
Towards comprehensive foundations
of computational intelligence.

Włodzisław Duch

Department of Informatics, Nicolaus Copernicus University, Grudzia̧dzka 5, Toruń, Poland,
and School of Computer Engineering, Nanyang Technological University, Singapore.

Abstract. Although computational intelligence (CI) covers a vast variety of dif-
ferent methods it still lacks an integrative theory. Several proposals for CI foun-
dations are discussed: computing and cognition as compression, meta-learning
as search in the space of data models, (dis)similarity based methods providing a
framework for such meta-learning, and a more general approach based on chains
of transformations. Many useful transformations that extract information from
features are discussed. Heterogeneous adaptive systems are presented as particu-
lar example of transformation-based systems, and the goal of learning is redefined
to facilitate creation of simpler data models. The need to understand data struc-
tures leads to techniques for logical and prototype-based rule extraction, and to
generation of multiple alternative models, while the need to increase predictive
power of adaptive models leads to committees of competent models. Learning
from partial observations is a natural extension towards reasoning based on per-
ceptions, and an approach to intuitive solving of such problems is presented.
Throughout the paper neurocognitive inspirations are frequently used and are
especially important in modeling of the higher cognitive functions. Promising
directions such as liquid and laminar computing are identified and many open
problems presented.

1 Introduction

Computational intelligence emerged from interactions of several research communities
with overlapping interests, inspired by observations of natural information processing.
H. Spencer in his “Principles of Psychology” published in 1855 drew neural network
diagrams and made a conjecture that all intelligence may be interpreted in terms of suc-
cessful associations between psychological states driven by the strength of connections
between the internal states (see the early history of connectionism in [172]).

Research in artificial neural networks (ANNs) grew out from attempts to drastically
simplify biophysical neural models, and for a long time was focused on logical and
graded response (sigmoidal) neurons [5] used for classification, approximation, associ-
ation and vector quantization approaches used for clusterization and self-organization
[106]. Later any kind of basis function expansion, used since a long time in approxima-
tion theory [143] and quite common in pattern recognition, became “a neural network”
[4], with radial basis function (RBF) networks [140] becoming a major alternative to
multilayer perceptron networks (MLPs). However, as pointed out by Minsky and Pa-
pert [131] there are some problems that such networks cannot solve. Although these

authors were wrong about the XOR (or the parity) problem which is easily solved by
adding hidden neurons to the network, they were right about the topological invariants
of patterns, in particular about the problem of connectedness (determining if the pat-
tern is connected or disconnected). Such problems can only be solved with a different
type of neurons that include at least one phase-sensitive parameter [111], or with spik-
ing neurons [173]. Computational neuroscience is based on spiking neurons [68], and
although mathematical characterization of their power has been described [119] their
practical applications are still limited. On the other hand feedforward artificial neu-
ral networks found wide applications in data analysis [144] and knowledge extraction
[62]. Better understanding of mathematical foundations brought extensions of neural
techniques towards statistical pattern recognition models, such as the Support Vector
Machines (SVMs) [155] for supervised learning and Independent Component Analysis
[90] and similar techniques for unsupervised learning.

Most networks are composed of elements that perform very simple functions, such
as squashed weighted summation of their inputs, or some distance-based function [57,
58]. Connectionist modeling in psychology [151] introduced nodes representing whole
concepts, or states of network subconfigurations, although their exact relations to neu-
ral processes were never elucidated. It was natural from this point of view to extend
connectionist networks to all kinds of graphical models [99], including Bayesian be-
lief networks and abstract network models for parallel distributed processing. Concept
nodes, representing information derived from perception or from some measurements,
are not too precise and thus may be represented in terms of fuzzy membership func-
tions. Fuzzy models may be formally derived as generalization of multivalued logics,
but the field has also rather obvious cognitive inspirations related to models of intelli-
gent behavior at a higher, psychological level, rather than elementary neural level. Sets
of fuzzy rules have a natural graphical representation [116], and are deeply connected to
neural networks [37]. Fuzzy rules organized in a network form may be tuned by adap-
tive techniques used in neural networks, therefore they are called neurofuzzy systems
[133, 136]. Thus fuzzy and neural systems are at the core of computational intelligence.

Brains and sensory organs have been structured and optimized by the evolutionary
processes to perform specific functions. This inspiration led to introduction of evolu-
tionary programming Fogel66,Goldberg89, and later also other biologically-inspired
optimization approaches, such as ant, swarm, and immunological system algorithms
[16, 105, 30], that can be used for optimization of adaptive parameters in neural and
neurofuzzy systems. Although the algorithms based on these diverse biological inspi-
rations are used for similar applications the time-scales of evolutionary, behavioral and
immunological processes involved are very different, and the type of intelligence they
are related to is also quite different.

The three main branches of computational intelligence are thus inspired by evolu-
tionary processes that structured brains and intelligence, low-level brain processes that
enable perception and sensorimotor reactions (primary sensory and motor cortices),
and intermediate level fuzzy concepts and associative reasoning (higher sensory areas
in temporal and parietal lobes). To cover all phenomena related to intelligence in a
computational framework representation and reasoning based on complex knowledge
structures is needed. Traditionally artificial intelligence (AI) has been concerned with

high level cognition, using the symbolic knowledge modeling to solve problems that
require sequential reasoning, planning and understanding of language, but ignoring
learning and associative memories. High-level cognition requires different approach
than perception-action sequences at the lower cognitive level, where artificial neural
networks, pattern recognition and control techniques are used. Knowledge used in rea-
soning and understanding language is based on a large number of concepts with com-
plex structure, huge amount of diverse information that may be combined in an infi-
nite number of ways. Making inferences from partial observations requires systematic
search techniques and may draw inspirations from decision-making processes in which
prefrontal cortex of the brain is involved. One of the big challenges facing CI commu-
nity is integration of the good-old fashioned artificial intelligence (GOFAI). Although
some attempts in this direction have been made [88] typical textbooks on artificial in-
telligence [179, 152] include very little information on neural networks or fuzzy sys-
tems, with learning reduced to probabilistic, Bayesian models, maximum likelihood
approaches, and symbolic machine learning methods. Overlap between the two com-
munities in terms of conference topics, or journal publications has always been mini-
mal. Each branch of CI has its natural areas of application requiring methods that may
not overlap significantly. Even neural networks and pattern recognition communities,
despite a considerable overlap in applications, tend to be separated.

This situation may change in near future. Development of artificial pets or other
autonomous systems that should survive in hostile environment is a great challenge
for signal analysis to model perception, control systems for behavioral modeling, and
perception-based reasoning including attention. Autonomous agents, such as robots,
need to reason using both abstract knowledge and information based on perceptions,
information coming from sensors, categorized into information granules that are easier
to handle. Efforts in cognitive robotics require combination of high behavioral compe-
tence with human-level higher cognitive competencies. Autonomous agents should be
based on cognitive architectures that integrate low and high-level cognitive functions.
This area is slowly gaining popularity and will be a natural meeting ground for all
branches of computational intelligence. Development of chatterbots that involve people
in interesting conversation is based now on natural language processing and knowledge
representation techniques, but it remains to be seen how far one can go in this direction
without including real perception. Another driving force that should encourage the use
of search techniques that form the basis for AI problem solving is the “crises of the
richness” that afflicts computational intelligence. Recent component-based data min-
ing packages 1 contain hundreds of learning methods, input transformations, pre- and
post-processing components that may be combined in thousands of ways. Some form of
meta-learning that should automatically discover interesting models is urgently needed
and it has to be based on search in the model space. Heuristic search techniques have
been developed to solve complex combinatorial problems and CI has reached the stage
now where they should be used.

In this paper an attempt is made to outline foundations for a large part of computa-
tional intelligence research, identify open problems and promising directions, show how
to solve this “crises of the richness” and how to go beyond pattern recognition, towards

1 See: http://en.wikipedia.org/wiki/Data mining

problems that are of interest in artificial intelligence, such as learning from partial ob-
servations or perceptions, and systematic reasoning based on perceptions. The emphasis
here is on architectures and capabilities of models, rather then train techniques, there-
fore evolutionary and other optimization approaches are not discussed. In the second
section foundations of computational intelligence are discussed. Computing and cogni-
tion seen from the perspective of compression of information is analyzed, introducing
a new measure of syntactic and semantic information content, heterogeneous systems
that may discover specific bias in the data, and meta-learning scheme to discover good
data models in an automatic way. In the third section a general CI theory based on
composition of transformations is outlined, showing how new information is generated,
extracted from the data, how to use heterogeneous learning systems, redefine the goal
of learning in case of difficult problems, understand data in the similarity-based frame-
work and use many individual models in meta-learning schemes. Section four shows
how to go beyond pattern recognition using intuitive computing and correlation ma-
chines. Neurocognitive inspirations are very important at every step and are discussed
in section five. A summary of open problems closes this paper.

2 Searching for computational intelligence foundations

A quick glance on some books with “computational intelligence” title [107, 132, 136]
shows that the field still lacks a coherent framework. Many branches of CI are presented
one after another, with distant biological inspirations as a common root, although in
case of such statistical techniques as kernel methods or SVMs such inspirations can-
not be provided. Different experts define computational intelligence as a collection of
computational techniques that are glued together only for historical or even personal
reasons. Modern pattern recognition textbooks [63, 174, 164] start from the Bayesian
probabilistic foundations that may be used to justify both discriminat as well as the
nearest neighbor type of learning methods. Supervised and unsupervised pre-processing
techniques, classification, rule extraction, approximation and data modeling methods,
cost functions and adaptive parameter optimization algorithms are used as components
that may be combined in thousands of ways to create adaptive systems.

Can there be a common foundation for most computational intelligence methods
guiding the creation of adaptive systems? Computational learning theory [102] is a rig-
orous mathematical approach to learning, but it covers only the theoretical aspects of
learning and is rarely used in practice. In brain science it has been commonly assumed
(although only recently tested [160]) that sensory systems and neurons in the primary
sensory cortex are well adapted through the evolutionary and developmental processes
to the statistical properties of the visual, auditory and other types of signals they pro-
cess. Neurons in the higher sensory areas react to progressively more complex aspects
of signal structure. Difficult, ill-determined problems (including perception and natural
language processing) may be solved only by using extensive background knowledge.
Despite relatively rigid architecture of primary sensory areas neurons can quickly adapt
to changes in the sensory signal statistics, for example variance, contrast, orientation
and spatial scale. Thus a series of transformations is made before sufficient amount of
information is derived from the signal to perform object identification, and then infor-

mation about the object is used for associations and further reasoning. Inspirations from
brain sciences serve below to discuss some challenges facing CI, and will be explored
in more details later in this paper.

2.1 Some challenges for CI

Intelligent systems should have goals, select appropriate data, extract information from
data, create percepts and reason with them to find new knowledge. Goal setting may
be a hierarchical process, with many subgoals forming a plan of action or solution to a
problem. Humans are very flexible in finding alternative ways to solve a given problem,
and a single-objective solutions are rarely sufficient. Brains have sufficient resources
to search for alternative solutions to the problem, recruiting many specialized modules
in this process. An important challenge for computational intelligence is thus to create
flexible systems that can use their modules to explore various ways to solve the same
problem, proposing multiple solutions that may have different advantages. This idea
will be explored below using a meta-learning search process in the space of all possible
models that may be composed from available transformations. The great advantage of
Lisp programming is that the program may modify itself. There are no examples of CI
programs that could adjust themselves in a deeper way, beyond parameter optimization,
to the problem analyzed. This idea has been partially implemented in the similarity-
based meta-learning scheme [35, 53], and is also in accord with evolving programs and
connectionist systems [101] that to a limited degree change their structure.

Most CI algorithms have very limited goals, such as prediction (using approxima-
tion method) or diagnosis (classification) based on data with some fixed structure. Such
algorithms are essential building blocks of general intelligent systems, although their
goals and information flow is determined by the user who tries to find a method that
works for a given data. For example, running neural network software the user has to
make many decisions, designing the network, selecting the training method, setting pa-
rameters, preparing the data, evaluating results and repeating the whole cycle. In effect
the user acts as an external controller for the system, while the brain has parts con-
trolling other parts [149, 150]. With sufficiently large library of different procedures
for data preprocessing, feature selection and transformation, creation of data models,
optimization of these models and postprocessing of results (already hundreds of com-
ponents are available in such packages as Weka [180], Yale [129] and others) the control
problem becomes quite difficult and the number of possible variants of such approach
guarantees a constant supply of conference papers for many years to come.

Most efforts in the computational intelligence field goes into the improvement of
individual algorithms. For example, model selection [164] in neural networks is usually
restricted to architectures (number of nodes, each performing the same type of func-
tions) and improvements of the training schemes; in the decision tree the focus is on
the node splitting criteria and pruning strategies. The current focus on accuracy im-
provements of individual models, dominating in the academic journal and conference
papers, is hard to justify both from the practical and theoretical point of view. The ‘no
free lunch’ theorem [63, 174] shows that there is no single learning algorithm that is in-
herently superior to all other algorithms. In real world applications there may be many

additional considerations, different methods may offer different advantages, for exam-
ple presenting results in comprehensible way or using features of the problem that can
be obtained with lower costs or effort. These considerations are almost never addressed
in the literature on learning systems. In practice “Experience with a broad range of tech-
niques is the best insurance for solving arbitrary new classification problems (Chapter
9.2.1, [63]). Moreover, one should find all algorithms that work sufficiently well for a
given data, but offer different advantages. Although data mining packages include now
many algorithms still some of the best algorithms used in the StatLog project [128] are
not implemented in research or commercial software. It is doubtful that new algorithms
are going to be always significantly better. Most programs have many parameters and it
is impossible to master them all.

The first challenge for CI is thus to create flexible systems that can configure them-
selves finding several interesting solutions for a given tasks. Instead of a single learning
algorithm priorities may be set to define what will be an interesting solution, and a sys-
tem that automatically creates algorithms on demand should search for configurations
of computational modules in the space of all models restricted by the user priorities. For
example, if the goal is to understand or make a comprehensible model of the data, meth-
ods that extract rules from data or that find interesting prototypes in the data should be
preferred, although methods that provide interesting visualizations may also be consid-
ered. A lot of knowledge about reliability of data samples, possible outliers, suspected
cases, relative costs of features or their redundancies is usually ignored as there is no
way to pass it to and to use it in CI programs. Models that are not working well on all
data may work fine on some subsets of data and be still useful. In practical applications
validation and verification of solutions may be of great importance.

These challenges have been only partially addressed so far by CI community. Sys-
tematic generation of interesting models has been the topic of meta-learning research. In
the simplest version meta-learning may be reduced to a search for good models among
those available in the data mining packages, a search in the model/parameter space. In
the machine learning field the multistrategy learning has been introduced by Michalski
[64]. Learning of a single model may be sufficiently difficult, therefore to be feasible
search in the space of many possible models should be heuristically guided. The Metal
project [71] tried to collect information about data characteristics and correlate it with
the methods that performed well on a given data. A system recommending classification
methods for a given data has been built using this principle, but it works well only in a
rather simple cases. Not much is known about the use of heuristic knowledge to guide
the search for interesting models. One problem with most meta-learning approaches is
that the granularity of the existing models is too large and thus only a small subspace
of all possible models is explored.

Although computational intelligence covers a vast variety of different methods it
lacks integrative theory. Bayesian approaches to classification and approximation in
pattern recognition [63, 174, 164] covers mostly statistical methods, leaving many neu-
ral and fuzzy approaches in CI largely outside of their scope. There is an abundance
of specialized, ad hoc algorithms for information selection, clusterization, classifica-
tion and approximation tasks. An integrative theory is needed, providing a good view
of interrelations of various approaches, and a good start for meta-learning, that could

automatically find an appropriate tool for a given task. Creating such a theory is a great
challenge. Some guiding principles that address it are described below.

2.2 Computing and cognition as compression

Neural information processing in perception and cognition is based on the principles
of economy, or information compression [22]. In computing these ideas have been
captured by such concepts as the minimum (message) length encoding, minimum de-
scription length, or general algorithmic complexity [117]. An approach to information
compression by multiple alignment, unification and search has been proposed as a uni-
fying principle in computing, analysis and production of natural language, fuzzy pattern
recognition, probabilistic reasoning and unsupervised inductive learning [181, 182], but
so far only models for sequential data have been considered. The difficulty in applying
such principles to real problems are due to the importance of underlying structures for
handling information and knowledge representation. Multiple alignment is sufficient
for sequential information that is stored in string but not for structured information that
is stored in the brain subnetworks in a way that is not yet fully understood.

