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Abstract. Prototype-based rules are an interesting alternative to fuzzy and crisp
logical rules, in many cases providing simpler, more accurate and more com-
prehensible description of the data. Such rules may be directly converted to fuzzy
rules. A new algorithm for generation of prototype-based rules is introduced and a
comparison with results obtained by neurofuzzy systems on a number of datasets
provided.

1 Introduction

Similarity-based approaches that developed from the k-Nearest Neighbors (kNN) algo-
rithm [1, 2] are still one of the most useful and popular algorithms in pattern recognition.
They are also at the foundation of the Artificial Intelligence learning methods, such as
the Case Based Reasoning or Memory Based Reasoning methods, allowing for compar-
ison of complex objects that cannot be easily represented in a feature space with fixed
number of dimensions.

Nearest neighbor algorithms, or more generally Similarity-Based Learning (SBL)
framework [2, 3], may provide not only predictive models, but also prototype-based log-
ical rules (P-rules) [4, 5] for data understanding. Knowledge hidden in many datasets
can be captured in a small set of prototypes using appropriate similarity measures. As
shown in [6] this type of rules are equivalent to fuzzy rules (F-rules). P-rules seem to be
more general because they support all types of features (discrete, nominal or symbolic),
while the use of F-rules is restricted to continuous or ordinal attributes. Moreover, non-
additive distance functions may include explicit models of correlation between vari-
ables and cannot be converted into fuzzy rules. Algorithms for selection of good pro-
totypes and similarity measures are in a direct competition to the popular neurofuzzy
approaches and fuzzy modeling techniques [7], and therefore their further development
is an important issue.

Selection of reference vectors, also called prototypes, is very important especially
for large datasets, because storing the whole training set in memory is then prohibitively
expensive and searching for nearest neighbors becomes computationally very expen-
sive, making similarity-based algorithms completely useless for real time applications.
The need to overcome these limitations brought the development of many approaches



aimed at increase of the speed and reduction of the memory requirement of the ba-
sic nearest neighbor algorithms. As a result many powerful algorithms for prototype
selection were created [8–11] that may also find an application in creation of P-rules.

These algorithms may be divided into four groups: noise filters, data condensing
methods, clustering, and prototype optimization methods. Most of these approaches try
to reduce the number of prototypes by getting rid of irrelevant training vectors [10].
Some algorithms try also to identify and remove outliers that decrease accuracy. More
advanced algorithms like WITS, DROP [1–5, 11], remove also vectors which lie close
to the decision border and are not necessary for classification, increasing generalization
abilities. Another group of methods starts with a small number of prototypes optimizing
their position using such techniques as learning vector quantization (LVQ). This is a
powerful method, but the results strongly depend on the starting position of prototypes.
Results presented in [8, 9] lead to the conclusion that LVQ approach should be used as
second step following other prototype selection methods.

The last group of methods is based on clustering algorithms that search for interest-
ing groupings of vectors in a dataset [1]. Usually clustering is done separately for each
class, so that each class has an independent number of clusters. In this approach spher-
ical clusters are preferred like obtained from Hard C-means (HCM), Fuzzy C-Means
(FCM) algorithm or Gaussian Mixture Model (GMM). Unfortunately these clustering
methods search for clusters among all vectors belonging to one of the classes, produc-
ing a subset of irrelevant prototypes that are often far away from the decision boundary
and that do not participate in the decision process.

This problem is especially important for P-rules where a small subset of reference
vectors that can be interpreted as prototypes is searched for [2]. These observations
allow for construction of a new prototype selection algorithm based on the context de-
pendent clustering approach, for example the Conditional FCM (CFCM) with weight-
ing of the training vectors [12]. In the next section heterogeneous distance functions
are described, in the third section CFCM algorithm is presented, in the fourth section
creation of an appropriate condition values to determine clustering context is described,
the algorithm for the selection of optimal number of prototypes is presented in section
five, followed by empirical experiments in section six, and the final section contains
conclusions.

2 Heterogeneous distance functions

Real word classification problems usually involve different types of features, some may
be continuous or linearly ordered, some may be discrete and some symbolic. This con-
stitutes a real problem for many algorithms, including statistical, neural or neurofuzzy
approaches (ANFIS). Similarity-Based Learning framework [2, 3] defines many vari-
ants of similarity evaluations, including different distance functions for different types
of attributes. The most popular and frequently used Minkovsky distance function is
a generalization of Euclidian distance and is applicable only for numerical attributes.
Symbolic features require different distance functions that may be defined using condi-
tional probabilities to evaluate similarity of each symbolic feature value from the point
of view of class distributions, as it is done in the Value Distance Metric (VDM) [15].



