteriori probability: if x = x0 then for
P(C1, x0) > P(C2, x0) class C1 should always be selected, giving a larger fraction P(C1, x0)
of correct predictions, and smaller fraction P(C2, x0) of errors. Bayes error is given by the
average accuracy of the Bayesian Classifier (BC) using MAP, or “informed majority classifier”
using a single feature X is:

BC(X,C) =
∑

i

max
j

P(xi, cj) =
∑

i

max
j

P(xi|cj)P(cj). (7)

This index has better justification than the information theoretic indices, but it is unfortu-
nately sensitive to accuracy of probability estimation and does not converge so quickly to the
correct values as non-linear indices [2].

The a priori probabilities P(C) are fixed, but P(z|t) are a function of the threshold, and
the joint probabilities P(C, z|t) also depend on the threshold. These probabilities may be used
to calculate mutual information, SU coefficients or just maximize accuracy in BC . Small sta-
tistical sample effects make the values of the thresholds t inaccurate, thus contributing to the
large uncertainty of the relevance indices and uncertainty of the final ranking [2]. Suppose that
10.000 features are generated, sampling from two partially overlapping Gaussians with P(C1)N



and P(C2)N points, with N = 70 and P(C1) = 2/3,P(C2) = 1/3. In this case ranking in-
dices for all features should not significantly differ (and redundancy should be high), with the
largest contribution to variance coming from the overlapping region.

A margin around Xi ≈ t helps to select only those vectors that belong to class Ck with high
confidence, Xi < t − s ∧ Xi > t − s, where 2s is the margin size. It plays similar role as
the margin in SVM method, where a user-define parameter is also introduced. Reliability of the
relevance indices selected using vectors that are outside of the margin region should be higher,
and thus rankings should be more stable when crossvalidation is used to estimate classification
accuracy.

There may be many ways to introduce margins in feature selection; perhaps the simplest
is through discretization. Calculation of Bayesian and information theoretical ranking indices
requires estimation of probabilities. For the SU index the data has been standardized and Parzen
windows technique may be used to calculate reliable estimate of the index value. However, as
pointed out in [10] discretization always gave better results with indices based on information
theory. The simplest unsupervised discretization introduces three states corresponding to the
over-expressions, baseline, and under-expression of genes, removing some noise from the data.
For each variable representing gene expression the mean μ and standard deviation σ is calculated
for all data (pooled classes), and any value larger than μ +σ

2 is replaced by 1, any value smaller
than μ − σ

2 by −1 and the remaining data are replaced by 0.
Although this discretization is very simple it is quite effective [10]. Indices based on this

3-bin discretization are called BC3 and SU3, and if the interval of the size σ is removed around
the mean the index is called BC2 (calculation of SU2 has not been done). BC index may also
be calculated directly from binary discretization, finding the best treshold t = (xi+1 + xi)/2
that maximizes BC index.

A new index that implements a “soft margin” idea has also been added:

Iσ =
∫

min (P1(x, σ),P2(x, σ)) dx (8)

where P1(x, σ), P2(x, σ) are probability distributions estimated by Gaussian Parzen windows
technique for class 1 and 2 data, respectively. Iσ measures the area under the maximum of the
two class-conditional probability distributions. For almost separated probability distributions
there is no penalty from the P1(t) = P2(t) margin region and the integral may reach 1, while
for strong overlaps it may decrease to 0.5 for two identical distributions. Unreliable vectors in
the margin region have thus a lower contribution than vectors outside of this region. A hard
margin may be introduced excluding from the integration t ± s region. Instead of Iσ an integral
over the product of two distributions is an obvious alternative choice.

3 Numerical experiments

Three DNA microarray gene expression datasets are analyzed below (Table 1). The acute
leukemia dataset [5] contains bone marrow samples obtained from adult patients before chemother-
apy, with 72 acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) cases,
originally divided into the training set (27 ALL and 11 AML), and the test set (20 ALL and 14



AML), with 7129 features. Before normalization thresholding (commonly done by replacing
values x by max(x, 20)) and log-transformation has been performed on this data. The colon
cancer dataset [6] contains 62 samples, with 40 biopsies from tumor and 22 from healthy parts
of the colons of the same patients. Expression levels of 2000 genes with highest minimal inten-
sity are provided. Originally the data has been divided into 40 training and 22 test cases. The
lymphoma dataset [7] (DLBCL) has expressions from 4026 genes of two types of diffuse large
B-cells. There are 47 samples, 24 of them are from “germinal centre B-like” group while 23 are
from the “activated B-like” group.