Information compression and encoding of new information in terms of old has been
used to define the measure of syntactic and semantic information introduced in [56].
This information is based on the size of the minimal graph representing a given data
structure or knowledge–base specification, thus it goes beyond alignment of sequences.
A chunk of information has different value for someone who does not have any as-
sociations with it and treats it as a fact to be ignored or remembered, and a very dif-
ferent value for an expert who may have to restructure many existing associations to
accommodate it. Semantic information measure, introduced in [56], is proportional to
the change of algorithmic (Chaitin-Kolmogorov) information [20] that is needed to de-
scribe the whole system, and therefore measures relative complexity, depending on the
knowledge already accumulated. Algorithmic information or the relative complexity of
an object y in respect to a given object x is defined as the minimal length of the program
p for obtaining y from x. Algorithmic information captures some intuitive features of
information: a binary string obtained by truly random process cannot be compressed
and carries the amount of information equal to the number of its digits. An apparently
random string may, however, be easily computable from some short algorithm, for ex-
ample a square root or the value of π. Because of the Gödel and related theorems it is
in general not possible to decide whether the string is random or simple to compute.
Although algorithmic information has correct intuitive features it is usually very hard
to compute, relying on a concept of universal computer.

Suppose that information is encoded in n-element binary strings. There are 2 n pos-
sible strings and if they are chosen in a completely random way only a little compression
will be possible. Each new string will contribute about n bits of information and strings
will be represented in form of a binary tree. Encoding new information in terms of the
old is possible in various ways if some parts of the new bit strings are already present in
the previously analyzed old bit strings. For example, if the new string B n differs from
an old string Bo only by the last bit bn the whole Bn string contributes only one bit
of information relatively to Bo. If many bit strings are received the whole information
contained in them may be presented in a binary tree and folded into a minimal graph. If

all 2n strings are present the minimal graph may be represented in a very compact form
(Fig. 1, left). However, if all but the last string 11111 are received the minimal graph
(created by folding binary tree with just one edge removed) is rather complicated (Fig.
1, right). Adding the last string carries – from the point of view of the whole system
that builds internal representation of the structure of the incoming information – a large
amount of information, reducing the 5-bit graph by 7 edges and 4 vertices. The number
of edges plus vertices changed in the minimal graph representing all data is thus a useful
measure of the structural information that is gained by receiving new information. If the
strings repeat themselves no new structural information is gained, although frequency
of repeated information chunks may be useful for other purposes.

0

0

0

0

0

1

1

1

1

1 0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

Fig. 1. Left: minimal graph representing a set of all 32 binary 5-bit strings. Right: minimal graph
for a set of all 5-bit binary strings, without 11111 string. Such graphs are created by folding
binary trees to minimal graphs.

Semantic contents or meaning of information may only be defined in a context of
cognitive system, for example an expert system based on a set of rules stored in a knowl-
edge base, or a semantic network. Knowledge base, together with the rules of inference,
defines a universum of facts, representing knowledge or some model of the world. In-
formation gain relatively to the knowledge base is defined as the change of the size
of the minimal knowledge based that can accommodate this fact and its consequences.
When a new fact is learned by a human it may take from several seconds to days or
even years before this fact is truly accommodated and the meaning is fully understood.
Years of repetition of basic facts in mathematics and natural sciences are required to
really digest this information: once it has been integrated into the “knowledge base”
the information contained in the school book can be quickly reviewed and new infor-
mation encoded in terms of the old. Adding new rule to the knowledge base requires
accommodation of this knowledge, and thus modification of existing knowledge. For
example, learning that some fruits are edible may require a short sequence of symbols
to transmit, but will have large influence on the knowledge based, creating new goals
and modifying behavior of humans and animals.

Perfect minimal encoding is probably never accomplished in real brains, but even an
imperfect approximation of this process gives a useful measure of semantic information.
For example, cyclomatic complexity [125] of a software module is calculated from
a connected graph showing topology of control flow within the program as CC =
E − N + p, where E is the number of edges of the graph, N the number of nodes
of the graph and p the number of connected components. Software with cyclomatic
complexity over 50 is considered untestable and very high risk. Adding new module
to such software leads to a large change in the amount of information that the system
gains, making it hard to predict all the consequences.

The use of algorithmic information measures in computational intelligence is still
rare. However, CI systems that encode new information in terms of the known infor-
mation are certainly not new. They include constructive neural networks that add new
nodes only if the current approximation is not sufficient [85, 50], similarity-based sys-
tems that accept new reference vector checking first if it is not redundant, decision trees
that are pruned to increase their generalization and ignore data that are already correctly
handled, information selection methods that increases the pool of features or their com-
binations only when new data justifies it, and many other approaches.

2.3 Meta-learning via search in the model space

Meta-learning requires detailed characterization of the space of possible models, the
ability to create and modify CI models in a systematic way. This should not be done
in a random way, as the space of all possible models is too large to explore. Some
framework that covers large number of different methods is needed. For feedforward
neural networks such framework involves possible architectures, from simplest to more
complex, and a taxonomy of different types of transfer functions [57, 58], allowing
for systematic exploration of different network models. Although the focus of neural
network community has been on learning algorithms and network architectures, it is
clear that selection of transfer functions is decisive for the speed of convergence in ap-
proximation and classification problems. As already shown in [57] (see also [11, 12])
some problems may require O(n2) parameters using localized functions and only O(n)
parameters when non-local functions are used. The n-parity problem may be trivially
solved using a periodic function with a single parameter [40] while the multilayer per-
ceptron (MLP) networks need O(n2) parameters and learn it only with great difficulty.
It is hard to create basis functions expansion that will not have the universal approx-
imator property, yet the fact that MLPs and radial basis function (RBF) networks are
universal approximators has somehow blinded the researches who ignored quite obvi-
ous fact that it is the speed of convergence (especially for multidimensional data) that is
most important. In principle neural networks may learn any mappings, but the ability to
learn quickly and accurately requires flexible “brain modules”, or transfer functions that
are appropriate for the problem to be solved. This problem will not disappear thanks to
better learning procedures or architectures, the main research topics in neural comput-
ing.

Meta-learning methods should help to build the final model from components per-
forming different transformations on available data. Almost all adaptive systems are
homogenous, i.e. they are built from many processing elements of the same type. MLP

neural networks and decision trees use nodes that partition the input space by hyper-
planes. Networks based on localized functions (RBF, Gaussian classifiers) frequently
use nodes that provide spherical or ellipsoidal decision borders. This cannot be the best
inductive bias for all data, frequently requiring large number of processing elements
even in cases when simple solutions exist. Neurocognitive inspirations that go beyond
simple neurons may point the way here. A single cortical column in the brain provides
many types of microcircuits that respond in a qualitatively different way to the incoming
signals [121]. Other cortical columns may combine these responses in a perceptron-like
fashion to enable complex discriminations. At the level of higher cognition brains do not
recognize all objects in the same feature space. Even within the same sensory modal-
ity a small subset of complex features is selected, allowing to distinguish one class of
objects from another (for example, in case of vision a simple sketch is sufficient). Ob-
ject recognition or category assignment by the brain is probably based on evaluation of
similarity to memorized prototypes of objects using a few characteristic features.

In contrast to human categorization most pattern recognition systems implicitly as-
sume that classification is done using the same features in all regions of the input space.
Memory-based techniques use single distance (or similarity) function to distinguish all
objects, statistical or neural methods provide hyperplanes (MLPs) or Gaussian func-
tions (RBF networks) for discrimination, but rarely both. Decision trees are usually
univariate, employing a decision rule for the threshold value of a single feature, parti-
tioning the input space into hyperrectangles. Multivariate decision trees provide several
hyperplanes at high computational cost. Support Vector Machines use one kernel glob-
ally optimized for a given dataset [27]. All these systems may be called “homogenous”
since they search for a solution providing the same type of elements, the same type of
decision borders in the whole feature space. Committees of the homogenous systems
are frequently used to improve and stabilize results [17]. Combining systems of dif-
ferent types in a committee is a step towards heterogeneous systems that use different
types of decision borders, but such models may become quite complex and difficult to
understand.

A rather obvious extension of traditional approach is to use class-specific features
that may be quite distinct for different classes. This approach is used in an implicit way
in feedforward neural networks with strong regularization that leads to creation of hid-
den nodes strongly linked only to selected features and used for specific classes. This
type of solutions may also emerge in hierarchical systems, such as decision trees, where
each class may end in a different branch using different features, although at least one
feature is always shared among all classes. Using feature selection for separate classi-
fiers Ck(X) that distinguish a single class from the rest may lead to completely distinct
sets of features. In the K-class problem a set of i = 1..K selector transformations
Zi = Ti(Xi) may be defined by feature selection techniques, and these classifiers are
restricted to their own Ck(Zk) subspaces. The final decision depends on the relative
confidence of individual classifiers that may assign the same vector to the class they
specialize in. Even though individual classifiers are trained on different feature subsets
their confidence may be scaled by a second transformation, such as additional scal-
ing or a linear mixture of their predictions. Alternatively, new adaptive transformations
may, trained on the K-dimensional vectors 1X = Ck(X) obtained as predictions for all

training data. In this case the classifiers are used as data transformations and their num-
ber may be larger than K . Binary classifiers (such as decision trees) usually give only
one answer Ck(X) = 1, but some other classifiers may actually create K probabilities,
so the final dimensionality after this transformation may reach at least K 2.

A more sophisticated approach to class-specific use of features has been presented
by Baggenstoss [8]. It is based on estimation of probability density functions (PDFs)
in the reduced low-dimensional feature space selected separately for each class, and
mapping these PDFs back to the original input space, where Bayesian classification is
performed. To constrain the inverse mapping (it is obviously not unique) a reference
hypothesis is used for which P(X|H0) and P(Z|H0) are both known, and likelihood
rations are preserved, that is:

P(X) = P(Z)P(X|H0)/P(Z|H0) (1)

The “correction factor” to the PDF calculated in Z space is simply the ratio of the
two reference hypothesis PDFs. The PDF projection theorem open may possibilities
worth exploration, although the choice of the reference hypothesis may sometimes be
non-trivial.

2.4 Similarity-based framework for meta-learning

Similarity (or dissimilarity, measured by some distance) is a very fundamental con-
cept that can be used as a basis for computational intelligence methods [138]. For
additive similarity measures models based on similarity to prototypes are equivalent
to models based on fuzzy rules and membership functions [48]. Similarity functions
may be related to distance functions by many transformations, for example exponential
transformation S(X,Y) = exp(−D(X,Y)). Additive distance functions D(X,Y)
are then converted to the multiplicative similarity factors (membership functions). For
example, Euclidean distance function D2(X,Y)2 =

∑
i Wi(Xi − Yi)2 is equivalent

to a multivariate Gaussian similarity function S2(X,Y) = exp(−D2(X,Y)2) cen-
tered at Y with ellipsoidal contours of constant values D2(X,Y) =const, equal to the
product of univariate Gaussian membership functions S 2(X,Y) =

∏
i G(Xi, Yi) =∏

i exp[−Wi(Xi−Yi)2]. Using such transformations fuzzy rules (F-rules) with product
norms may always be replaced by prototype-based rules (P-rules) with appropriate sim-
ilarity functions. On the other hand all additive distance functions may be replaced by
product T-norms with membership functions given by exponential one-dimensional dis-
tance factors. For example, the Manhattan distance function D 1(X,P) =

∑
i=1 |Xi −

Pi| leads to a product of exp(−|Xi−Pi|) membership functions. However, non-additive
distance functions (for example the Mahalanobis distance) are difficult to approximate
using products or combinations of one-dimensional fuzzy membership functions, un-
less explicit correlations between fuzzy features are taken into account.

Prototype-based rules (P-rules), although rarely used, are in many cases easier to
comprehend than fuzzy rules (F-rules) and create new possibilities for data understand-
ing. Relations between these two types of rules have so far not been explored in details.
Two types of prototype-based rules may be distinguished: minimum distance rules (dis-
criminative approach), and the threshold rules (similarity-based approach). Minimum

distance rule selects the prototype that is closer:
IF P = arg minP′ D(X,P′) THAN Class(X) = Class(P),
while threshold rules select the prototype that is sufficiently similar, or closer than some
threshold distance:
IF D(X,P) ≤ dP THEN C.

The minimum distance rule for two prototypes defines a hyperplane bisecting the
line connecting these prototypes. There are many methods to find optimal hyperplanes
[63, 85] and they can be used to select optimal position of prototypes. On the other
hand variants of LVQ methods [106] lead to prototypes and thus hyperplanes that do
not seem to correspond to any discriminant analysis algorithms. In particular the idea
of maximizing margins, not only minimizing errors, used in SVM algorithms based on
solutions to regularized least square problem in the primial or dual space [21] , has not
yet been used for prototype optimization or selection [95, 79]. Any hyperplane defined
by its bias and normal vector (W0,W) is equivalent to a minimal distance rule for two
prototypes P,P′ such that W/||W|| = (P − P′)/||P− P′||, and W0 = 1

2 ||P −P′||.
Thus discrimination hyperplanes do not specify by themselves interesting prototypes,
they can move in the subspace parallel to the W plane, and be placed in important
positions, for example close to cluster centers.

Decision boundaries of the threshold rules depend on the type of the distance func-
tion D(X,P). They frequently provide localized decision regions and may not be able
to label vectors in some areas of feature space, unless a default (ELSE) rule is used. Dis-
tance function DW(X,P) between prototype P and point X that has constant value for
all points lying on a plane perpendicular to W is calculated by:

DW(X,P) = |
N∑
i

si(Xi − Pi)|; si = Wi/||W|| (2)

makes the threshold rule IF D(X,P) ≤ dP THEN C, with dP = 1
2 ||P − P′||

equivalent to the minimum distance rule for propotypes P,P ′. Relations between var-
ious discriminant analysis techniques on the one hand, and optimization of prototypes
on the other hand, have just started to be explored. Relations between similarity based
methods and fuzzy rule-based systems have also not yet been analyzed in depth. More
attention has been devoted to relations between RBF networks and fuzzy logic models
[103].

RBF and MLP networks may be viewed as a particular implementation of hierarchi-
cal sets of fuzzy threshold logic rules based on sigmoidal membership functions, equiv-
alent to crisp logic networks applied to the input data with uncertainty [37]. Leaving
uncertainty (fuzziness) on the input side makes the networks or the logical rule-based
systems easier to understand, and achieves similar results as the Type-2 fuzzy systems
[127]. Moreover, it shows deep connections between neural and fuzzy systems, with
different types of input uncertainty equivalent to crisp input values with specific trans-
fer functions. Many natural assumptions about uncertainty of input variable x lead to
probability that rule Pr(x > θ) is true given by the membership functions of sigmoidal
shape, for example semi-linear functions for uncertainties that are constant in some
interval or to erf functions (almost identical to logistic functions) for Gaussian uncer-
tainties.

The radial basis functions became a synonym for all basis function expansions,
although in approximation theory already in the classical book of Achieser published
in 1956 [2] many such expansions were considered. RBF networks are equivalent to
the fuzzy systems only in special cases, for example when the Gaussian membership
functions are used [103], but in the literature RBF is frequently used as a synonym
for Gaussian node networks, although any functions that depends only on Euclidean
distance, or a radial variable φ(r) = φ(||X − R||), is suitable for RBF expansion.
However, it is not clear that a radial dependence is always the best assumption for a
given data. Another useful category of basis set expansion methods uses separable basis
functions (SBF), where each node implements a product of one-dimensional functions
φ(X) =

∏
i fi(Xi). Approximation abilities of SBF networks are similar to those of

RBF networks, and the separable function realized by their nodes may be interpreted
in a natural way as the product of fuzzy membership functions. They may also form
a natural generalization of the Naive Bayes (NB) approach, with each network node
implementing a local NB model, and the whole network functioning as a committee of
such models, aggregating evidence for each class and using some voting procedure or
final decision [110]. It is not clear why so much research has been devoted to the RBF
networks while neural networks based on separable functions are virtually unknown:
the Feature Space Mapping (FSM) network [50, 60, 3, 44] seems to be the only existing
implementation of the Separable Basis Function networks so far.