Numerical and probabilistic distance measures may be combined in a general distance
metric, usually called the Heterogeneous Distance Metric (HDM), and in particular case
of the VDM metric the Heterogeneous Value Distance Metric (HVDM). Such distance
functions were used by Wilson and Martinez [16] who simply added scaled contribu-
tions from different features:

D (x, r)α =
n∑

i=1

d (xi, ri)
α (1)

where D (x, r) is total distance between two vectors x and r with n features, d(x i,ri)
are distances calculated for single features, and α is an exponent (in more general case
exponents on the left and right side of Eq. 1 may be different [3]). Explicit account
of correlations between features is done in the simplest way by introducing covariance
matrices. HDM assumes that different types of features are independent, and for the
real-valued or ordered discrete features Minkovsky’s distances are used, while for sym-
bolic features probabilistic distances based on conditional probabilities are used.

DMink (x, r)α =
n1∑
i=1

|xi − ri|α (2)

DV MD (x, r)α =
n2∑
i=1

C∑
j=1

|p (cj|xi) − p (cj |ri)|α (3)

where n1 is the number of numerical and n2 of symbolic values, C is the number of
classes and posterior probabilities p (cj |xi) and p (cj |ri) are calculated as:

p (cj |xi) = Nxij/Nxi (4)

where Nxi is number of instances in the training set that have value x for feature i, and
Nxij is the number of training vectors from class j that have value x for feature i.

Because HVDM is additive it can be written as the sum of two distance functions
that depend on different attribute types:

D (x, r)α = DMink (xa, ra)α + DV DM (xb, rb)α (5)

where xa and ra are subsets of numerical attributes and xb and rb are subsets of their
symbolic features. An important problem with such heterogeneous functions is to define
a common distance scale. DMink takes values in the range (0, +∞) while DV DM

in the range
(
0, n

1/α
2

)
. Features should be properly normalized to assure that each

distance component has the some or comparable contribution. Wilson and Martinez
[16] proposed one type of normalization for numerical attributes (6) and three different
normalization methods for VDM distance (7), where the choice depends on particular
problem:

dMink (x, r) =
|x − r|

4σ
(6)



N1 : dV MD (x, r) =
C∑

j=1

∣∣∣Nxj

Nx − Nrj

Nr

∣∣∣
N2 : dV MD (x, r) =

√
C∑

j=1

∣∣∣Nxj

Nx − Nrj

Nr

∣∣∣2

N3 : dV MD (x, r) =

√
C ·

C∑
j=1

∣∣∣Nxj

Nx − Nrj

Nr

∣∣∣2
(7)

In N1 the distance between one dimensional probabilities is calculated using the Man-
hattan norm, while in N2 and N3 the Euclidean norm is used.

In [16] authors suggest that normalization N2 “favors having all of the class corre-
lations fairly similar rather then having some very close and some very different”. The
difference between N2 and N3 normalizations may have an influence on classification
using kNN method, but for P-rules, with a small number of reference vectors common
feature weighting may be replaced by optimization of their positions. The parameter
α that occurs in all distance functions has significant influence on the shape of deci-
sion borders [3]. There is no specific value of this parameter that will always lead to
the best classification results, therefore the optimal α value should be determined using
meta-learning algorithms [17]. Another possibility is to set the value of α depending on
particular needs. This is one of the P-rules advantages, because the results are equiva-
lent to fuzzy rules with various types of membership functions, for example Gaussian
for α=2 or crisp logical rules for α=∞.

3 Conditional Fuzzy C-Means

In classification tasks the area between samples from different classes is most important
[1], and the goal of pattern recognition algorithms is to construct the optimal shape of
this border to assure maximum generalization, that is the lowest error rate for the test
data. This observation encourages searching for prototypes similar to “support vectors”
[18] in the border area. Classical clustering algorithms search for groups of data in the
whole data space without any knowledge of class distribution. Of course one may clus-
ter each class independently, however the centers of the clusters will lead to prototypes
far from the decision borders. Another disadvantage of classical clustering algorithms
follows from the fact that useless prototypes are created for data clusters far from de-
cision borders, as show in Fig. 1. Optimization methods from the LVQ family cannot
move such prototypes to areas where they could take an important part in the decision
process.