With such small datasets and very large number of features small sample effects are impos-
sible to avoid. Some features may by chance seem to be very important, perhaps even separating
the classes (as is the case with gene 4847 on the leukemia training dataset). Using small number
of genes is very risky and a larger “profile” of important genes should be used to increase con-
fidence. It makes more sense to use the leave-one-out or crossvalidation evaluation procedure
rather than the ad hoc division into training and test sets provided in the original papers [5, 6].
Leave-one-out procedure has the advantage of using almost all data for training and has no vari-
ance due to data subsampling, while crossvalidation has the advantage of providing average
accuracy and standard deviation, giving a better idea about expected accuracy.

Dataset Leukemia Colon Cancer Lymphoma
Source Golub et al. (1999) [5] Alon et al. (1999) [6] Alizadeh et al. (2000) [7]

Total Samples 72 62 47
Class distribution 47 ALL/25 AML 40 Tumor/22 Normal 24 GBCL/23 ABL

#Genes 7129 2000 4026

Table 1. Summary of the DNA microarray gene expression datasets.

Three relevance indices are used here: linear correlation coefficient ρ, which should provide
the base rate for other methods [8], the SU coefficient that tends to work better than mutual infor-
mation, and the Iσ index for several values of sigma. The original gene expression data contains
continuous values. These values are used directly to calculate correlation coefficients. Margin
filter values Iσ were calculated from the standardized data with σ =

√
0.30,

√
0.60,

√
0.90, but

because differences were rather small (see Tab. 2) results for only the first value are reported
below.

3.1 Leukemia

The “neighborhood analysis” method developed in the original paper [5] finds 1100 genes
that are correlated with ALL-AML class distinction. Prediction is based on a rather com-
plex method that assigns weights to the most useful 50 genes and than calculates “prediction
strengths” (PS) index as a sum of votes with threshold 0.3. Training was done on 38 samples
(27 ALL and 11 AML), using the leave-one-out method to set parameters, and testing was done
on 34 samples (20 ALL and 14 AML). As a result 36 samples were correctly predicted and for
two samples PS was below the critical 0.3 threshold. 29 of 34 test samples had large correct PS
(median 0.77). Results do not differ significantly if the number of predictive genes is changed
in the range 10-100.



For this data gene X4847 (zyxin) with the threshold t = −0.087 on standardized data per-
fectly separates both classes on the training data, but the margin between them is quite small,
and 3 errors are made on the test data. Parzen window density estimations lead to substantial
overlap. Expression values of two other genes, X1926 and X2020, give only a single error, and
threshold rules for 14 other genes make only 2 errors.

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ρ 4847 4196 1834 2288 6041 3252 1882 1745 1829 2121 2020 2111 3320 4366 6919
SU3 3252 4847 6855 1834 2121 2288 2354 1882 1779 6041 1685 4328 1745 1144 2642
I√0.3 4847 3252 2288 1834 4196 3320 1882 6041 2121 1829 1745 2020 1674 6919 2111
I√0.6 4847 3252 2288 4196 1882 1834 3320 1745 2121 1829 6041 1674 6919 2111 2020
I√0.9 4847 2288 3252 1882 4196 1834 1745 3320 1829 2121 6041 1674 6919 2111 2020

Is 1834 4847 1882 2354 2288 760 6855 3252 6376 6041 5501 1685 4377 4366 5772
BC 4847 1882 1834 6855 3252 2288 760 6376 6041 1685 4373 2354 1144 4377 2402
BC2 3252 4847 4196 6201 2335 2288 1882 758 6225 4082 2642 6041 2020 1834 1829
BC3 3252 6855 2354 2288 6281 4847 4328 4196 2020 1685 1144 804 1928 5833 3320

Table 2. Top 15 features obtained from various rankings for Leukemia.