A general framework for similarity-based methods (SBMs) has been formulated
using the concept of similarity [43, 35]. This framework includes typical feedforward
neural network models (MLP, RBF, SBF) , some novel networks (Distance-Based Mul-
tilayer Perceptrons (D-MLPs, [41]) and the nearest neighbor or minimum-distance net-
works [33, 43]), as well as many variants of the nearest neighbor methods, improving
upon the traditional approach by providing more flexible decision borders. This frame-
work has been designed to enable meta-learning based on a search in the space of all
possible models that may be systematically constructed. New algorithms are generated
by applying admissible extensions to the existing algorithms and the most promising
are retained and extended further. Training is performed using parameter optimization
techniques [52, 53]. Symbolic values used with probabilistic distance functions allow to
avoid ad hoc procedure to replace them with numerical values. To understand the struc-
ture of the data prototype-based interpretation of the results is used, simplifying pre-
dictive models and providing prototype rules (P-rules) that may be converted to fuzzy
rules (F-rules) [48].

In the SBM approach objects (samples, cases, states) {Oi}, i = 1 . . . n may be
represented by a set of numerical or symbolic features X i

j = Xj(Oi), j = 1...N char-
acterizing these objects, or by a procedure that evaluates directly similarity D(O i,Ok)
between objects, allowing for comparison of objects with complex structure. For clas-
sification problems a function or a procedure to estimate p(C i|X; M), i = 1..K , the
posterior probability of assigning vector X to a class C i, is defined, while for approx-
imation problems a function Y (X; M) is defined. In both cases the model M includes
various procedures, parameters and optimization methods. A general similarity-based
model for classification problems is constructed from the following components:

– input pre-processing transformation, either providing directly dissimilarities of ob-
jects D(Oi,Ok) or mapping them to symbolic/numerical descriptions X(O) that
define the feature space; in both cases a data matrix is obtained;

– a procedure to select relevant features or their combinations;
– function dj(Xj ; Yj) to calculate similarity of Xj , Yj feature values, j = 1..N ;
– function D(X,Y) = D({dj(Xj ; Yj)}) that combines similarities defined for each

attribute to compute similarities of vectors;
– specification of the neighborhoods, such as the number of reference vectors k taken

into account around of X, or the number of hidden nodes in feedforward neural
networks based on functions with localized support in the feature space;

– the weighting function G(D) = G(D(X,R)) estimating contribution of each ref-
erence vector R;

– a set of prototype (reference) vectors {R} selected from the set of training vectors
{Xi} and optimized using some procedures;

– a set of class probabilities or membership values p i(R), i = 1 . . .K for each refer-
ence vector;

– a misclassification risk matrix R(Ci, Cj), i, j = 1 . . .K;
– a scaling function K(·) estimating the influence of the error, for a given training

example, on the total cost function;
– a function (or a matrix) S(·, ·) evaluating similarity (or more frequently dissimi-

larity) of the classes; if class labels are soft, or if they are given by a vector of
probabilities pi(X), classification task is in fact a mapping;

– a total cost function E[DT ; M] that is minimized at the training stage directly, in a
crossvalidation, bootstrap or other procedure;

– procedures to optimize parameters of the model at each stage.

This framework may be used to automatically generate a sequence of models with
growing complexity. It has been used in a meta-learning scheme to solve classifica-
tion problems [53], starting from the simplest k-NN model parameterized by M =
{k, D(·, ·), {X}}), i.e. the whole training dataset used as the reference set, k nearest
prototypes included with the same weight, using a typical distance function, such as
the Euclidean or the Manhattan distance. Probabilities are computed as p(C i|X; M) =
Ni/k, where Ni is the number of nearest vectors that belong to class C i. The initially
model has thus only one parameter k for optimization. If such model is not sufficiently
accurate new procedures/parameters are added to create a more complex model. The
search tree in the space of all models is generated by extending current model in the
simplest way, using a measure that penalizes for increased model complexity and re-
wards for increased accuracy. Various model selection criteria may be applied to control
this process [174]. Several good models are maintained in a beam search procedure, and
the search stops when additional complexity of possible extensions of existing models
does not justify increased accuracy.

Scalar products or cosine distances are a particular way to measure similarity, quite
useful especially when vectors have significantly different norms (as in the evaluation
of text similarity [123]). Similarity may be evaluated in a more sophisticated way by
learning [112] and designing various kernels that evaluate similarity between complex
objects [27, 155]. Although kernels are usually designed for SVM methods, for exam-
ple in text classification [118] or bioinformatics [171, 7, 169] applications, they may be

directly used in the SBM framework, because kernels are specific (dis)similarity func-
tions. In particular positive semidefinitive kernels used in SVM approach correspond
to some Euclidean dissimilarity matrices [138]. SVM is just one particular method of
a single hyperplane optimization in a space where kernel K(X,Y) serves as a scalar
product. However, for data models requiring different resolutions in different areas of
feature spaces SVM may not be the best approach, and a combination of kernels for
feature space expansion, easily accommodated in the SBM framework, should be used.
Meta-learning is not a single method, but an approach that leads to a tailor-made meth-
ods created on demand, therefore it may to a large degree avoid the “no-free-lunch”
theorem restrictions [174]. SVM models are certainly an important family among a
large number of models that may be explored during metalearning.

3 Transformation-based CI theory

Similarity-based methods using only direct similarity comparisons of some vector rep-
resentations are restricted to a single transformation (not counting pre-processing),
Y = T (X;R). Although in principle this is sufficient for universal approximation
[83] in practice it may slow down the convergence and make a discovery of simple data
models very difficult. SBM framework is generalized here to include multiple transfor-
mation steps. In the stacking approach [183, 161, 157] one classifier produces outputs
that are used as inputs for another classifier. Wolpert showed [183] that biases of stacked
classifiers may be deducted step by step, improving generalization of the final system.
The same is true if a series of transformations is composed together to produce a data
model. Transformation-based approach fits very well to modern component-based data
mining and may be presented in from of graphical models, although quite different than
probabilistic models presented in [99].

General similarity transformations may act on objects and produce vectors, either
by analysis of object properties or object similarity to some reference objects. In both
cases feature-based vector description of the object is produced X, although the size of
this vector may be different. In the first case the number of features N is independent
of the number of objects, while in the second case all training objects may be used as a
reference and Xi = K(O,Oi) feature values calculated using kernel K(·, ·) function
(or procedure) to provide n-dimensional vector.

CI calculations may be presented as a series of transformations, divided into sev-
eral stages. Starting from the raw input data 0X = X that defines initial feature space,
first transformation T1 scales individual features, filters them, combining pairs or small
subsets of features. This leads to a new dataset 1X = T1(0X) with vectors based on
a new set of features that may have different dimensionality than the original data.
The second transformation 2X = T2(1X) extracts multidimensional information from
pre-processed features 1X. This is further analyzed by subsequent transformations that
either aim at separation of the data or at mapping to a specific structures that can be
easily recognized by the final transformation. The final transformation provides desired
information. These transformations can in most cases be presented in a layered, graph-
ical form.

Chains of transformations created on demand should lead to optimal CI methods
for a given data. This requires characterization of elementary transformations. The goal
here is to describe all CI methods as a series of transformations but at a higher level
than the psuedocode. Several types of vector transformations should be considered:
component, selector, linear combinations and non-linear functions. Component trans-
formations work on each vector component separately, for example shifting and scaling
component values when calculating distances or scalar products. Selector transforma-
tions define subsets of vectors or subsets of features using various criteria for informa-
tion selection, or similarity to the known cases (nearest neighbors), or distribution of
feature values and class labels. Non-linear functions may serve as kernels or as neural
transfer functions [57]. Transformations composed from these elementary types may
always be presented in a network form.

3.1 Extracting information from single or small subsets of features

New information from available features may be extracted using various types of net-
work nodes in several ways. First, by providing diverse basis functions or receptive
fields for sampling the data separately in each dimension, although two or higher-
dimensional receptive fields may also be used in some applications (as is the case for
image or signal processing filters, such as wavelets). Fuzzy and neurofuzzy systems
usually include a “fuzzification step”, defining for each feature several membership
functions μk(Xi) that act as large receptive fields. Projecting each feature value X i on
these receptive fields μk increases the dimensionality of the original data. This may lead
to some improvement of results as even a linear transformation in the extended space
has a greater chance to separate data better.

Second, information may be extracted by scaling the features using logarithmic,
sigmoidal, exponential, polynomial and other simple functions; such transformations
help to make the density of points in one dimension more uniform, circumventing some
problems that would require multiresolution algorithms. Although they are rarely men-
tioned as a part of the learning algorithms adaptive preprocessing at this stage may have
a critical influence on the final data model.

Third, information is extracted by creating new features using linear combinations,
tensor products, ratios, periodic functions or using similarity measures on subsets of
input variables. Non-linear feature transformations, such as tensor products of features,
are particularly useful, as Pao has already noted introducing functional link networks
[137, 1]. Rational function neural networks [85] in signal processing [115] and other ap-
plications use ratios of polynomial combinations of features; a linear dependence on a
ratio y = x1/x2 is not easy to approximate if the two features x1, x2 are used directly.
Groups of several strongly correlated features may be replaced by a single combina-
tion performing principal component analysis (PCA) restricted to small subspaces. To
decide which groups should be combined standardized Pearson’s linear correlation is
calculated:

rij = 1 − |Cij |
σiσj

∈ [−1, +1] (3)

where the covariance matrix is:

Cij =
1

n − 1

n∑
k=1

(
X(k)

i
− X̄i

) (
X

(k)
j − X̄j

)
; i, j = 1 · · ·d (4)

These coefficient may be clustered, for example by using dendrogram techniques.
Depending on the clustering thresholds they provide reduced number of features, but
also features at different scales, from a combination of a few features to a global PCA
combinations of all features. This approach may help to discover hierarchical sets of
features that are useful in problems requiring multiscale analysis. Another way to obtain
features for multiscale problems is to do clusterization in the data space and make local
PCA within the clusters to find features that are most useful in various areas of space.

Linear combinations derived from interesting projection directions may provide low
number of interesting features, but in some applications non-linear processing is essen-
tial. The number of possible transformations at this stage is very large. Feature selection
techniques [82], and in particular filter methods wrapped around algorithms that search
for interesting feature transformations (called “filtrappers” in [39]), may be used to
quickly evaluate the usefulness of proposed transformations. The challenge is to pro-
vide a single framework for systematic selection and creation of interesting transforma-
tions in a meta-learning scheme. Evolutionary techniques may prove to be quite useful
in this area.

3.2 Extracting information from all features

After transforming individual features or small groups of features to create 1X space ad-
ditional transformations that involve all features are considered. Frequently these trans-
formations are used to reduce dimensionality of the data. Srivastava and Liu [162] point
out that the choice of optimal transformation depends on the application and the data
set. They have presented an elegant geometrical formulation using Stiefel and Grass-
mann manifolds, providing a family of algorithms for finding orthogonal linear trans-
formations of features that are optimal for specific tasks and specific datasets. They find
PCA to be optimal transformation for image reconstruction under mean-squared error,
Fisher discriminant for classification using linear discrimination, ICA for signal extrac-
tion from a mixture using independence, optimal linear transformation of distances for
the nearest neighbor rule in appearance-based recognition of objects, transformations
for optimal generalization (maximization of margin), sparse representations of natural
images and retrieval of images from a large database. In all these applications optimal
transformations are different and may be found by defining appropriate cost functions
and optimizing them using stochastic gradient techniques. Some of their cost functions
may be difficult to optimize and it is not yet clear that sophisticated techniques based
on differential geometry, advocated in [162], offer significant practical advantages, al-
though they certainly provide an interesting insight into the problem. Simpler learning
algorithms based on numerical gradient techniques and systematic search algorithms
give surprisingly good results and can be applied to optimization of difficult functions
[108], but a detailed comparison of such methods has not yet been made.

In some cases instead of reduction of dimensionality expansion of the feature space
may be useful. Random linear projection of input vectors into a high-dimensional space
2X = L(1X) is the simplest expansion, with the random matrix L that has more rows
than columns (see neurobiological justification of such projections in [121]). If highly
nonlinear low-dimensional decision borders are needed large number of neurons should
be used in the hidden layer, providing linear projection into high-dimensional space fol-
lowed by filtering through neural transfer functions to normalize the output from this
transformation. Enlarging the data dimensionality increases the chance to make the data
separable, and this is frequently the goal of this transformation, 2X = T2(1X; 1W).
If (near) separability can be achieved this way the final transformation may be lin-
ear Y = T3(2X; 2W) = W2 · 2X. A combination of random projection and lin-
ear model may work well [89] – this is basically achieved by random initialization of
feedforward neural networks and a linear discriminant (LDA) solution for the output
model, a method used to start a two-phase RBF learning [156]. However, one should
always check whether such transformation is really justified from the point of view of
model complexity, because linear discrimination may work also quite well for many
datasets in the original feature space, and many non-random ways to create interest-
ing features may give better results. It may also be worthwhile to add pre-processed
1X = T1(X) features to the new features generated by the second transformation
2X = (1X, T2(1X; 1W)), because they are easier to interpret and frequently contain
useful information – in case of linear transformations this simply adds a diagonal part
to the matrix.

In general the higher the dimensionality of the transformed space the greater the
chance that the data may be separated by a hyperplane [85]. One popular way of creating
highly-dimensional representations without increasing computational costs is by using
the kernel trick [155]. Although this problem is usually presented in the dual space the
solution in the primal space is conceptually simpler [113, 21]. Regularized linear dis-
criminant (LDA) solution is found in the new feature space 2X = K(X) = K(1X,X),
mapping X using kernel functions for each training vector. Feature selection techniques
may be used to leave only components corresponding to “support vectors’ that provide
essential support for classification, for example only those close to the decision borders
or those close to the centers of cluster, depending on the type of the problem. Any CI
method may be used in the kernel-based feature space K(X), although if the dimen-
sionality is large data overfitting is a big danger, therefore only the simplest and most
robust models should be used. SVM solution to use LDA with margin maximization is
certainly a good strategy.

Consider for example a two-class case. In m-dimensional space the expected max-
imum number of separable vectors randomly assigned to one of the classes is 2m [24,
85]. For k-bit strings there are n = 2k vectors and 2n Boolean functions that may
be separated in the space with n/2 dimensions with high probability. In case of k-bit
Boolean problems localized kernels are not useful as the number of vectors n grows
exponentially fast with k, but separation of all vectors is possible in the space generated
by polynomial kernel of degree k, providing new features based on n − 1 monomials
xa, xaxb, xaxbxc, . . . , x1 . . . xk . Indeed SVM algorithms with such kernel are capable
of learning all Boolean functions although they do not generalize well, treating each

vector as a separate case. For example, SVM with polynomial kernel of degree k (or
with a Gaussian kernel) may solve the k-bit parity problem. However, removing a sin-
gle string from the training set in the leave-one-out test will lead to perfect learning
of the training sets, but always wrong predictions of the test vector, thus achieving 0%
accuracy! Unfortunately only for parity the answer will always be wrong (each vector
is surrounded by the nearest neighbors from the opposite class), for other Boolean func-
tions one cannot count on it. This problem may be solved in a simple way in the original
feature space if the goal of learning is redefined (see k-separability section below).

If the final transformation is linear Y = 3X = T3(2X; 2W) parameters 2W are
either determined in an iterative procedure simultaneously with parameters 1W from
previous transformations (as in the backpropagation algorithms [85]), or they may be se-
quentially determined by calculating the pseudoinverse transformation, as is frequently
practiced in the two-phase RBF learning [156], although in experiments on more de-
manding data simultaneous adaptation of all parameters (in RBF networks they include
centers, scaling parameters, and output layer weights) gives better results. The initial
random transformation may use arbitrary basis functions, although for localized func-
tions simple clustering instead of a random projection is recommended. Most basis
function networks provide receptive fields in the subspace of the original feature space
or on the pre-processed input data. Transformations of this kind may be presented as a
layer of network nodes that perform vector mapping T 2(1X; 1W) based on some spe-
cific criterion. Many interesting mappings are linear and define transformations equiv-
alent to those provided by the Exploratory Projection Pursuit Networks (EPPNs) [98,
66]. Quadratic cost functions used for optimization of linear transformations may lead
to formulation of the problem in terms of linear equations, but most cost functions or
optimization criteria are non-linear even for linear transformations. A few such trans-
formations are listed below:

– Statistical tests for dependency between class and feature value distributions, such
has Pearson’s correlation coefficient, χ2 and other measures that may be used to
determine best orthogonal combination of features in each node.

– Principal Component Analysis (PCA) in its many variants, with each node comput-
ing principal component [63, 174, 164]).

– Linear Discriminatory Analysis (LDA), with each node computing LDA direction
(using one of the numerous LDA algorithms [63, 174, 164]).

– Fisher Discriminatory Analysis (FDA), with each node computing canonical com-
ponent using one of many FDA algorithms [174, 165].

– Independent Component Analysis, with each node computing one independent
component [90, 23].