One possible solution of this problem is based on conditional or context dependent
clustering algorithms. One of the examples of such methods is the Conditional Fuzzy
C-Means method (CFCM) [12]. It is an extension of the FCM clustering algorithm
where data are grouped under some external conditions defined for every training vec-
tor. These conditions are specified by an external variable ykwhich corresponds to each
training vector xk. This variable yk has an associated membership function μ(y) or in
other words weight that creates clustering condition fk=μA(y) ∈[0,1] defined for every



vector xk. This condition allows for clustering related data, where fk defines strength
of the relation between data vectors xk and the external variable yk.
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Fig. 1. Decision borders and prototype activation areas for two class problem with prototypes
selected by a) Conditional Fuzzy C-means clustering algorithm and b) Fuzzy C-means method.

In our approach this external variable is defined as a measure of distance between
each data vector and a possible decision border. The task is to find clusters near to this
border. FCM and CFCM are based on minimization of a cost function defined as:

Jm(U,V) =
C∑

i=1

N∑
k=1

(uik)m ‖xk − vi‖2
A (8)

where C is the number of clusters centered at vi, N is the number of vectors, m >1 is
a parameter, and U=(uik) is a C × N dimensional membership matrix with elements
uik ∈ [0,1] defining the degree of membership of the k-th vector in the i-th class. The
matrix U has to fulfill three conditions:

1o each vector xk belongs to the i-th cluster to a degree between 0 to 1:

∀
1≤i≤C

∀
1≤k≤N

uik ∈ [0, 1] (9)

2o sum of the membership values of k-th vector xk in all clusters is equal to fk

∀
1≤k≤N

C∑
i=1

uik = fk (10)

3o no clusters are empty.

∀
1≤i≤C

0 <

N∑
k=1

uik < N (11)



Cost function (8) is minimized under these conditions by [12]:

∀
1≤i≤C

vi =
N∑

k=1

(uik)mxk

/
N∑

k=1

(uik)m (12)

∀
1≤i≤C

1≤k≤N

uik = fk

/
C∑

j=1

( ‖xk − νi‖
‖xk − νj‖

)2/(m−1)

(13)

4 Determining the context

Searching for optimal position of prototypes for P-rules is a difficult problem; moreover,
a balance between the number of prototypes (simplicity of the rules) and the accuracy
of the whole system is very important. Irrelevant prototypes, that is prototypes that do
not have any influence on classification, should be removed. This assumption allows
for search of prototypes that lie close to one of the opposite classes, that is close to the
possible decision border.

To determine position of prototypes using conditional clustering algorithm a coeffi-
cient wk is defined, evaluating for a given vector xk the ratio of a scatter between this
vector and all vectors from the same class, divided by a scatter for all vectors from the
remaining classes:

wk =
∑

j,ω(xj)=ω(xk)

‖xk − xj‖2

/ ∑
l,ω(xl) �=ω(xk)

‖xk − xl‖2 (14)

Here ω(xk) denotes class label of the vector xk. This coefficients is then normalized to
be in the range [0,1]:

wk =
(

wk − min
k

(wk)
)/(

max
k

(wk) − min
k

(wk)
)

(15)

Normalized wk coefficients reach values close to 0 for vectors inside large homoge-
nous clusters, and close to 1 if the vector xk is near the vectors of the opposite classes
and far from other vectors from the same class (for example if it is an outlier). To avoid
effects related to multiple density peaks in non-homogenous data distributions a cut-off
point for distance of the order of standard deviation of the whole data could be intro-
duced, although in our tests it was not necessary. These normalized weights determine
the external variable which then is filtered to assign appropriate context or condition for
CFCM clustering. Filtering can be also understood as assigning appropriate linguistic
term in the fuzzy sense. In the algorithm used below a Gaussian filter was used:

fk = exp
(

wk − μ

σ2

)
(16)



with the best parameters in the range of μ=0.6-0.8 and σ=0.6-0.9, determined empiri-
cally for a wide range of datasets. The μ parameter controls where the prototypes will
be placed; for small μ they are closer to the center of the cluster and for larger μ closer
to the decision borders. The range in which they are sought is determined by the σ
parameter.