Zyxin was selected by ρ and all Iσ indices as the most important, with SU3 and BC2 ranking
it as second, and BC3 ranking it at position 6 (Tab. 2). This is an important gene and it may
seem that BC3 has ranked it somehow too low, but surprisingly classfication results are very
similar to BC2 and BC (Tab. 3). The X1926 gene was never selected among the top 15, and
X2020 has not been selected by SU3, and has not made it to the top 10 genes. The reason is that
these genes lead to about 10 errors on the test set, thus making the training/test division (and the
original results reported in [5]) rather useless. The values on the training set are unfortunately
not correlated with the test set results, confirming our conviction that the training/test division
for such as small data has little sense. A better evaluation will be provided by crossvalidation or
the leave-one-out procedure. It also shows the usefulness of margins that may decrease rankings
of such features (many vectors concentrated around the threshold are not counted).

Four popular classifiers have been used with growing subsets of features to evaluate these
rankings. The number of leave-one-out errors obtained is given in Table 3. C4.5 (and other
decision trees not reported here) do not handle Leukemia data too well, although for 1 or 2 genes
results are quite good. Such small number of genes is not sufficient for reliable classification,
our goal should rather be to reach stable number of errors with 20-25 genes.

The one Nearest Neighbor classifier is particularly sensitive to feature selection, showing
strong oscillations of accuracy with growing number of features. The SVM and Naive Bayes
classifiers give results of similar quality, reaching 1-3 errors for many subsets of genes. Linear
correlation coefficient does not work well with 1NN, but with NB and SVM classifiers reaches
also 3 errors for 20 or more genes. The SU3 ranking has 1-3 errors, reaching rather stable plataux
of two errors for SVM with 18-25 genes. The Is works surprisingly well, giving two errors for
a wide range of feature subsets. Iσ and different versions of BC show similar performance and
it is not possible to say which one is better. For this particular data all these ranking indices lead
to similar results.

Unfortunately classification results do not stabilize for larger (20-100) number of features,
oscilating between 2-5 errors, as is evident from Figs. 1-4. These oscilations are well within the



Classifier Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C4.5 ρ 4 4 6 6 6 7 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 11 11
SU3 6 4 6 9 9 8 10 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13
Is 7 6 8 8 8 8 8 10 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13
Iσ 4 4 4 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11
BC 4 8 8 9 12 10 10 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13
BC2 6 4 4 4 4 5 7 7 7 7 7 7 7 9 9 10 10 10 10 10 10 10 10 10 10
BC3 6 3 3 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 10 12 12 12 12 12

1NN ρ 7 8 4 3 5 8 7 9 7 6 7 6 6 6 7 7 8 8 8 5 5 6 4 5 4
SU3 11 8 8 5 8 9 6 6 5 4 4 5 3 2 1 1 1 2 4 4 3 3 3 3 3
Is 4 4 3 2 2 3 3 6 8 6 6 4 4 3 2 2 2 2 2 2 2 2 2 2 2
Iσ 7 8 8 8 8 5 5 5 5 6 7 6 6 7 7 5 5 6 7 7 6 6 6 6 5
BC 7 5 3 2 5 7 6 7 6 6 6 4 3 3 4 4 5 5 5 4 4 4 4 5 5
BC2 11 8 10 6 6 6 8 9 9 10 8 9 8 7 7 8 8 9 9 7 7 7 5 5 5
BC3 11 5 3 4 6 6 5 10 7 8 6 4 4 4 3 3 4 3 3 4 4 5 5 6 7

SVM ρ 11 6 5 5 5 5 5 5 5 5 4 5 4 4 4 5 5 5 3 3 3 3 3 3 3
SU3 8 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2
Is 15 5 6 5 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2
Iσ 11 5 6 5 6 4 5 5 4 4 4 4 4 4 5 4 4 4 3 3 3 3 2 2 3
BC 11 10 5 5 4 5 5 5 5 5 5 4 4 4 4 4 4 4 4 2 2 2 2 3 3
BC2 8 5 5 5 5 5 5 5 5 5 5 5 4 4 5 4 5 3 3 4 4 4 4 4 4
BC3 8 7 5 5 4 4 4 4 2 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2

NBC ρ 5 7 4 3 4 4 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
SU3 8 4 2 2 3 2 2 2 2 2 3 3 3 3 3 2 2 3 3 3 3 3 3 3 2
Is 6 4 2 1 2 3 3 3 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3
Iσ 5 4 5 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
BC 5 2 2 1 2 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 3 3 3
BC2 8 4 7 6 5 5 5 4 4 4 3 4 4 3 3 3 3 3 3 3 3 3 3 3 3
BC3 8 4 3 4 4 2 2 2 2 3 3 3 2 3 2 1 2 2 2 2 2 2 2 2 2