– Linear factor analysis, computing common and unique factors from data [75].
– Canonical correlation analysis [70].
– KL, or Kullback-Leibler networks with orthogonal or non-orthogonal components;

networks maximizing mutual information [168] are a special case here, with prod-
uct vs. joint distribution of classes/feature values.

– Classical scaling, or linear transformation embedding input vectors in a space where
distances are preserved [138].

– Linear approximations to multidimensional scaling [138].

– Separability criterion used on orthogonalized data [76].

Non-linearities may be introduced in transformations in several ways: either by
adding non-linear functions to linear combinations of features, or using distance func-
tions, or transforming components and combining results [57, 58]. Linear transforma-
tions in kernel space are equivalent to non-linear transformations in the original feature
space. A few non-linear transformations are listed below:

– Kernel versions of linear transformations, including radial and other basis set ex-
pansion methods [155].

– Weighted distance-based transformations, a special case of general kernel transfor-
mations, that use (optimized) reference vectors [43].

– Perceptron nodes based on sigmoidal functions with scalar product or distance-
based activations [42, 41], as in layers of MLP networks, but with targets specified
by some criterion (any criterion used for linear transformations is sufficient).

– Heterogeneous transformations using several types of kernels to capture details at
different resolution [57].

– Heterogeneous nodes based or several type of non-linear functions to achieve mul-
tiresolution transformations [57].

– KL, or Kullback-Leibler networks with orthogonal or non-orthogonal components;
networks maximizing mutual information [168] are a special case here, with prod-
uct vs. joint distribution of classes/feature values.

– χ2 and other statistical tests for dependency to determine best combination of fea-
tures.

– Factor analysis, computing common and unique factors, reducing noise in the data.
– Nodes implementing fuzzy separable functions, or other fuzzy functions [50].

Many other transformations of this sort are known and may be used at this stage
in transformation-based systems. A necessary step for meta-learning is to create taxon-
omy, similarities and relations among such transformations to enable systematic search
in the space of possible models, but this has not yet been done. An obvious division is
between fixed transformations that are based on local criterion, with well-defined tar-
gets, and adaptive transformations that are based on criterions optimizing several steps
simultaneously (as in backpropagation), where the targets are defined only for compo-
sition of transformations. Fixed T2 transformations have coefficients calculated directly
from the input data or data after T1 transformation. Activity of the network nodes has
then clear interpretation, and the number of nodes may be determined from estima-
tion of such criteria as the information gain compared to the increased complexity. A
general way to calculate fixed transformation coefficients is to create a single compo-
nent (for example, one LDA hyperplane), and then orthogonalize the input vectors to
this component, repeating the process in an iterative way. General projection pursuit
transformations [98, 66] may provide a framework for various criteria used in fixed
transformations.

Transformations may also have adaptive coefficients, determined either by an op-
timization procedure for the whole system (for example, global optimization or back-
propagation of errors), or by certain targets set for this mapping (see the k-separability

section). The interpretation of node functions is not so clear as for the fixed targets
for individual transformations, but the final results may be better. Fixed transformations
may be very useful for initialization of adaptive transformations or may be useful to find
better solutions of more complex fixed transformations. For example, multidimensional
scaling requires very difficult minimization and seems most of the time to converge to
a better solution is PCA transformations is performed first. Nonlinear Mapping Pursuit
Networks (MPN), similar to EPPNs, may be defined and used as a fixed transforma-
tion layer, followed by linear model in the same way as it is done in the functional link
networks [137].

Adding more transformation layers with distance-based conditions, that is using
similarity in the space created by evaluation of similarity in the original input space,
leads to higher-order nearest neighbor methods, rather unexplored area. There are many
other possibilities. For example, consider a parity-like problem with vectors from the
same class that are spread far apart and surrounded by vectors from other classes [40].
The number of nodes covering such data using localized functions will be proportional
to the number of vectors. Such transformations will not be able to generalize. Kernel
methods based on localized or polynomial kernels will also not be able to generalize.
MLP networks may solve the problem but need architectures specially designed for
each problem of this type and are hard to train. Linear projections may provide interest-
ing views on such data, but the number of directions W that should be considered to find
good projections grows exponentially fast with the number of input dimensions (bits).
In case of n-bit parity projection Y = W · X counts the number of 1 bits, producing
odd and even numbers for the two parity classes. A periodic functions (such as cosine)
is sufficient to solve the parity problem, but is not useful to handle other logical prob-
lems. Interesting transformations should find directions W that project a large number
of training vectors X into localized groups. A window function G(||W ·X−Y ||) may
capture a region where a delocalized large cluster of vectors from a single class is pro-
jected. A constructive network that adds new nodes to capture all interesting projections
should be able to solve the problem. The linear output transformations will simply add
outputs of nodes from all clusters that belong to a given class.

This type of geometric thinking leads to transformations that will be very useful in
metalearning systems, facilitating learning of arbitrary Boole’an problems.

3.3 Heterogeneous adaptive systems

Many transformations may lead to the same goal because transformations with non-
polynomial transfer functions are usually universal approximators [114]. The speed of
convergence and the complexity of networks needed to solve a given problem is more
interesting. Approximations of complex decision borders or approximations of multidi-
mensional mappings by neural networks require flexibility that may be provided only by
networks with sufficiently large number of parameters. This leads to the bias-variance
dilemma [14, 63, 174], since large number of parameters contribute to a large variance
of neural models and small number of parameters increase their bias.

Regularization techniques may help to avoid overparameterization and reduce vari-
ance, but training large networks has to be expensive. In MLP models regularization
methods decrease the weights, forcing the network function to be more smooth. This is

a good bias for approximation of continuous functions, but it is not appropriate for data
generated using logical rules, where sharp, rectangular decision borders are needed.
Two orthogonal hyperplanes cannot be represented accurately with soft sigmoidal func-
tions used in MLPs or with Gaussian functions used by RBF networks. The inadequacy
of fundamental model limits the accuracy of neural solutions, and no improvement of
the learning rule or network architecture will change this. Transformations based on
scalar products (hyperplanes, delocalized decision borders) solve some problems with
O(N) parameters, while the use of localized functions (for example Gaussians) requires
O(N2) parameters, while on other problems this situation is reversed [57]. Therefore
discovering the proper bias for a given data is very important. Some real world exam-
ples showing the differences between RBF and MLP networks that are mainly due to
the transfer functions used were presented in [57] and [46, 47].

The simplest transformation that has the chance to discover appropriate bias for
complex data may require several different types of elementary functions. Heteroge-
neous adaptive systems (HAS) introduced in [51] provide different types of decision
borders at each stage of building data model, enabling discovery of the most appro-
priate bias for the data. Neural [59, 94, 45], decision tree [51, 78] and similarity-based
systems [53, 177, 178] of this sort have been described, finding for some data simplest
and most accurate models known so far.

Heterogeneous neural algorithms that use several transfer functions within one net-
work may be introduced in several ways. A constructive method that selects the most
promising function from a pool of candidates adding new node to the transformation
has been introduced in [45, 94, 59]. Other constructive algorithms, such as the cascade
correlation [65], may also be used for this purpose. Each candidate node using different
transfer function should be trained and the most useful candidate added to the network.

The second approach starts from transformation that uses many types of functions
using information selection or regularization techniques to reduce the number of func-
tions [94]. Initially the network may be too complex but at the end only the functions
that are best suited to solve the problem are left. In the ontogenic approach neurons are
removed and added during the learning process [94].

The third approach starts from flexible transfer functions that are parameterized in
a way that makes them universal. Linear activation based on a scalar product W · X is
combined with higher order terms used in distance measures to create functions that for
some parameters are localized, and for other parameters non-localized. Several func-
tions of such kind have been proposed in [57]. In particular bicentral functions are very
useful and flexible, with decision regions of convex shapes, suitable for classification.
These functions are product of N pairs of sigmoidal functions (Fig. 2):

Bi2s(X; t,B, s) =
N∏

i=1

σ(A2+
i) (1 − σ(A2−i)) (5)

=
N∏

i=1

σ(esi · (xi − ti + ebi)) (1 − σ(es′
i · (xi − ti − ebi)))

Bicentral function with rotation and double slope

−10

0

10

−10

0

10
0

0.2

0.4

0.6

0.8

−10 0 10
−10

−5

0

5

10

−10

0

10

−10

0

10
0

0.1

0.2

0.3

0.4

−10 0 10
−10

−5

0

5

10

−10

0

10

−10

0

10
0

0.05

0.1

0.15

0.2

−10 0 10
−10

−5

0

5

10

Fig. 2. A few shapes of general bicentral functions (Eq. 5).

The first sigmoidal factor in the product is growing for increasing input x i while the
second is decreasing, localizing the function around t i. Shape adaptation of the den-
sity Bi2s(X; t,B, s) is possible by shifting centers t, rescaling B and s. Product form
leads to well-localized convex contours of bicentral functions. Exponentials e si and
ebi are used instead of si and bi parameters to prevent oscillations during the learning
procedure (learning becomes more stable). Using small slope s i and/or s′i the bicentral
function may delocalize or stretch to left and/or right in any dimension. This allows
creation of such contours of transfer functions as half-infinite chanel, half-hyper ellip-
soidal, soft triangular, etc.

Although the costs of using this function is a bit higher than of the bicentral function
(each function requires 4N parameters) more flexible decision borders are produced.
Rotations of these contours require additional N parameters. An important advantage
of the bicentral functions comes from their separability, enabling analysis of each di-
mension or a subspace of the input data independently: one can forget some of the input
features and work in the remaining subspace. This is very important in classification
when some of the features are missing and allows to implement associative memories
using feedforward networks [50, 3]. Bicentral functions with rotations (as well as mul-
tivariate Gaussian functions with rotation) have been implemented so far only in two
neural network models, the Feature Space Mapping [50, 3] and the IncNet [100, 97, 96].

Very little experience with optimization of transfer functions in heterogenous sys-
tems has been gathered so far. Neural networks using different transfer functions should
use lower number of nodes, and thus the function performed by the network may be
more transparent. For example, one hyperplane may be used to divide the input space
into two classes and one additional Gaussian function to account for local anomaly.
Analysis of the mapping performed by an MLP network trained on the same data will
not be so simple. More algorithms to create such models are needed.

3.4 Geometrical perspective

Composition of transformations may also be seen from geometrical perspective. Infor-
mational geometry [91] is aimed at characterization of the space of all possible proba-
bility distributions, and thus works in the space of model parameters. Geometry of het-
eroassociative vector transformations, from the input feature space to the output space,
is also interesting. It is clear that different sensory signals are recognized in different
feature subspaces, but even in a single sensory modality different objects are recognized
paying attention to different features. This shows that vector space model for character-
ization of objects is too simple to account for object recognition in perception.

At each point of the input space relative importance of features may change. One
way to implement this idea [35] is to create local non-symmetric similarity function
D(X − Y;X), smoothly changing between different regions of the input space. For
example this may be a Minkovsky function D(X−Y;X) =

∑
i si(X)|Xj −Yi)| with

the scaling factor that depend on the point X of the input space, in particular many of
them may be zero. Such scaling factors may be calculated for each training vector using
local PCA, and interpolated between the vectors. Local Linear Embedding (LLE) is a
popular method of this sort [148] and many other manifold learning methods have been

developed. Alternatively a smooth mapping may be generated training MLP or other
neural networks to approximate desired scaling factors.

Prototype rules for data understanding and transformation may be created using ge-
ometrical learning techniques that construct a convex hull encompassing the data, for
example an enclosing polytope, cylinder, a set of ellipsoids or some other surface en-
closing the data points. Although geometrical algorithms may be different than neural
or SVM algorithms, the decision surfaces they provide are similar to those offered by
feedforward networks. A covering may be generated by a set of balls or ellipsoids fol-
lowing principal curve, for example using the piecewise linear skeletonization approx-
imation to principal curves [104]. An algorithm of this type creating a “hypersausage”
decision regions has been published recently [159]. More algorithms of this type should
be developed, and their relations with neural algorithms investigated.

From geometrical perspective kernel transformations are capable of smoothing or
flatting decision borders. Using the vectors R(i) that are close to the decision border as
support vectors for kernel (distance) calculation creates new features, placing support
vectors on a hyperplane (distance for all R (i) is zero). Therefore a single hyperplane
after such transformation is frequently sufficient to achieve good separation of data.
However, if the data has complex structure, disjoint clusters from the same class, or
requires special transformation for extraction of information this may not be an optimal
approach.

After the second transformation (or a series of transformations) all data is converted
to the second internal representation 2X, and the final transformation is added to extract
simple structure from multidimensional data.

3.5 Redefining the goal of learning

The first two transformations should discover interesting structures in data or increase
the chance of data separability, as in the case of kernel transformations. More transfor-
mations may be applied, either at the pre-processing stage (normalization, whitening,
calculation of Fourier, Hadamard or wavelet coefficients etc), or at the information ex-
traction stage. The role of the final transformations is to compress this information, find
interesting views on the data from the point of view of certain goals. These transfor-
mations usually involves a drastic reduction of dimensionality. The number of outputs
in the approximation problems is equal to the number of approximated components, or
the problem is broken into several single-output functions. In the K-class classification
problems the number of outputs is usually K −1, with zero output for the default class.
In the Error Correcting Output Codes (ECOC) approach [32] learning targets that are
easier to distinguish are defined, setting a number of binary targets that define a pro-
totype “class signature” vectors. The final transformation compares then the distance
from the actual output to these class prototypes.

The learning targets used in most CI methods for classification are aimed at linear
separability. The final linear transformation provides a hyperplane that divides the data,
transformed by a series of mappings Tk(..T2(T1(X)...)), into two halfspaces. Linear
transformation is the simplest and quite natural if the kernel transformation increases
the dimensionality and flattens the decision borders, making the data linearly separable.
However, for difficult problems, such as learning of Boolean functions, this will not

work. Instead of thinking about the decision hyperplane it is better to focus on inter-
esting projections or more general transformations of data. For linearly separable data
W · X projection creates two distinct clusters. For non-separable data an easier target
is to obtain several well separated clusters. For example, in k-bit parity problem projec-
tion on W = [1, 1..1] shows k + 1 clusters clearly providing a satisfactory solution to
the problem. Thus instead of aiming at linear separation using the final transformation
based on hyperplane the goal of learning may be redefined by assuming another well-
defined transformation. In particular using the interval-based transformation as the final
step easily “disarms” the remaining non-linearity in data, and greatly simplifies the task
of all previous transformations.

The dataset Xi of points belonging to two classes is called k-separability if a direc-
tion W exist such that points yi = W ·Xi are clustered in k intervals, each containing
vectors from a single class only. A dataset that is k-separability may also be k + m
separable, until k + m = n is reached. Although usually the minimal k is of interest
sometimes higher k’s may be preferred if the margins between projected clusters are
larger, or if among k clusters some have very small number of elements. Problems that
may be solved by linear projection on no less than k-clusters belonging to alternating
classes are called k-separability problems [40]. This concept allows for a better char-
acterization of the space of all non-separable problems. The difficulty of learning grows
quickly with the minimum k required to solve a given problem. Linear (2-separable0
problems are quite simple and may be solved with linear SVM or any other variant
of LDA model. Kernel transformations may convert some problems into linearly sep-
arable in higher dimensional space. Problems requiring k = 3, for example the XOR
problem, are already slightly more difficult for non-local transformations (for example
MLPs), and problems with high k quickly become intractable for general classification
algorithms.

Among all Boolean classification problems linear separability is quite rare. For 3
bits there are 8 vertices in the cube and 28 = 256 possible Boolean functions. Two
functions are constant (always 0 or 1), 102 are linearly separable, 126 are 3-separable
and 26 are 4-separable functions. For more than half of the 3-bit Boolean functions there
is no linear projection that will separate the data. Almost half (126) of all the functions
give at least 3 alternating clusters. For the 4-bit problem there are 16 hypercube ver-
tices, with Boolean functions corresponding to 16-bit numbers, from 0 to 65535 (64K
functions). The number of linearly separable functions is 1880, or less than 3% of all
functions, with about 22%, 45% and 29% being 3 to 5-separable. About 188 functions
were found that seem to be either 4 or 5-separable, but in fact contain projection of at
least two hypercube vertices with different labels on the same point. Although the per-
centage of linearly separated functions rapidly decreases relatively low k-separability
indices resolve most of the Boolean functions.