Table 3. Leave-one errors for the Leukemia dataset with up to 25 top-ranked features; σ =
√

0.3.
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Figure 1. Leave-one-out accuracy for the Leukemia dataset with the C4.5 and the 1NN classifiers.
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Figure 2. Leave-one-out accuracy for the Leukemia dataset with the SVM and the Naive Bayes (NB)
classifiers.
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Figure 3. Classification accuracy for the Leukemia dataset using LVO crossvalidation with the C4.5 and
1NN classifiers and Bayesian ranking.
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Figure 4. Classification accuracy for the Leukemia dataset using LVO crossvalidation with Bayesian
ranking and the SVM and NB classifiers.
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Figure 5. Classification accuracy for the Leukemia dataset using 10-fold crossvalidation for the C4.5 and
the 1NN classifiers.
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Figure 6. Classification accuracy for the Leukemia dataset using 10-fold crossvalidation for the SBM
and NB classifiers.

standard deviation of accuracy estimated by crossvalidation (Figs. 5-6). The leave-one-out and
crossvalidation curves are rather similar, therefore only two examples are shown here.

3.2 Colon Tumor

For this dataset ranking results are very different (Tab. 4). Correlation coefficient ρ and soft
margin Iσ place genes X249 and X765 at the top, but do not have X513 in the top 15 genes, while
SU3 places it at the 3rd and Is at the 7th position. Even among BC indices there are significant
differences, with gene X66 at the 3rd position in BC2 that is not present in BC , BC3, SU3 and
Is.

Results of classification with different systems show that this time the best leave-one-out
results are obtained with the C4.5 tree giving 7 errors for 3-6 genes and dropping to 4 errors for
60-80 genes with Is ranking (the same result is obtained in 10-fold crossvalidation clauclations).
SVM and the Naive Bayes approach give 6-9 errors for 30-45 genes. The number of errors tends



Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ρ 249 765 493 1423 245 267 377 822 1892 1772 66 897 1771 1582 780
SU3 765 1423 513 249 245 267 1582 897 1771 1772 493 1414 780 1671 1060
Iσ 249 765 245 267 1423 1892 493 822 897 415 66 1494 377 1635 1967
Is 1900 245 625 493 190 657 513 1892 602 576 433 1666 1018 47 1567

BC 1671 249 493 1771 1423 513 267 245 765 625 1772 1042 822 415 1892
BC2 1423 249 66 286 415 267 245 1387 897 1967 1843 1836 1635 1494 822
BC3 1423 249 765 267 245 513 1671 415 1892 1582 780 1967 1917 1772 1771

Table 4. Top 15 features obtained from various rankings for Colon Tumor.

Classifier Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C4.5 ρ 9 13 13 13 12 12 10 10 10 13 13 13 13 13 14 14 14 14 10 10 10 10 10 10 11
SU3 11 11 10 12 12 12 20 21 9 11 12 12 12 10 10 10 10 10 10 10 10 11 11 11 11
Is 22 11 13 11 9 9 9 13 13 13 13 13 11 11 11 11 10 10 10 10 10 10 11 11 12
Iσ 9 13 14 14 12 12 12 12 13 13 13 13 10 10 10 11 11 11 11 11 14 14 14 14 14
BC 9 9 9 10 7 8 9 10 10 10 9 9 9 9 10 10 10 10 9 9 9 9 9 9 9
BC2 11 9 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12
BC3 11 9 12 12 12 11 9 9 10 10 10 10 10 11 11 11 10 10 10 10 10 10 10 10 10

1NN ρ 19 14 13 13 11 13 17 17 15 16 11 12 13 14 12 12 11 11 12 12 14 15 15 13 13
SU3 25 12 10 13 12 12 11 13 10 11 12 12 12 12 12 12 12 9 10 11 10 12 10 11 11
Is 12 17 16 14 14 11 9 8 9 8 11 9 7 8 8 8 9 10 9 9 10 10 10 12 11
Iσ 19 14 14 14 15 14 13 16 11 13 11 11 18 16 18 18 16 16 16 16 18 19 19 18 17
BC 19 12 16 14 14 11 10 13 13 11 11 11 11 9 11 10 11 12 11 10 11 10 14 14 14
BC2 17 15 15 12 14 14 13 11 12 14 13 19 18 18 19 13 12 13 12 15 11 12 11 11 13
BC3 17 15 16 16 15 12 13 13 12 11 13 15 14 13 13 12 10 9 9 8 10 10 10 10 10

SVM ρ 14 12 11 11 11 11 10 9 9 9 8 8 8 8 8 7 7 8 8 8 8 8 8 8 8
SU3 13 13 11 9 11 11 11 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 7 7 8
Is 22 12 12 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 9
Iσ 14 12 11 11 11 11 11 11 11 10 10 11 10 11 11 11 11 11 11 11 11 11 11 11 11
BC 22 14 12 10 10 9 10 10 11 11 11 11 10 12 10 10 11 10 8 8 8 8 7 8 8
BC2 15 10 10 10 10 10 10 10 9 9 10 10 11 11 11 9 9 9 9 9 9 9 9 9 9
BC3 15 10 10 11 11 11 11 11 11 10 10 10 10 10 10 10 9 9 9 9 9 9 9 9 9

NBC ρ 9 11 10 8 9 10 7 8 9 8 9 9 8 8 8 7 8 7 7 7 7 7 7 8 8
SU3 11 9 9 8 8 8 8 8 8 8 8 8 8 7 7 9 10 10 10 11 11 11 11 11 10
Is 24 12 17 11 13 14 12 11 11 12 12 15 15 15 13 14 14 15 16 17 16 16 16 15 15
Iσ 9 11 10 10 8 8 7 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
BC 26 9 9 8 9 8 9 8 8 8 8 9 8 9 8 9 9 10 8 8 9 8 9 9 9
BC2 11 8 10 9 10 11 11 11 10 10 10 10 10 10 11 9 9 9 9 9 9 9 9 9 9
BC3 11 8 8 9 8 8 8 9 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 10

Table 5. Leave-one errors for the Colon Tumor dataset with up to 25 top-ranked features; σ =
√

0.3.
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Figure 7. Leave-one-out classification accuracy for the Colon Tumor dataset with the C4.5 and the 1NN
classifiers.
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Figure 8. Leave-one-out classification accuracy for the Colon Tumor dataset with the SVM and the NB
classifiers.

to oscillate with the increasing number of features, as seen in Figs. 7-8. The leave-one-out and
the 10-fold crossvalidation curves have the same character, reaching similar number of errors.

3.3 Lymphoma results

For the Lymphoma dataset top genes are from X1275–X1281 range; SU3 and BC2 select
X1281 as the most important, while Is and BC select X1279 (Tab. 6). Some of these genes are
probably redundant, but bearing in mind possible errors in measurement of their activity it is
better to keep them.

C4.5 has again problems with this data, but the 3 other classfiers achieve error-free leave-
one-out results for larger number of genes: 1NN for 60 or more genes with SU3 ranking (al-
though in crossvalidation tests zero errors are achieved with much smaller number of genes,
about 10); SVM and NB for most rankings with 60 or more genes, although in crossvalidation
Naive Bayes needs more features. SU3 index is giving consistently the best results here, with



small fluctuations in the number of errors when the number of genes increases to 100 (Fig. 9-Fig.
10).

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ρ 1277 1276 1279 1281 1317 1291 1278 1275 75 1280 1316 2439 2417 1315 2438
SU3 1281 1317 75 2436 1277 1291 1275 1279 2244 3020 1314 1320 3861 1312 1276
Iσ 1276 1279 1281 1277 1278 1280 1317 1291 1275 75 2439 1247 1312 1316 1284
Is 1279 1276 1314 2244 1264 2496 1317 1316 1281 1278 37 2438 2243 2136 1469

BC 1279 1276 2438 1281 1278 1277 1317 1264 3019 2439 2244 1616 1316 1312 1310
BC2 1281 1280 1279 1276 75 2439 1275 1278 1277 1267 1312 1284 2496 1144 809
BC3 2439 1281 1279 1312 1280 1277 1276 1275 1267 75 3860 3085 2467 1320 1317

Table 6. Indices of genes of the first 15 highest-rank features for Lymphoma dataset.