Changing the goal of learning may thus help to discover much simpler data models
than those provided by kernel methods. The final transformation separating the classes
on a line with k-intervals has only k − 1 parameters. Periodic or quasi-periodic sepa-
rability in one dimension is worth considering to avoid high number of intervals. Other
simplified transformations that handle different types of non-linearities may be defined
in two or more dimensions. Mapping on the chessboard targets, or on localized Voronoi

X1

X2

X3

X4

Y=W.X +1

−1

+1

+1

σ(W.X+a)

σ(W.X+b)
If Y∈[a,b] then 1

Fig. 3. MLP solution to the 3-separable case.

cells defined by prototypes localized on a regular multidimensional grid, may handle
directly quite difficult non-linearities.

New targets require a different approach to learning because the vector labels Y X do
not specify to which interval a given vector X belongs. Gradient training is still possi-
ble if soft windows based on combinations of sigmoidal functions are used. Thus for 3-
separable problems the final transformation is from 3 intervals: [−∞, a], [a, b], [b, +∞]
to −1, +1,−1 values. For the middle interval a soft window functions may be set
S(x; a, b) = tanh(x − a) − tanh(x − b) − 1 ∈ [−1, +1]. Quadratic error function
suitable for learning is:

E(a, b,W) =
∑
X

(S(W ·X; a, b) − YX)2 (6)

Starting from small random weights the center y0 of projected data y = W · X, the
range [ymin, ymax] is estimated, and a, b values are set to y0 ± |ymax − ymin|/4. The
weights and the [a, b] interval are trained using gradient method. It is also possible to
implement 3-separable backpropagation learning in purely neural architecture based on
a single linear neuron or perceptron for projection plus a combination of two neurons
creating a “soft trapezoidal window” function S(x; a, b) that passes only the output
in the [a, b] interval [47]. The two additional neurons (Fig. 3) have fixed weights (+1
and −1) and biases a, b, adding only two adaptive parameters. An additional parameter
determining the slope of the window shoulders may be introduced to scale the W · X
values as the weights grow. The input layer may of course be replaced by hidden layers
that implement additional mappings, for example kernel mappings, thus making this at
least as powerful as SVM methods.

This network architecture has n + 2 parameters and is able to separate a single
class bordered by vectors from other classes. For n-dimensional 3-separable problems
standard MLP architecture requires at least two hidden neurons connected to an out-
put neuron with 2(n + 1) + 3 parameters. For k-separability case this architecture will
simply add one additional neuron for each new interval, with one bias parameter. n-
bit parity problems require only n neurons (one linear perceptron and n − 1 neurons

with adaptive biases for intervals), while in the standard approach O(n 2) parameters
are needed [92]. Tests of such architectures showed (W. Duch, R. Adamczak, M. Gro-
chowski, in preparation) that indeed one may learn dificult Boolean functions this way.
In fact we are training here a single bi-central function with rotations (Eq. 5), creating
simplest possible model of the data.

Algorithms of this type, projecting data on many disjoined pure clusters, may have
biological justification. Neurons in association cortex form strongly connected micro-
circuits found in cortical columns, resonating with different frequencies when an in-
coming signal X(t) appears. This essentially projects the signal into high-dimensional
space. A perceptron neuron observing the activity of a column containing many mi-
crocircuits learns to react to signals in an interval around particular frequency in a su-
pervised way based on Hebbian principles. It is sufficient to combine outputs from
selected microcircuits correlated with the category that is being learned. In case of sig-
nals microcircuits may be treated as resonators specializing in discovering interesting
signal structures, for example Gabor filters in vision. A parallel array of one-bit thresh-
old quantizers with sums of inputs is a crude approximation to such model. It achieves
not only optimal signal detection, but even for suprathreshold input signals it improves
its performance when additional noise is added, a phenomenon called “suprathresh-
old stochastic resonance” [147]. In case of abstract reasoning combination of disjoint
projections on the W · X line is more useful than simple quantizers.

3.6 Prototype-based rules for data understanding

Most attempts to understand the structure of data in machine learning is focussed on
extraction of logical rules [62, 47]. Relations between fuzzy logic systems and basis
set networks are fairly obvious and have been described in details [103, 93]. The use
of Gaussian functions in the Radial Basis Function (RBF) networks is equivalent to
the use of sets of fuzzy rules with Gaussian membership functions. Although it is an
interesting fact in itself, it has not lead to any new development, in most applications
simple Gaussian classifiers are created. To optimize fuzzy systems neural adaptation
techniques may be used, leading to neurofuzzy systems [50, 133, 136].

Fuzzy set F is defined by the universe X and the membership functions χF (X),
specifying the degree to which elements of this universe belong to the set F . This
degree should not be interpreted as probability [109] and in fact at least four major
interpretations of the meaning of membership functions may be distinguished [13]. One
natural interpretation is based on the degree to which all elements X ∈ X are similar
to the typical elements (that is those with χF (X) ≈ 1) of F . From this point of view
fuzzy modeling seems to be a special case of similarity modeling, field that have not
yet been fully developed. On the other hand fuzzy models are quite successful and may
contribute to new similarity measures. Relations between fuzzy rules and similarity to
prototypes are worth more detailed exploration.

An analogy with human object recognition is quite fruitful. Perceiving and recog-
nizing an object requires attention to be paid to its most characteristic features. First
feature values Xi are measured by our sensory systems with relatively high precision
(deriving, for example, physical parameters of sound), and then primary and secondary

sensory cortex transforms these input values using higher-order receptive fields that in-
tegrate spatio-temporal patterns facilitating recognition of complex patterns (for exam-
ple, phonemes). In fuzzy modeling each feature X i of an object X is filtered through
a large receptive field Fij , defined by a membership function μFj (Xi). Simple MFs,
such as triangular, trapezoidal or Gaussian, are used to model the degree to which some
value Xi belongs to the receptive field Fij . Comparing to the sophisticated processing
of sensory signals by the brain this is a very crude approach in which larger receptive
fields are obtained directly from individual features using membership functions, in-
stead of non-linear combinations of several features. Brain-like information processing
may of course be more accurately modeled using hierarchical fuzzy systems.

Selection of prototypes and features together with similarity measures offers new,
so far unexplored alternative to neurofuzzy methods [49, 178, 15]. Duality between sim-
ilarity measures and membership functions allows for generation of propositional rules
based on individual membership functions, but there are significant differences. Fuzzy
rules first apply large receptive fields (membership functions) to these individual fea-
tures, combining them in conditions of rules later. P-rules in their natural form first cre-
ate a combination of features (via similarity functions) and then apply various member-
ship functions to this combination. Neurofuzzy systems generate fuzzy rules and opti-
mize membership functions [133, 136] using input vectors defined in fixed-dimensional
feature spaces. Similarity may be evaluated between objects with complex structures
that are not easy to describe using a common sets of features. In particular the use of
probabilistic, data dependent distance functions allows for definition of membership
functions for symbolic data (such as the sequential DNA or protein strings) that may be
difficult to derive in other way.

Experiments in cognitive psychology show that logical rules are rarely used to de-
fine natural categories, human categorization is based on memorization of exemplars
and prototypes [146]. Similarity functions may be used to model the importance of dif-
ferent features in evaluating similarity between the new case in relation to stored pro-
totypes. Multiplicative similarity factors may easily be converted to additive distance
factors and vice versa. Rule-based classifiers are useful only if the rules they use are
reliable, accurate, stable and sufficiently simple to be understood [47]. Prototype-based
rules are useful addition to the traditional ways of data exploration based on crisp or
fuzzy logical rules. They may be helpful in cases when logical rules are too complex
or difficult to obtain. A small number of prototype-based rules with specific similarity
functions associated with each prototype may provide complex decision borders that are
hard to approximate using logical systems, but are still sufficiently simple to understand
them. For example, such simple rules have been generated for some medical datasets
using heterogeneous decision tree [78]. A single P-rule for breast cancer data classify-
ing as malignant cancer all cases that are closer to prototype case (taken as one of the
training cases) than a certain threshold achieves 97.4% accuracy (sensitivity 98.8% and
specificity 96.8%). The accuracy in this case is at least as good as that of any alternative
system tried on this data.

Combining various feature selection and prototype selection methods with similar-
ity functions leads to many interesting algorithms. An interesting possibility is to use
the prototype-based rules to describe exceptions in the crisp or fuzzy logic systems.

Systematic investigation of various membership functions, T-norms and co-norms, and
their relation to distance functions is certainly worth pursuing. The algorithms for gen-
eration of P-rules should be competitive to the existing neurofuzzy algorithms and will
become an important addition to the methods of computational intelligence. Although
similarity measures provide great flexibility in creating various decision borders this
may turn to be a disadvantage if the primary goal is to understand the data rather than
make most accurate predictions (neurofuzzy approaches have of course the same prob-
lem). Optimized similarity measures may not agree with human intuition and in some
cases larger number of prototypes with simpler similarity measures may offer more
acceptable solution.

3.7 Multiple models for meta-learning

Multi-objective optimization problems do not have a single best solution. Usually data
mining systems return just a single best model but finding a set of Pareto optimal mod-
els if several criteria are optimized is much more ambitious goal. For example, accuracy
should be maximized, but variance should be minimized, or sensitivity should be max-
imized why the false alarm rate should be minimal. The search process for optimal
models in meta-learning should explore many different models. Models that are close
to the Pareto front [130] should be retained and evaluated by domain experts.

A forest of decision trees [77] and heterogeneous trees [78] is an example of a sim-
ple meta-search in a model space restricted to decision trees. Heterogeneous trees use
different types of rule premises, splitting the branches not only using individual fea-
tures, but also using tests based on distances from the training data vectors. These trees
work in fact in a kernel space, but the optimization process is quite different than in the
SVM case. In case when linear discrimination works well standard decision trees may
give poor results, but adding distance-based conditions with optimal support vectors far
from decision borders provides flat spherical borders that work as well as hyperplanes.
The beam search maintains at each stage k decision trees (search states), ordering them
by their accuracy estimated using cross-validation on the training data [78]. This al-
gorithm has found some of the simplest and most accurate decision rules that gave
different tradeoffs between sensitivity and specificity.

The metalearning search procedure creates many individual models and it would
be wasteful not to use them, unless only models of specific types are of interest (for
example, models that are easily comprehensible). Metalearning usually leads to several
interesting models, as different types of optimization channels are enabled by the search
procedure. If a committee of models is desired diversification of individual models that
should perform well in different regions of input space may be necessary, especially for
learning of difficult tasks. The mixture of models allows to approximate complicated
probability distributions quite accurately improving stability of individual models. In-
dividual models are frequently unstable [17], i.e. quite different models are created as a
result of repeated training (if learning algorithms contains stochastic elements) or if the
training set is slightly perturbed [6].

Although brains are massively parallel computing devices attention mechanisms are
used to inhibit parts of the neocortex that are not competent in analysis of a given type
of signal. All sensory inputs (except olfactory) travel through the thalamus where their

importance and rough category is estimated. Thalamic nuclei activate only those brain
areas that may contribute useful information to the analysis of a given type of signals
[166]. This observation may serve as an inspiration for construction of better algorithms
for data analysis. In the metasearch process all models that handle sufficiently many
cases mistreated by other models should be maintained.

A committee based on competent models, with various factors determining regions
of competence (or incompetence) may be used to integrate decisions of individual mod-
els [54, 55]. The competence factor should reach F (X; M l) ≈ 1 in all areas where the
model Ml has worked well and F (X; Ml) ≈ 0 near the training vectors where errors
were made. A number of functions may be used for that purpose: a Gaussian function
F (||X−Ri||; Ml) = 1−G(||X−Ri||a; σi), where a ≥ 1 coefficient is used to flatten
the function, a simpler 1/ (1 + ||X − Ri||−a) inverse function, or a logistic function
1 − σ(a(||X − Ri|| − b)), where a defines its steepness and b the radius where the
value drops to 1/2. Because many factors are multiplied in the incompetence function
of the model each factor should quickly reach 1 outside of the incompetence area. This
is achieved by using steep functions or defining a threshold values above which exactly
1 is taken.

Results of l = 1 . . .m models providing estimation of probabilities P(C i|X; Ml)
for i = 1 . . .K classes may be combined in many different ways [110]: using majority
voting, averaging results of all models, selecting a single model that shows highest con-
fidence (i.e. gives the largest probability), selecting a subset of models with confidence
above some threshold, or using simple linear combination. For class C i coefficients of
linear combination are determined from the least-mean square solution of:

P(Ci|X; M) =
m∑

l=1

∑
m

Wi,lF (X; Ml)P(Ci|X; Ml) (7)

The incompetence factors simply modify probabilities F (X; M l)P(Ci|X; Ml) that
are used to set linear equations for all training vectors X, therefore the solution is done
in the same way as before. After renormalization P(C i|X; M)/

∑
j P(Cj |X; M) give

final probability of classification. In contrast to AdaBoost and similar procedures [10]
explicit information about competence, or quality of classifier performance in differ-
ent feature space areas, is used here. Many variants of committee or boosting algo-
rithms with competence are possible [110], focusing on generation of diversified mod-
els, Bayesian framework for dynamic selection of most competent classifier [69], re-
gional boosting [122], confidence-rated boosting predictions [154], task clustering and
gating approach [9], or stacked generalization [183].

A committee may be build as a network of networks, or a network where each el-
ement has been replaced by a very complex processing element made from individual
network. This idea fits well to the transformation-based learning. Incompetence factors
may be used to create virtual subnetworks, with different effective path of information
flow. Modulation of the activity of modules is effective only if the information about
the current state is distributed to all modules simultaneously. In the brain this role may
be played by the working memory. Here it can be replaced by a networks of mod-
ules adjusting their internal states (local knowledge that each module has learned) and

their interactions (modulations of weights) to the requirements of the information flow
through this system.

4 Beyond pattern recognition

The transformation-based approach described here is quite general and may be used for
all kinds of pattern recognition problems, classification, approximation, pattern com-
pletion, association and unsupervised learning, extending what has already been done
in the similarity-based approach [35, 43]. Computational intelligence should go beyond
that, using partial observations (perceptions) to reason and learn from them.

Biological systems may be viewed as associative machines, but associative mem-
ories do not capture essential features of this process. Real brains constantly learn to
pay attention to relevant features and use correlations between selected feature values
and correct decisions. People may learn to act appropriately without explicitly realizing
the rules behind their actions, showing that this process may proceed intuitively, with-
out conscious control. Associative machines should learn from observations correlation
of subsets of features and apply many such correlations in decision making process.
Problems solved by symbolic artificial intelligence are of this sort. Bits and pieces of
knowledge should be combined in a search for a final solution, and this leads in all
interesting cases to a combinatorial explosion.

Not much progress has been made along this line of research in the last decades, al-
though already in the PDP Books [151] several articles addressed combinatorial prob-
lems that are beyond pattern recognition. Boltzmann machines and harmony theory
have been used to answer questions about complex systems from partial observations
[151], but they proved to be very inefficient because the stochastic training algorithm
needs time that grows exponentially with the size of the problem. Helmholtz machines
[28], and recently introduced multi-layer restricted Boltzmann machines and deep be-
lief networks [87] have been used only for pattern recognition problems so far. These
models are based on stochastic algorithms and binary representations and thus are rather
restricted.

Inferences about complex behavior from partial observations require systematic
search. Suppose that a number of relations between small subsets of all variables char-
acterizing complex system or situation are known a priori or from observations. For
example, representing discrete changes of 3 variables (ΔA = + for increase, ΔA = −
for decrease and ΔA = 0 for no change) 33 = 27 possibilities are distinguished,
from all three variables decreasing, (ΔA, ΔB, ΔC) = (−,−,−) to all three increasing
(ΔA, ΔB, ΔC) = (+, +, +). If these variables are constrained by additive A = B+C,
multiplicative A = B ·C or inverse additive A−1 = B−1+C−1 relations A = f(B, C)
then for all these relations 14 of the 27 possibilities cannot occur, for example ΔA = 0
is impossible if both ΔB = ΔC = − or both are +). If many such relations are
applicable for N variables out of 3N possible solutions only a few will be in agree-
ment with all constraints. Assuming specific relations: f(A1, A2) = A3; f(A2, A3) =
A4; ...f(AN−2, AN−1) = AN leaves only 4N + 1 possible solutions. For a large N
is is a negligible fraction of all 3N possibilities. Relations among 3 variables – rep-
resenting partial observations – are stored in “knowledge atoms”, or nodes arranged

in one-dimensional array, connected to relevant input features. If the values of any two
variables Ai, Ai+1 or Ai, Ai+2 are known then one of such nodes will provide the value
of the third variable. In at most N − 2 steps, in each step selecting nodes that have only
one unknown input, all values of variables are determined. Suppose now that only a
single variable in two nodes has specific value, for example A1 and A4. An assump-
tion about the value of A2 should be made, starting 3 branches of a search tree with
A2 = −, 0, +. In the first step this leads to an inference of A3 value, and in the second
step f(A2, A3) = A4 is checked, leaving only those branches for which both relations
are true.