Classifier Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C4.5 ρ 5 5 6 6 7 7 7 7 8 8 8 8 9 9 9 9 9 9 9 9 10 10 10 9 9
SU3 7 4 5 6 9 9 10 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 9
Is 4 4 4 5 5 5 7 7 7 8 8 9 9 9 9 9 9 10 11 11 11 11 11 11 11
Iσ 3 4 4 4 5 5 6 6 6 7 7 7 7 7 7 7 8 8 8 8 8 9 9 9 10
BC 4 4 6 5 6 6 7 8 8 8 8 8 8 9 10 11 11 11 11 11 10 11 11 11 9
BC2 7 8 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 7 7 7 7 7 7
BC3 9 7 4 6 6 6 6 6 6 5 5 5 5 6 7 8 8 8 8 8 9 9 9 9 9

1NN ρ 8 7 7 6 4 3 3 4 0 0 1 1 1 1 1 1 2 2 2 2 2 1 2 2 2
SU3 8 5 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 2 2 2 2
Is 6 5 6 2 2 4 4 3 3 4 4 3 4 3 3 3 3 2 2 3 3 3 3 3 3
Iσ 7 5 4 6 5 6 3 3 5 0 2 2 1 1 2 2 2 2 2 2 1 1 1 2 1
BC 6 5 5 5 5 5 3 3 4 4 2 3 3 3 3 3 4 4 4 4 3 4 4 4 4
BC2 8 9 8 7 2 3 3 3 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4
BC3 11 7 5 5 3 5 4 6 5 3 3 2 3 4 3 2 2 2 3 3 3 3 2 3 3

SVM ρ 6 3 3 3 3 3 3 3 2 2 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0
SU3 5 3 2 2 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1
Is 4 3 3 3 3 4 4 2 3 3 4 4 4 2 2 2 2 2 2 4 2 2 3 1 1
Iσ 5 3 3 3 3 3 3 3 3 2 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0
BC 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 1 1 1 1 1
BC2 5 4 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 3 3 2 0 1 1 1 1
BC3 10 4 3 3 3 3 3 3 3 3 3 3 4 2 2 2 3 4 4 2 1 1 1 0 0

NBC ρ 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 3 3 2 2 2
SU3 5 3 1 1 0 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Is 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2 2 3 3 3 3 3 3
Iσ 5 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2
BC 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
BC2 5 4 4 3 3 3 3 4 4 3 3 4 4 4 4 3 3 4 4 4 3 3 2 2 2
BC3 8 6 4 3 3 3 3 3 3 3 3 3 2 2 2 3 3 2 2 2 2 2 2 2 2

Table 7. Leave-one errors for the Lymphoma dataset with up to 25 top-ranked features; σ =
√

0.3.

4 Discussion

Comparison of the leave-one-out error rates achieved with different rankings here with the
best results found in literature using various sophisticated feature selection methods is presented
in Tab. 8. Although the margin ideas introduced here certainly can be explored in many other
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Figure 9. Leave-one-out classification accuracy for the Lymphoma dataset with the C4.5 and 1NN clas-
sifiers.
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Figure 10. Leave-one-out classification accuracy for the Lymphoma dataset with the SVM and the NB
classifiers.

ways results obtained so far are encouraging. For Lymphoma and Leukemia feature subsets
leading to zero errors for NBC, 1NN and SVM classifiers have been identified using soft margin
(Iσ) index or hard margin indices Is, SU3. Bayesian indices BC , although theoretically well
justified, cannot be realiably estimated [2] and have not lead to such good results.

Best leave-one-out results found in the literature for Colon cancer have been replicated only
with Is index, and are better on by 3 errors [10] comparing to the results obtained with SU3

index. The reference results [10] were found using a selection rather than a ranking method,
and removal of redundancy may improve the results. The crossvalidation results show that
differences of a few errors are easily within the variance of all classification methods used here.

Sometimes a very small number of features gives the best results; bearing in mind small
sample effects for this type of data larger subsets of features should be preferred, even though
classification results on a given dataset may be slightly worse. The problem with model selection
for these datasets is quite severe, as there is little correlation between results on the training and



Data Method NBC SVM 1NN C4.5 Literature

Lymphoma Iσ 0.00 0.00 0.00 6.38
Is 0.00 2.22 4.25 8.51

SU3 0.00 0.00 0.00 4.25 0.0, AIC, BIC, MDL [9]
Leukemia Iσ 2.77 2.77 4.16 5.55 0.0, MRMR [10];

Is 1.39 1.39 1.39 9.72
SU3 0.00 0.00 0.00 5.55 1.39, SVM [11]; 1.39, NLProbit [12]

Colon cancer Iσ 12.90 12.90 17.74 14.51 6.45, MRM [10];
Is 17.74 9.67 11.29 6.45

SU3 11.29 11.29 14.51 14.51 6.45, PLS, LD, QDA [13]

Table 8. Comparison of the lowest error rates (in %) for SU and Iσ ranking indices with the best results
found in literature (using 100 features).

test partitions in the crossvalidation runs.