This is obviously a very fortuitous set of relations, but in most real situations a very
small search trees, sometimes reduced to a single branch, are still sufficient. An appli-
cation to the analysis of a simple electric circuit (7 variables, currents I , voltages V and
resistances R) [151] using network that keeps in its nodes relations between I, V, R
(Ohm’s law) and Kirchoff laws (V = V1 + V2 and R = R1 + R2) has been reported
[50], showing how a priori knowledge enables solutions to problems involving qual-
itative changes of currents, voltages and resistances. The feature space representation
works as a powerful heuristics in the reasoning process. In the seven variable problem
considered here there are 37 = 2187 different strings of 7 variables, but only 111 may
actually be realized. In more complicated cases, when the number of variables involved
is larger and the number of values these variable may take is also larger, the percentage
of situations that fulfills all the constraints is vanishingly small. Network nodes may
also implement functions that determine numerical values of unknown variables (such
as V = I · R).

Such network of knowledge atoms may solve mathematical problems without ex-
plicit transformation of equations, and when qualitative reasoning is sufficient it serves
as a model of intuitive computing. For more complex situations hierarchical decom-
position of the problem is necessary, depending on the questions asked. For example,
changes of parameters of a single or a few elements of a complex electrical circuit may
be decomposed into blocks, and there is no need to assign values to all variables. Peo-
ple in such cases analyze graphical structure of connections and nodes representing the
problem, starting from elements mentioned in the problem statement.

Network nodes may also estimate probabilities of different observations, and then
the algorithm may use them in sequential Markov-chain reasoning or in other variants
of such algorithms approximating joint distribution of variables in various ways. The
confabulation architecture [86] is an example of such algorithm that uses products of a
few (usually 4) conditional probabilities in a specific way
arg maxj(min[p(i1|j)p(i2|j)p(i3|j)p(i4|j)],
where p(i1|j) is the probability that word i1 precedes word j in a sequence. This algo-
rithm trained on a large corpus of English stories produces plausible words j, although
it cannot capture the meaning of the story or learn a strategy of games played, due to
the lack of long-term dependencies and structural representation of the concepts.

Similar approaches may be useful in many other fields. In intelligent control random
actions may be correlated with probability distributions of different results, creating
several scenarios [167]. Problems of this type are somewhere between pattern recogni-
tion and typical artificial intelligence problems. Neural networks (a core CI technology)

may be used as heuristics to constrain search (a core AI technology) in problem solv-
ing. Robots, including autonomous vehicles, need to combine reasoning with pattern
recogntion in a real time. It would be very worthwhile to collect data for real problems
of this kind, encouraging the development of algorithms for their solutions.

The inference process in this approach resembles human reasoning that either pro-
ceeds sequentially, or temporarily assumes one of the possibilities, checking if it is con-
sistent with all knowledge assumed to be true at a given stage. The interplay between
left and right hemisphere representations leads to generalization of constraints that help
to reason at the meta-level [38]. These ideas may form a basis for an associative ma-
chine that could reason using both perceptions (observations) and a priori knowledge.
In this way pattern recognition (lower level cognitive functions) may be combined in a
natural way with reasoning (higher level cognitive functions).

A very interesting approach to representation of objects as evolving structural enti-
ties/processes has been developed by Goldfarb and his collaborators [74, 72, 73]. Struc-
ture of objects is a result of temporal evolution, a series of transformations describing
the formative history of these objects. This is more ambitious than the syntactic ap-
proach in pattern recognition [67], where objects are composed of atoms, or basic struc-
tures, using specific rules that belong to some grammar. In the evolving transformation
system (ETS) object structure is a temporal recording of structured events, making syn-
tax and semantics inseparable. ETS formalism leads to a new concept of class which is
represented by similar structural processes. Classes defined by decision borders do not
capture the meaning of objects. Inductive learning process should discover class struc-
tures as a series of transformations that change the primitive elements to their observed
structure. In this way a generative model is produced that may generate an infinite set
of examples of objects from a given class.

This line of thinking is in agreement with the modified goal of learning presented
above. Various initial transformations should discover interesting representations of dif-
ferent aspects of objects, learn how to measure their (dis)similarities introducing kernel
functions. These transformations may be viewed as receptive fields of sensors observ-
ing the data, or as selection of operations that compare objects in some specific way.
For comparison of strings, to take the simplest example, various substring operations
may be used. ETS is also in agreement with the idea of computing and learning as
compressions, as evolving transformations compress the information. Application of
ETS to structural representation of molecules has been presented [73], and structural
representation of spoken language has been analyzed from this point of view [81].

5 Neurocognitive inspirations, computing, cognition and
compression

How to scale up our present models to perform more interesting cognitive functions?
Neurocognitive inspirations lead to modular networks that should process information
in a hierarchical way that roughly should correspond to functions of various brain areas,
and these networks become modules that are used to build next-level supernetworks,
functional equivalents of larger brain areas. The principles on which models should be
based at each level are similar [61]: networks of interacting modules should adjust to

the flow of information (learn) changing their internal knowledge and their interactions
with other modules. Efficient algorithms for learning are known only at the lowest level,
when very simple interactions and local knowledge of processing elements are assumed.
The process of learning leads to emergence of novel, complex behaviors and compe-
tencies. Maximization of system information processing capacity may be one guiding
principle in building such systems: if the supernetwork is not able to model all rela-
tions in the environment then it should recruit additional members that will specialize
in learning facts, relations or behaviors that have been missing.

Very complex supernetworks, such as the individual brains, may be further treated
as units that cooperate to create higher-level structures, such as groups of experts, in-
stitutions, think-tanks or universities, commanding huge amounts of knowledge that is
required to solve the problems facing the whole society. Brain-storming is an example
of interaction that may bring ideas up that are further evaluated and analyzed in a logical
way by groups of experts. The difficult part is to create ideas. Creativity requires novel
combination, generalization of knowledge that each unit has, applying it in novel ways.
This process may not fundamentally differ from generalization in neural networks, al-
though it takes place at much higher level of complexity. The difficult part is to create
a system that has sufficiently rich, dense representation of useful knowledge to be able
to solve the problem by combining or adding new concepts/elements [38].

The brain has much more computing power than our current machinery and thus
may solve problems in a different way. Nevertheless brain resources are limited and
the mechanism of encoding the new information using old memory structures is quite
natural, leading to a great conservation of resources and enabling associative recall.
This is also a source of serious difficulty in defining the meaning of symbols, encoded
by activity of neural microcircuits that is constantly changing, spreading activation to
other concepts. As a result relations between concepts change depending on the context,
making the invariant meaning of concepts only a rough approximation. In experimental
psychology this process, known as semantic priming, is one of the most popular subjects
of investigation [126].

How can this priming process be approximated? An attractor network model has
been created to explain results of psychological experiments [25]. However, such dy-
namical models are rather complex and do not scale well with the size of the network.
Processing sequential information by simpler mechanisms, such as spreading activa-
tion in appropriately structured networks, is more suitable for information retrieval
[26]. The challenge here is to create large semantic networks with overall structure
and weighted links that facilitate associations and reproduce priming effects. Wordnet
(http://wordnet.princeton.edu) and many other dictionaries provide some useful rela-
tions that may be used in network construction, although these relations capture a small
fraction of knowledge and associations that humans have about each concept. Medical
applications of spreading activation networks are easier to create because huge lexical
resources are available [124].

Activation of semantic networks may be seen as dynamical construction of a rele-
vant feature space, or non-zero subspace for vector models in information retrieval. New
information is projected into this space, expanding it by adding new dimensions with
non-zero components. Although the use of semantic networks is quite natural geometri-

cal description of this process is still interesting. In geometrical model activation of the
network concept node corresponds to a change of a metric around this concept (active
concept associates with other active concepts), and this changes similarity relations at a
given moment. Concepts in some specific meanings attract other concepts that become
closer, while other concepts increase their distance, facilitating disambiguation. Static
vector space models do not take that into account such dynamical changes, therefore
spreading activation models should have an important advantages here.

Projecting new information on the semantic network creates strong associations
with existing network nodes, encoding partially new knowledge in terms of the old one.
Basic perceptual and conceptual objects of mind are created early in the developmental
process, therefore perceptual information will be predominantly encoded in terms of the
old knowledge. Seeing or hearing new objects will be remembered by adding new nodes
that bind together (symbolize) specific configuration of node activations, responsible for
recognition of natural categories. These nodes in turn are linked to new nodes coding
abstract concepts that do not activate directly any perceptual nodes, allowing for higher
and higher levels of abstraction.

Computing and cognition may be seen as information compression, although there
are clearly exceptions. In the brain signals may be projected into higher-dimensional
space, for example information from retina is projected on visual cortex with order of
magnitude expansion in the number of cells involved. In computing we have seen that
kernel methods make implicit projection into a highly-dimensional space to achieve
separability before final reduction of information is made. Although the idea of cogni-
tion as compression is worth exploring it has been so far developed only for sequential,
one-dimensional systems [182], and to some extent in our approach to concept disam-
biguation in medical domain[124]. Multiple alignment may be applied to sequential
data, while computational intelligence methods work with many other types of data,
including signals, vectors, spatial structures (like chemical molecules), or multimedia
data. To account for preliminary processing of sensory and motor signals a more gen-
eral approach to data transformation is needed. Instead of a sequence alignment calcu-
lus based on “small world” active subnetworks in the huge semantic network encoding
relations between mind objects is required. New knowledge activates old similar struc-
tures, extends them in new directions, and thus is encoded in a compressed way. This
process may be approximated using graphs representing active network nodes that rep-
resent current mind state. Associations between different network configurations are
determined by transition probabilities between network states.

Several interesting developments emerged from neurocognitive inspirations, the two
most important theories being the liquid computing [121] and laminar computing [80,
145]. Liquid computing concentrates on microcircuits and columnar architecture, and
laminar computing on the layered architecture of neocortex. The neocortex microcir-
cuits composed of densely connected neurons within a diameter of 500μm are het-
erogeneous and differ across brain regions. Many properties of these microcircuits are
stereotypical, therefore a concept of a generic microcircuit template may be a useful
abstraction allowing for understanding of dynamical properties of the cortex. Maass
and Markram [120] argue that online computing is indistinguishable from learning, be-
cause temporal integration of information in a stream of data constantly changes the

system. Learning is thus an integral part of microcircuits dynamics. Boolean functions
and approximations to Boolean functions may be computed by feedforward networks
with stereotypical basis functions, including sigmoidal or any other nonlinear functions.
Computing such functions is thus relatively easy, there are many biophysical mech-
anisms that can influence neuronal states and thus can be interpreted as performing
computations and learning. A useful approximation to microcircuit dynamics may be
provided by finite state automata [18, 29, 34]. The Liquid State Machine (LSM) model
aims at better approximation at the microscopic level, based on “liquid” high dimen-
sional states of neural microcircuits that change in real time. In [34] another approx-
imation relating neurodynamical states to psychological space and mental events has
been advocated to bridge neuroscience and psychology.

LSM treats complex dynamical systems as non-linear filters transforming input sig-
nals x(t) into activations of microcircuit (hidden) neurons h(t) = L(x(t)). The output
stream y(t) = M(h(t)) is then provided using “readout neurons” that learn to select and
recombine activations of the hidden layer. In fact this is a simple transformation model
that projects signals into high-dimensional spaces h(t) created by microcircuits in form
of temporal filters or basis functions, where separation is relatively straightforward.
Oscillators based on neurons with diverse time constants are needed to create good pro-
jections. Linear or simple perceptron readout neurons are sufficient to approximate any
time-varying signal. A single LSM may be used for various tasks, depending on the
training of these output neurons. It has a fading memory for signals, depending on the
time constants of the neurons. In fact any larger reservoir of neurons with some memory
will be sufficient to create projections of signals to high-dimensional space. The Echo
State Networks, or more general Reservoir Computing, use untrained recurrent neu-
ral networks as “reservoirs of activity” to implement this projection. These approaches
are equivalent to the Liquid State Machines [84] and are being applied to time series
prediction, dynamical system identification and speech recognition with great success
[84].

The question how to use neural elements to compute Boolean functions has many
solutions [120]. A complementary question that is also worth asking is: how can neural
circuits discover approximate but rather complicated logic (Boolean function) in data,
going beyond trivial associations? How are different activations of the hidden layer
recombined to enable this? This is what humans and animals evidently do all the time.
LSM has so far been used on in problems where simple associations are sufficient. k-
separability and other more general goals of learning may be responsible for the ability
of cortex to learn complex approximate logic using liquid states. One good algorithm for
k-separability combines projections with discovery of local clusters. This is essentially
what is needed for object-centered representations in vision [31] and has been used
to model the outputs of parietal cortex neurons [141, 142]. Any continuous sensory-
motor transformation may be approximated in this way [153]. Although precise neural
implementation of such basis functions is not clear they may result from the activity of
microcircuits. Generalization of k-separability to time-dependent transformations done
by liquid state machines is rather straightforward. Therefore it is quite likely that k-
separability is an interesting abstraction of a basic biological mechanism.

Laminar computing is based on inspirations derived from organization of neocortex
into six layers with specific architecture, and information flow in the brain on macro-
scopic scales. The bottom-up interactions provide signals from the senses, while the
top-down interactions provide expectations or prior knowledge, that helps to solve ill-
defined problems. Finally the horizontal interactions enable competition and specializa-
tion. Laminar computing has been studied initially in the visual cortex [80] but seems
to have captured more general principles of cortical computations [145]. It explains
how distributed data is grouped into coherent object representations, how attention se-
lects important events and how cortex develops and learns to express environmental
constraints. The laminar computing models have been used to explain many neuro-
physiological and psychophysical results about visual system, but it has also been used
to develop new algorithms for image processing. In practical applications a version of
Adaptive Resonant Theory [19] called LAMINART [145], has been used. So far this is
the most advanced approach to perception that will certainly play a very important role
in the growing field of autonomous mental development and cognitive robotics.

6 Summary of open problems

Many open problems have been identified in the preceding chapters. Below is a sum-
mary of some of them:

– Solid foundations of computational intelligence that go beyond probabilistic pattern
recognition approaches are needed.

The current state is clearly not satisfactory. Bayesian probabilistic framework forms
the foundation of many pattern recognition methods [63, 174, 164] and graphical net-
works [99], but it does not cover most branches of computational intelligence. Good
foundations should help to create methods that adjust themselves to the data, finding the
simplest possible model that accurately describes the data. The no-free-lunch theorem
shows that a single approach is not sufficient [63] and automatic selection of methods
included in larger data mining packages is still too difficult as these methods are not
presented from the point of view of common foundations.

Earlier suggestions to base CI foundations on similarity concept [35, 43, 139] led
to a framework in which meta-learning could be implemented [53] using search tech-
niques in the model space. It has been found that similarity-based rule systems are
equivalent to fuzzy systems [49], providing an alternative way to understand data, and
that neural algorithms can also be presented in this framework. Heterogeneous con-
structive systems of this type are especially useful and have already discovered some
of the simplest descriptions of data [78, 51]. A framework based on transformations,
presented in this paper for the first time, is even more general, as it includes all kinds of
pre-processing and unsupervised methods for initial data transformations, and looks at
learning as a series of data transformations, defining new goals of learning. The work
on hyperkernels also goes in similar direction [135].

Although this framework is still in the initial stage of its development it has a
chance to provide foundations for computational intelligence models. Adaptation of

these models requires some optimization techniques, processes that operate on admis-
sible transformations. A new generation of data mining software, capable of imple-
menting arbitrary sequences of transformations for meta-learning, is in development
(K. Gra̧bczewski and N. Jankowski, in preparation).

– Existing methods cannot learn difficult problems.

CI algorithms are rarely addressing real, difficult problems, and many researchers
are convinced that universal approximators, such as neural networks, are good tools to
learn the structure of any data. In fact off-the-shelf systems work well only for prob-
lems that are “not-too-far” from the linearly separable problems. Fortunately many in-
teresting datasets in machine learning domain are of this kind. Problems with inherent
approximate Boolean logic become quickly intractable with growing complexity of the
logical functions. Growing complexity of such problems may be characterized using the
notion of k-separability [40], or even more general goals for learning. We are probably
not aware how many problems in bioinformatics or text processing are intractable and
therefore are ignoring them. Datasets for such difficult problems are needed to increase
awareness of the need for such methods, but first we should be able to solve at least
some of these problems.

– Problems requiring reasoning based on perceptions should be explored.

The basic function of simple brains is to link perception with action. Agents with
more complex brains have internal states and goals, and need to perceive and reason
before making actions. Agent-based approach in artificial intelligence [152] is usually
based on symbolic reasoning and logical rules. There has been some work on hybrid
neural-symbolic architectures [176], but not much effort devoted to neural architectures
capable of representations of predicate relations. The connectionist model Shruti [158,
175] seems to be an exception, although it has not gained wider popularity. Although
spreading activation networks allow for some reasoning (mostly disambiguation and
coherent interpretation of concepts [124]) this is not sufficient to solve problems re-
quiring combinatorial search, compositionality, problems arising in sentence parsing
or sequential reasoning. How to control spreading activation to account for system-
atic thinking process? New mathematical techniques for representation of objects and
relations by active subgraphs in large semantic networks seem to be required. Search
processes may be constrained by “intuitive computing” using neural heuristics [34].
Reinforcement learning [163], reservoir learning [84], laminar computing [80, 145] and
chunking [134] should also be used as general mechanisms for sequence learning and
divide-and-conquer sub-problem parsing. No cognitive architectures have captured so
far all these processes, and combining them together is an interesting challenge.

Neurocognitive inspirations for understanding language and general cognitive pro-
cesses lead to distributed connectionist systems that can be approximated by networks
with local activations, and that in turn may be partially understood in terms of symbolic
processes and probabilistic or finite automata [176]. Investigation of relations between
approximations of brain functions at different level of complexity is quite fruitful, lead-
ing to new models of mental processes based on psychological spaces [34, 61]. At the

simplest level simple perceptrons are found, with a single internal parameter and synap-
tic interactions based on fixed weight connections. Enhanced perceptrons sensitive to
phase synchronization [111] are able to solve the famous connectedness and other prob-
lems posed by Minsky and Papert [131]. Networks with spiking neurons also have this
capability [173], but it is not clear if they have additional powers – characterization
of different complexity classes seems to be incomplete here. At a higher level complex
processing elements modeling whole microcircuits are found, and even higher networks
of networks and societies of minds. Although new biological mechanisms at the level of
synaptic learning are certainly very important, simple abstractions of complex functions
such as self-organization proved to be quite interesting. At the level of approximating
microcuircuit and minicolumn functions simpler mechanisms, implementing for exam-
ple some form of k-separability learning, may also be useful. Perhaps correlation-based
learning, as in the Alopex algorithm [170], would be sufficient for biological implemen-
tation? Such approximations may also be viewed as information compression [182].

– Methodology of evaluation and development of CI methods is urgently needed.

Every year hundreds of methods are introduced, some of them rediscovered many
times, others being minor variations on the known themes. It is well known that a data
on which a given method works well may always be found [63]. There is no simple
way to evaluate a priori how a new method will perform on a real data, but at least it is
possible to understand what type of decision borders it is using and thus what type of
problems it may solve. Efforts to provide standard benchmarks have largely failed. For
example, the Data for Evaluating Learning in Valid Experiments (Delve) project 2 has
been quite promising, presenting problems of growing complexity, but the project has
unfortunately been abandoned.

Without standard methodology of evaluating new approaches no progress will be
possible. There is a tendency to create algorithms and test them on new datasets, ignor-
ing good reference results that are hard to compete with. Even though quite interesting
datasets are available from some competitions many papers end with one or two triv-
ial examples. Benchmarks that go beyond pattern recognition are particularly hard to
find. It is up to the editors and reviewers of journals to enforce comparison with the
simplest methods that may solve similar problems, and require solutions to problems
of increasing complexity. For example, in extraction of logical rules comparison with
rules extracted by popular decision trees should be required [62], or in classification
problems comparison with linear discrimination and the nearest neighbor model. Col-
lecting raw data, results of data analysis and software implementing different methods
should be encouraged by data repositories and large conferences.

Comparison of accuracy does not address problems in real applications. There may
be many performance measures, different costs involved, tradeoffs between model sim-
plicity and accuracy, rejection rate and confidence, or costs of obtaining different fea-
tures and making different types of errors. Verification and validation of CI models is of
great importance in industrial applications where software should always perform up to
the intended specifications. Testing the system on data that is similar to the training data

2 http://www.cs.utoronto.ca/ delve/

may not be sufficient. The standard neural network testing is not able to validate appli-
cations used to assess safety of nuclear reactors, chemical plants, military equipment or
medical life support systems. These issues are largely ignored by the CI academic com-
munity and mostly explored by researchers working in NASA, IBM and other research
oriented companies. Visualization of data transformations performed by CI systems,
including analysis of perturbation data, are very useful tools [36], although still rarely
used.

Cognitive robotics may be an ultimate challenge for computational intelligence.
Various robotic platforms that could be used for testing new ideas in semi-realistic sit-
uations would be very useful. They have to combine perception, object recognition,
reasoning, planning and control in real-time environment. However, computational in-
telligence has even more general ambitions, looking for solutions to all hard problems
for which effective algorithms are not known.

Acknowledgments: I am grateful for the support by the Polish Committee for Sci-
entific Research, research grant 2005-2007.

References

1. F. Corbacho A. Sierra, J.A. Macias. Evolution of functional link networks. IEEE Transac-
tions on Evolutionary Computation, 5:54–65, 2001.

2. N.I. Achieser. Theory of Approximation. Frederick Ungar, New York, 1956. Reprinted:
Dover Publications, New York 1992.

3. R. Adamczak, W. Duch, and N. Jankowski. New developments in the feature space mapping
model. In Third Conference on Neural Networks and Their Applications, pages 65–70,
Kule, Poland, Oct 1997.

4. J. A. Anderson, A. Pellionisz, and E. Rosenfeld. Neurocomputing 2. MIT Press, Cambridge,
MA, 1990.

5. J. A. Anderson and E. Rosenfeld. Neurocomputing - foundations of research. MIT Press,
Cambridge, MA, 1988.

6. R. Avnimelech and N. Intrator. Boosted mixture of experts: An ensemble learning scheme.
Neural Computation, 11:483–497, 1999.

7. F.R. Bach and M.I. Jordan. Kernel independent component analysis. Journal of Machine
Learning Research, 3:1–48, 2002.

8. P.M. Baggenstoss. The pdf projection theorem and the class-specific method. IEEE Trans-
actions on Signal Processing, 51:672–668, 2003.

9. B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. Jour-
nal of Machine Learning Research, 4:83–99, 2003.

10. E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms:
bagging, boosting and variants. Machine learning, 36:105–142, 1999.

11. Y. Bengio, O. Delalleau, and N. Le Roux. The curse of highly variable functions for local
kernel machines. Advances in Neural Information Processing Systems, 18:107–114, 2006.

12. Y. Bengio, M. Monperrus, and H. Larochelle. Non-local estimation of manifold structure.
Neural Computation, 18:2509–2528, 2006.

13. T. Bilgiç and I.B. Türkşen. Measurements of membership functions: Theoretical and em-
pirical work. In D. Dubois and H. Prade, editors, Fundamentals of Fuzzy Sets, Vol. 1, pages
195–232. Kluver, Boston, 2000.

14. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

15. M. Blachnik, W. Duch, and T. Wieczorek. Selection of prototypes rules context searching
via clustering. Lecture Notes in Artificial Intelligence, 4029:573–582, 2006.

16. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, 1999.

17. L. Breiman. Bias-variance, regularization, instability and stabilization. In C. M. Bishop,
editor, Neural Networks and Machine Learning, pages 27–56. Springer-Verlag, 1998.

18. Y. Burnod. An Adaptive Neural Network. The Cerebral Cortex. Prentice-Hall, London,
1990.

19. G.A. Carpenter and S. Grossberg. Adaptive resonance theory. In M.A. Arbib, editor, The
Handbook of Brain Theory and Neural Networks, 2nd ed, pages 87–90. MIT Press, Cam-
bridge, MA, 2003.

20. G. Chaitin. Algorithmic Information Theory. Cambridge University Press, 1987.
21. O. Chapelle. Training a support vector machine in the primal. Neural Computation, in

print, 2006.
22. N. Chater. The search for simplicity: A fundamental cognitive principle? Quarterly Journal

of Experimental Psychology, 52A:273–302, 1999.
23. A. Cichocki and S. Amari. Adaptive Blind Signal and Image Processing. Learning Algo-

rithms and Applications. J. Wiley & Sons, New York, 2002.
24. T. M. Cover. Geometrical and statistical properties of systems of linear inequalities with

applications in pattern recognition. IEEE Transactions on Electronic Computers, 14:326–
334, 1965.

25. G.S. Cree, K. McRae, and C. McNorgan. An attractor model of lexical conceptual process-
ing: Simulating semantic priming. Cognitive Science, 23(3):371–414, 1999.

26. F. Crestani. Application of spreading activation techniques in information retrieval. Artifical
Intelligence Review, 11(6):453–482, 1997.

27. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and other
Kernel-Based Learning Methods. Cambridge University Press, 2000.

28. P. Dayan and G.E. Hinton. Varieties of helmholtz machines. Neural Networks, 9:1385–
1403, 1996.

29. A.M. de Callataÿ. Natural and Artificial Intelligence. Misconceptions about Brains and
Neural Networks. Elsevier, Amsterdam, 1992.

30. L.N. de Castro and J.I. Timmis. Artificial Immune Systems: A New Computational Intelli-
gence Approach. Springer, 2002.

31. S. Deneve and A. Pouget. Basis functions for object-centered representations. Neuron,
37:347–359, 2003.

32. T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal Of Artificial Intelligence Research, 2:263–286, 1995.

33. W. Duch. Neural minimal distance methods. In Proceedings 3-rd Conference on Neural
Networks and Their Applications, pages 183–188, Kule, Poland, Oct 1997.

34. W. Duch. Platonic model of mind as an approximation to neurodynamics. In S i. Amari
and N. Kasabov, editors, Brain-like computing and intelligent information systems, pages
491–512. Springer, 1997.

35. W. Duch. Similarity based methods: a general framework for classification, approximation
and association. Control and Cybernetics, 29:937–968, 2000.

36. W. Duch. Coloring black boxes: visualization of neural network decisions. In Int. Joint
Conf. on Neural Networks, Portland, Oregon, volume I, pages 1735–1740. IEEE Press,
2003.

37. W. Duch. Uncertainty of data, fuzzy membership functions, and multi-layer perceptrons.
IEEE Transactions on Neural Networks, 16:10–23, 2005.

38. W. Duch. Computational creativity. In World Congres on Computational Intelligence,
Vancouver, Canada, pages 1162–1169. IEEE Press, 2006.

39. W. Duch. Filter methods. In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors,
Feature extraction, foundations and applications, pages 89–118. Physica Verlag, Springer,
Berlin, Heidelberg, New York, 2006.

40. W. Duch. k-separability. Lecture Notes in Computer Science, 4131:188–197, 2006.
41. W. Duch, R. Adamczak, and G. H. F. Diercksen. Distance-based multilayer perceptrons.

In M. Mohammadian, editor, International Conference on Computational Intelligence for
Modelling Control and Automation, pages 75–80, Amsterdam, The Netherlands, 1999. IOS
Press.

42. W. Duch, R. Adamczak, and G. H. F. Diercksen. Neural networks in non-euclidean spaces.
Neural Processing Letters, 10:201–210, 1999.

43. W. Duch, R. Adamczak, and G.H.F. Diercksen. Classification, association and pattern com-
pletion using neural similarity based methods. Applied Mathemathics and Computer Sci-
ence, 10:101–120, 2000.

44. W. Duch, R. Adamczak, and G.H.F. Diercksen. Feature space mapping neural network
applied to structure-activity relationship problems. In Soo-Young Lee, editor, 7th Inter-
national Conference on Neural Information Processing (ICONIP’2000), pages 270–274,
Dae-jong, Korea, 2000.

45. W. Duch, R. Adamczak, and G.H.F. Diercksen. Constructive density estimation network
based on several different separable transfer functions. In 9th European Symposium on
Artificial Neural Networks, Bruges, Belgium, Apr 2001.

46. W. Duch, R. Adamczak, and K. Gra̧bczewski. Extraction of logical rules from backpropa-
gation networks. Neural Processing Letters, 7:1–9, 1998.

47. W. Duch, R. Adamczak, and K. Gra̧bczewski. A new methodology of extraction, opti-
mization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural
Networks, 12:277–306, 2001.

48. W. Duch and M. Blachnik. Fuzzy rule-based systems derived from similarity to prototypes.
Lecture Notes in Computer Science, 3316:912–917, 2004.

49. W. Duch and M. Blachnik. Fuzzy rule-based systems derived from similarity to proto-
types. In N.R. Pal, N. Kasabov, R.K. Mudi, S. Pal, and S.K. Parui, editors, Lecture Notes
in Computer Science, volume 3316, pages 912–917. Physica Verlag, Springer, New York,
2004.

50. W. Duch and G. H. F. Diercksen. Feature space mapping as a universal adaptive system.
Computer Physics Communications, 87:341–371, 1995.

51. W. Duch and K. Gra̧bczewski. Heterogeneous adaptive systems. In IEEE World Congress
on Computational Intelligence, pages 524–529. IEEE Press, Honolulu, May 2002.

52. W. Duch and K. Grudziński. Search and global minimization in similarity-based methods.
In International Joint Conference on Neural Networks, page Paper 742, Washington D.C.,
1999. IEEE Press.

53. W. Duch and K. Grudziński. Meta-learning via search combined with parameter optimiza-
tion. In L. Rutkowski and J. Kacprzyk, editors, Advances in Soft Computing, pages 13–22.
Physica Verlag, Springer, New York, 2002.

54. W. Duch and L. Itert. Competent undemocratic committees. In L. Rutkowski and
J. Kacprzyk, editors, Neural Networks and Soft Computing, pages 412–417. Physica Verlag,
Springer, 2002.

55. W. Duch and L. Itert. Committees of undemocratic competent models. In L. Rutkowski and
J. Kacprzyk, editors, Proc. of Int. Conf. on Artificial Neural Networks (ICANN), Istanbul,
pages 33–36, 2003.

56. W. Duch and N. Jankowski. Complex systems, information theory and neural networks. In
First Polish Conference on Neural Networks and Their Applications, pages 224–230, Kule,
Poland, Apr 1994.

57. W. Duch and N. Jankowski. Survey of neural transfer functions. Neural Computing Surveys,
1999.

58. W. Duch and N. Jankowski. Taxonomy of neural transfer functions. In International Joint
Conference on Neural Networks, volume III, pages 477–484, Como, Italy, 2000. IEEE
Press.

59. W. Duch and N. Jankowski. Transfer functions: hidden possibilities for better neural net-
works. In 9th European Symposium on Artificial Neural Networks, pages 81–94, Brusells,
Belgium, 2001. De-facto publications.

60. W. Duch, N. Jankowski, A. Naud, and R. Adamczak. Feature space mapping: a neurofuzzy
network for system identification. In Proceedings of the European Symposium on Artificial
Neural Networks, pages 221–224, Helsinki, Aug 1995.

61. W. Duch and J. Mandziuk. Quo vadis computational intelligence? In P. Sincak, J. Vascak,
and K. Hirota, editors, Machine Intelligence: Quo Vadis?, volume 21, pages 3–28. World
Scientific, Advances in Fuzzy Systems – Applications and Theory, 2004.

62. W. Duch, R. Setiono, and J. Zurada. Computational intelligence methods for understanding
of data. Proceedings of the IEEE, 92(5):771–805, 2004.

63. R. O. Duda, P. E. Hart, and D.G. Stork. Patter Classification. J. Wiley & Sons, New York,
2001.

64. R.S. Michalski (ed). Multistrategy Learning. Kluwer Academic Publishers, 1993.
65. S. E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In D. S.

Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 524–532.
Morgan Kaufmann, 1990.

66. J.H. Friedman. Exploratory projection pursuit. Journal of the American Statistical Associ-
ation, 82:249–266, 1987.

67. K.S. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall, New York, 1982.
68. W. Gerstner and W.M. Kistler. Spiking Neuron Models. Single Neurons, Populations, Plas-

ticity. Cambridge University Press, 2002.
69. G. Giacinto and F. Roli. Dynamic classifier selection based on multiple classifier behaviour.