The erratic behavior of accuracy as a function of the number of features is a major drawback
of all ranking methods, affecting not only the gene expression data, but also many other data
with large number of features. In case of Bayesian indices BC and their variants problems with
accurate estimation may be responsible for such behavior [2], while in case of other indices this
may be the effect of redundancy and small sample size. One way to improve and stabilize the
results is to use crossvalidation or bootstrap techniques to calculate cumulative ranking indices.
However, tests of this idea did not led to more monotonic dependence of accuracy on the number
of selected features. Perhaps a simple removal of redundant features will lead to more stable
behavior. Reduction of computational costs may be achieved by ordering features according to
their ranking indices, and then expanding the feature set starting from the best one and adding
them consecutively, but skipping those features that do not increase accuracy on the training
partition in crossvalidation. In addition one may try boosting techniques on individual vectors,
adding only the features that contribute to handling errors and do not degrade the quality of
correctly classified cases.

Good performance of the Is index is somehow surprising, bearing in mind that this is a very
simple-minded index that can be improved in many ways. For this type of data simplest solutions
(discretization and naive ranking) tend to work well and thus it is hard to see the advantage of
margin-based filters that perform in a similar way as other ranking indices. More tests on larger
datasets should be done and several improvements of the basic margin feature selection idea
should be investigated. The position and the size of the margins should be optimized, and other
indices to measure overlap of probability distributions should be introduced to model the “soft
margin” idea. These ideas will be tested soon.
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Research, research grant 2005-2007; Jacek Biesiada is also grateful for support by the Founda-
tion for Polish Science.

References

[1] W. Duch, R. Setiono, and J. Zurada. Computational intelligence methods for understanding
of data. Proceedings of the IEEE, 92(5):771–805, 2004.



[2] W. Duch. Filter methods. In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Fea-
ture extraction, foundations and applications, pages 406–411. Physica Verlag, Springer,
Berlin, Heidelberg, New York, 2006.

[3] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical recipes in C.
The art of scientific computing. Cambridge University Press, Cambridge, UK, 1988.

[4] B. W. Silverman. Density Estimation for Statistics and Data Analysis. London, U.K.
Chapman & Hall, 1986.

[5] T.R. Golub et al. Molecular classification of cancer: Class discovery and class prediction
by gene expression monitoring. Science, 286:531–537, 1999.

[6] U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, A.J. Levine. Broad
patterns of gene expression revealed by clustering analysis of tumor and normal colon
tissues probed by oligonucleotide arrays. PNAS, 96:6745–6750, 1999.

[7] A.A. Alizadeh et al. Distinct types of diffuse large b-cell lymphoma identified by gene
expression profiling. Nature, 403:503–511, 2000.

[8] W. Duch, T. Wieczorek, J. Biesiada, M. Blachnik, Comparison of feature ranking methods
based on information entropy. Proc. of International Joint Conference on Neural Networks
(IJCNN), Budapest 2004, IEEE Press, pp. 1415-1420

[9] Xiaobo Zhou, Xiaodong Wang, and Edward R. Dougherty. Gene selection using logistic
regressions based on AIC, BIC and MDL criteria. New Mathematics and Natural Compu-
tation, 1(1):129–145, 2005.

[10] C. Ding and H. Peng. Minimum redundancy feature selection from microarray gene ex-
pression data. Journal of Bioinformatics and Computational Biology, 3(2):185–205, 2005.

[11] Y. Lee and C-K. Lee. Classification of multiple cancer types by multicategory support
vector machines using gene expression data. Bioinformatics, 19:1132–1139, 2003.

[12] X. Zhou, X. Wang, and E.R. Dougherty. Nonlinear probit gene classification using mutual
information and wavelet-based feature selection. Biological Systems, 12(3):371–386, 2004.

[13] D.V. Nguyen and D.M. Rocke. Tumor classification by partial least squares using microar-
ray gene expression data. Bioinformatics, 18:39–50, 2002.