Pattern Recognition, 34:179–181, 2001.
70. A. Gifi. Nonlinear Multivariate Analysis. Wiley, Boston, 1990.
71. Ch. Giraud-Carrier, R. Vilalta, and P. Brazdil. Introduction to the special issue on meta-

learning. Machine Learning, 54:197–194, 2004.
72. L. Goldfarb and D. Gay. What is a structural representation? fifth variation. Techni-

cal Report Technical Report TR05-175, Faculty of Computer Science, University of New
Brunswick, Canada, 2005.

73. L. Goldfarb, D. Gay, O. Golubitsky, and D. Korkin. What is a structural representation? a
proposal for a representational formalism. Pattern Recognition, (submitted), 2006.

74. L. Goldfarb and S. Nigam. The unified learning paradigm: A foundation for ai. In V. Hon-
ovar and L. Uhr, editors, Artificial Intelligence and Neural Networks: Steps Toward Princi-
pled Integration, pages 533–559. Academic Press, Boston, 1994.

75. R.L. Gorsuch. Factor Analysis. Erlbaum, Hillsdale, NJ, 1983.
76. K. Gra̧bczewski and W. Duch. The separability of split value criterion. In Proceedings of

the 5th Conf. on Neural Networks and Soft Computing, pages 201–208, Zakopane, Poland,
2000. Polish Neural Network Society.

77. K. Gra̧bczewski and W. Duch. Forests of decision trees. Neural Networks and Soft Com-
puting, Advances in Soft Computing, pages 602–607, 2002.

78. K. Gra̧bczewski and W. Duch. Heterogenous forests of decision trees. Springer Lecture
Notes in Computer Science, 2415:504–509, 2002.

79. M. Grochowski and N. Jankowski. Comparison of instance selection algorithms. ii. results
and comments. Lecture Notes in Computer Science, 3070:580–585, 2004.

80. S. Grossberg. How does the cerebral cortex work? development, learning, attention, and
3d vision by laminar circuits of visual cortex. Behavioral and Cognitive Neuroscience
Reviews, 2:47–76, 2003.

81. A. Gutkin. Towards formal structural representation of spoken language: An evolving trans-
formation system (ets) approach. Technical Report PhD Thesis, School of Informatics,
University of Edinburgh, UK, 2005.

82. I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh. Feature extraction, foundations and ap-
plications. Physica Verlag, Springer, Berlin, Heidelberg, New York, 2006.

83. L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A Distribution-Free Theory of Nonpara-
metric Regression. Springer Series in Statistics, Springer-Verlag, New York, 2002.

84. H. Haas H. Jaeger. Harnessing nonlinearity: Predicting chaotic systems and saving energy
in wireless communication. Science, 304:78–80, 2004.

85. S. Haykin. Neural Networks - A Comprehensive Foundation. Maxwell MacMillian Int.,
New York, 1994.

86. R. Hecht-Nielsen. Cogent confabulation. Neural Networks, 18:111–115, 2005.
87. G.E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural

Computation, 18:381–414, 2006.
88. V. Honavar and L. Uhr, editors. Artificial Intelligence and Neural Networks: Steps Toward

Principled Integration. Academic Press, Boston, 1994.
89. G.-B. Huang, L. Chen, and C.-K. Siew. Universal approximation using incremental con-

structive feedforward networks with random hidden nodes. IEEE Transactions on Neural
Networks, 17:879–892, 2006.

90. A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. Wiley & Sons,
New York, NY, 2001.

91. S i. Amari and H. Nagaoka. Methods of information geometry. American Mathematical
Society, 2000.

92. E.M Iyoda, H. Nobuhara, and K. Hirota. A solution for the n-bit parity problem using a
single translated multiplicative neuron. Neural Processing Letters, 18(3):233–238, 2003.

93. J-S. R. Jang and C.T. Sun. Functional equivalence between radial basis function neural
networks and fuzzy inference systems. IEEE Transactions on Neural Networks, 4:156–
158, 1993.

94. N. Jankowski and W. Duch. Optimal transfer function neural networks. In 9th European
Symposium on Artificial Neural Networks, pages 101–106, Bruges, Belgium, 2001. De-
facto publications.

95. N. Jankowski and M. Grochowski. Comparison of instance selection algorithms. i. algo-
rithms survey. Lecture Notes in Computer Science, 3070:598–603, 2004.

96. N. Jankowski and V. Kadirkamanathan. Statistical control of growing and pruning in RBF-
like neural networks. In Third Conference on Neural Networks and Their Applications,
pages 663–670, Kule, Poland, October 1997.

97. N. Jankowski and V. Kadirkamanathan. Statistical control of RBF-like networks for clas-
sification. In 7th International Conference on Artificial Neural Networks, pages 385–390,
Lausanne, Switzerland, October 1997. Springer-Verlag.

98. C. Jones and R. Sibson. What is projection pursuit. Journal of the Royal Statistical Society
A, 150:1–36, 1987.

99. M. Jordan and Eds. T.J. Sejnowski. Graphical Models. Foundations of Neural Computation.
MIT Press, 2001.

100. V. Kadirkamanathan. A statistical inference based growth criterion for the RBF networks.
In Vlontzos, editor, Proceedings of the IEEE. Workshop on Neural Networks for Signal
Processing, pages 12–21, New York, 1994.

101. N. Kasabov. Evolving Connectionist Systems - Methods and Applications in Bioinformatics,
Brain Study and Intelligent Machines. Springer, Perspectives in Neurocomputing, 2002.

102. M.J. Kearns and U.V. Vazirani. An Introduction to Computational Learning Theory. MIT
Press, Cambridge, MA, 1994.

103. V. Kecman. Learning and Soft Computing. MIT Press, Cambridge, MA, 2001.
104. B. Kégl and A. Krzyzak. Piecewise linear skeletonization using principal curves. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24:59–74, 2002.
105. J. Kennedy, R.C. Eberhart, and Y. Shi. Swarm Intelligence. Morgan Kaufmann, 2001.
106. T. Kohonen. Self-organizing maps. Springer-Verlag, Heidelberg Berlin, 1995.
107. A. Konar. Computational Intelligence. Principles, Techniques and Applications. Springer,

New York, 2005.
108. M. Kordos and W. Duch. Variable step search mlp training method. International Journal

of Information Technology and Intelligent Computing, 1:45–56, 2006.
109. B. Kosko. Neural Networks and Fuzzy Systems. Prentice Hall International, 1992.
110. L.I. Kuncheva. Combining Pattern Classifiers. Methods and Algorithms. J. Wiley & Sons,

New York, 2004.
111. N. Kunstman, C. Hillermeier, B. Rabus, and P. Tavan. An associative memory that can form

hypotheses: a phase-coded neural network. Biological Cybernetics, 72:119–132, 1994.
112. G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M.I. Jordan. Learning the

kernel matrix with semidefinite programming. Journal of Machine Learning Research,
5:27–72, 2004.

113. Y.J. Lee and O. L. Mangasarian. Ssvm: A smooth support vector machine for classification.
Computational Optimization and Applications, 20:5–22, 2001.

114. M. Leshno, V.Y. Lin, Pinkus, and S. Schocken. Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function. Neural Networks, 6:861–
867, 1993.

115. H. Leung and S. Haykin. Detection and estimation using an adaptive rational function
filters. IEEE Transactions on Signal Processing, 12:3365–3376, 1994.

116. H. Li, C.L.P. Chen, and H-P. Huang. Fuzzy Neural Intelligent Systems: Mathematical Foun-
dation and the Applications in Engineering. CRC Press, 2000.

117. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its Applications.
Springer-Verlag, 1997 (2nd ed).

118. H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification
using string kernels. Journal of Machine Learning Research, 2:419–444, 2002.

119. W. Maass and Eds. C. M. Bishop, editors. Pulsed Neural Networks. MIT Press, Cambridge,
MA, 1998.

120. W. Maass and H. Markram. Theory of the computational function of microcircuit dynamics.
In S. Grillner and A. M. Graybiel, editors, Microcircuits. The Interface between Neurons
and Global Brain Function, pages 371–392. MIT Press, 2006.

121. W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states:
A new framework for neural computation based on perturbations. Neural Computation,
14:2531–2560, 2002.

122. R. Maclin. Boosting classifiers regionally. In Proc. 15th National Conference on Artificial
Intelligence, Madison, WI., pages 700–705, 1998.

123. C.D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge, MA, 1999.

124. P. Matykiewicz, W. Duch, and J. Pestian. Nonambiguous concept mapping in medical
domain. Lecture Notes in Artificial Intelligence, 4029:941–950, 2006.

125. T.J. McCabe and C.W. Butler. Design complexity measurement and testing. Communica-
tions of the ACM, 32:1415–1425, 1989.

126. T.P. McNamara. Semantic Priming. Perspectives from Memory and Word Recognition. Psy-
chology Press, 2005.

127. J.M. Mendel. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Direc-
tions. Prentice-Hall, 2000.

128. D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine learning, neural and statistical
classification. Elis Horwood, London, 1994.

129. I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. Yale: Rapid prototyping
for complex data mining tasks. In Proc. 12th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD 2006), 2006.

130. K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, 1999.
131. M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. MIT

Press, 1969.
132. S. Mitra and T. Acharya. Data Mining: Multimedia, Soft Computing, and Bioinformatics.

J. Wiley & Sons, New York, 2003.
133. D. Nauck, F. Klawonn, R. Kruse, and F. Klawonn. Foundations of Neuro-Fuzzy Systems.

John Wiley & Sons, New York, 1997.
134. A. Newell. Unified theories of cognition. Harvard Univ. Press, Cambridge, MA, 1990.
135. C.S. Ong, A. Smola, and B. Williamson. Learning the kernel with hyperkernels. Journal of

Machine Learning Research, 6:1045–1071, 2005.
136. S.K. Pal and S. Mitra. Neuro-fuzzy Pattern Recognition: Methods in Soft Computing

Paradigm. J. Wiley & Sons, New York, 1999.
137. Y.H. Pao. Adaptive Pattern Recognition and Neural Networks. Addison-Wesley, Reading,

MA, 1989.
138. E. Pȩkalska and R.P.W. Duin. The dissimilarity representation for pattern recognition:

foundations and applications. New Jersey; London: World Scientific, 2005.
139. E. Pȩkalska, P. Paclik, and R.P.W. Duin. A generalized kernel approach to dissimilarity-

based classification. Journal of Machine Learning Research, 2:175–211, 2001.
140. T. Poggio and F. Girosi. Network for approximation and learning. Proceedings of the IEEE,

78:1481–1497, 1990.
141. A. Pouget and T.J. Sejnowski. Spatial transformation in the parietal cortex using basis

functions. Journal of Cognitive Neuroscience, 9:222–237, 1997.
142. A. Pouget and T.J. Sejnowski. Simulating a lesion in a basis function model of spatial

representations: comparison with hemineglect. Psychological Review, 108:653–673, 2001.
143. M. J. D. Powell. Radial basis functions for multivariable interpolation: A review. In J. C.

Mason and M. G. Cox, editors, Algorithms for Approximation of Functions and Data, pages
143–167, Oxford, 1987. Oxford University Press.

144. J.R. Rabunal and J. Dorado, editors. Artificial Neural Networks in Real-life Applications.
Idea Group Pub, 2005.

145. R. Raizada and S. Grossberg. Towards a theory of the laminar architecture of cerebral
cortex: Computational clues from the visual system. Cerebral Cortex, 13:100–113, 2003.

146. I. Roth and V. Bruce. Perception and Representation. Open University Press, 1995. 2nd
ed.

147. D. Rousseau and F. Chapeau-Blondeau. Constructive role of noise in signal detection from
parallel arrays of quantizers. Signal Processing, 85:571–580, 2005.

148. S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, 2000.

149. Asim Roy. Artificial neural networks - a science in trouble. SIGKDD Explorations, 1:33–
38, 2000.

150. Asim Roy. A theory of the brain: There are parts of the brain that control other parts. In
Proc. of the Int. Joint Conf. on Neural Networks (IJCNN 2000), volume 2, pages 81–86.
IEEE Computer Society Press, 2000.

151. D.E. Rumelhart and J.L. McClelland (eds). Parallel Distributed Processing, Vol. 1: Foun-
dations. MIT Press, Cambridge, MA, 1986.

152. S. J. Russell and P. Norvig. Artificial Intelligence. A Modern Approach. Prentice-Hall,
Englewood Cliffs, NJ, 1995.

153. E. Salinas and T.J. Sejnowski. Gain modulation in the central nervous system: where be-
havior, neurophysiology, and computation meet. Neuroscientist, 7:430–440, 2001.

154. R.E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predic-
tions. Machine Learning, 37:297–336, 1999.

155. B. Schölkopf and A.J. Smola. Learning with Kernels. Support Vector Machines, Regular-
ization, Optimization, and Beyond. MIT Press, Cambridge, MA, 2001.

156. F. Schwenker, H.A. Kestler, and G. Palm. Three learning phases for radial-basis-function
networks. Neural Networks, 14:439–458, 2001.

157. A.K. Seewald. Exploring the parameter state space of stacking. In Proceedings of the 2002
IEEE International Conference on Data Mining (ICDM 2002), pages 685–688, 2002.

158. L. Shastri. Advances in shruti - a neurally motivated model of relational knowledge repre-
sentation and rapid inference using temporal synchrony. Applied Intelligence, 11:79–108,
1999.

159. Wang Shoujue and Lai Jiangliang. Geometrical learning, descriptive geometry, and
biomimetic pattern recognition. Neurocomputing, 67:9–28, 2005.

160. E. Simoncelli and B.A. Olshausen. Natural image statistics and neural representation. An-
nual Review of Neuroscience, 24:1193–1216, 2001.

161. P. Smyth and D. Wolpert. Linearly combining density estimators via stacking. Machine
Learning, 36:59–83, 1999.

162. Anuj Srivastava and Xiuwen Liu. Tools for application-driven linear dimension reduction.
Neurocomputing, 67:136–160, 2005.

163. R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998.

164. R. Tibshirani T. Hastie and J. Friedman. The Elements of Statistical Learning. Springer-
Verlag, 2001.

165. J.D. Tebbens and P. Schlesinger. Improving implementation of linear discriminant analysis
for the small sample size problem. Preprint, submitted to Elsevier Science, 2006.

166. R.F. Thompson. The Brain. The Neuroscience Primer. W.H. Freeman and Co, New York,
1993.

167. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.
168. K. Torkkola. Feature extraction by non-parametric mutual information maximization. Jour-

nal of Machine Learning Research, 3:1415–1438, 2003.
169. K. Tsuda and W.S. Noble. Learning kernels from biological networks by maximizing en-

tropy. Bioinformatics, 20:i326–i333, 2004.
170. K.P. Unnikrishnan and K.P. Venugopal. Alopex: a correlation-based learning algorithm for

feeedforward and recurrent neural networks. Neural Computation, 6:469–490, 1994.
171. J.-P. Vert. A tree kernel to analyze phylogenetic profiles. Bioinformatics, 18:S276–S284,

2002.
172. S.F. Walker. A brief history of connectionism and its psychological implications. In

A. Clark and R. Lutz, editors, Connectionism in Context, pages 123–144. Springer-Verlag,
Berlin, 1992.

173. D.L. Wang. On connectedness: a solution based on oscillatory correlation. Neural Compu-
tation, 12:131–139, 2000.

174. A.R. Webb. Statistical Pattern Recognition. J. Wiley & Sons, 2002.
175. C. Wendelken and L. Shastri. Multiple instantiation and rule mediation in shruti. Connec-

tion Science, 16:211–217, 2004.
176. S. Wermter and R. Sun. Hybrid Neural Systems. Springer, 2000.

177. T. Wieczorek, M. Blachnik, and W. Duch. Influence of probability estimation parameters
on stability of accuracy in prototype rules using heterogeneous distance functions. Artificial
Intelligence Studies, 2:71–78, 2005.

178. T. Wieczorek, M. Blachnik, and W. Duch. Heterogeneous distance functions for prototype
rules: influence of parameters on probability estimation. International Journal of Artificial
Intelligence Studies, 1:xxx–yyy, 2006.

179. P.H. Winston. Artificial Intelligence. Addison-Wesley, Reading, MA, third edition, 1992.
180. I.H. Witten and E. Frank. Data Mining: Practical machine learning tools and techniques.

Morgan Kaufmann, 2nd Ed, 2005.
181. J.G. Wolff. Information compression by multiple alignment, unification and search as a

unifying principle in computing and cognition. Artificial Intelligence Review, 19:193–230,
2003.

182. J.G. Wolff. Unifying Computing and Cognition. The SP Theory and its Applications. Cog-
nitionResearch.org.uk (Ebook edition), 2006. http://www.cognitionresearch.org.uk.

183. D. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