5 Prototype racing algorithm for optimizing number of prototypes

Most algorithms for clustering require specification of the number of clusters. This is
especially important for the C-means clustering group of algorithms, where premises
for determining C do not exist, while in the hierarchical clustering they can be obtained
by analyzing dendrogram tree [19]. In our approach clusterization of data from each
class is done in an independent way, therefore determination of the number of proto-
types requires control of several Ci parameters, one for each class. Moreover, these
parameters may be strongly correlated. The simplest way to build a model with optimal
number of reference vectors is to check its performance for all possible combinations
of Ci with optimization of final positions of all prototypes but this will lead to a very
high computational costs.

One possible solution is provided by the racing algorithm [13] based on the re-
sults of candidate model comparison in cross-validation task. To speed up the learning
process Hoeffding or Bayesian estimation of error bounds of analyzed models is used,
rejecting those that are significantly worse than the current best model during the op-
timization procedure. Another possible improvement leading to reduction of computa-
tional costs, especially in optimizing balanced accuracy (BER), is based on the heuris-
tics for increasing the number of prototypes only for the class that has worst accuracy.
Adding new prototype to the class with lowest accuracy increases the accuracy for that
class but may also reduce overall balanced accuracy. To avoid such problems the rac-
ing algorithm keeps only the best models, growing the number of prototypes per class
as long as the gain in balanced accuracy justifies the added complexity. This approach
significantly increases optimization speed but unfortunately not always finds optimal
combination of prototypes per class.

6 Experiments and results

In numerical experiments presented below prototype selection scheme described above
was compared with results obtained from classical clustering algorithm without exter-
nal conditions. All results are from the 10-fold crossvalidation tests with the racing
algorithm for determining the number of prototypes. Maximum number of iterations
was limited to 15 for both FCM and CFCM clustering. Positions of prototypes obtained
from clustering were then optimized with the LVQ1 algorithm [19]. Test results sum-
marized in Tab. 1 were obtained for six benchmark datasets from UCI repository [7],
with different number of classes and types of features: Cleveland Heart Disease, Glass,
Ionosphere, Pima Indians Diabetes, and the Iris dataset with all 4 and with two most
important features. A small medical dataset Appendicitis was also used, with two most



Table 1. Classification results for 6 datasets: balanced accuracy, standard deviation, the number
of premises and rules.

Dataset Decision Tree CFCM FCM NefClass
bacc std Prem/ bacc std Prem/ bacc std P-rule bacc std Prem/

C-rule P-rule F-rule
Appendicitis 76.0 19.0 2/1 81.1 13.0 2/3 79.7 19.7 2 81.9 12.3 1/4
Heart 78.9 7.7 3/5 76.3 3.4 13/4 75.4 6.8 5 76.6 6.6 1/2

78.9 5.9 3/2
Glass 62.4 9.1 6/8 71.2 11,6 9/16 68.6 10.0 16 64.8 9.4 3/13

70.6 11.1 6/14
Ionosphere 88.7 4.8 2/2 90,1 5.3 33/7 84.8 6.5 6 81.8 9.8 2/4

85.9 6.8 2/6
Diabetes 69.9 4.4 2/2 74.9 3.1 8/7 74.1 4.7 7 71.1 4.9 1/2

73.9 5.9 2/3
Iris 93.3 7.0 2/2 96.0 4.7 4/5 95.3 5.5 5 93.3 4.4 2/3

97.3 4.7 2/5

relevant features selected using SSV decision tree (description of these datasets may be
found in [4]).

Crisp rules generated by decision tree using Gini index were used to generate C-
rules as a reference for accuracy and complexity comparison. Features selected by the
tree were used with the CFCM approach. Results are also compared with the state-of-
the-art NefClass [7] neurofuzzy system that generates F-rules. It is based on greedy
partitioning for initialization of fuzzy sets. In NefClass the number of fuzzy sets and
the maximum number of rules are selected manually. Several available shapes of fuzzy
membership functions have been used with different number of fuzzy sets and rules,
and the best balanced accuracy results are reported in Tab.1. Crossvalidation results
are used to select the model and to estimate expected accuracy, and this model is then
trained on all data to obtain the number of rules and premises.

Appendicitis dataset is quite small (21+85 samples) and thus standard deviation for
balanced accuracy is very large, therefore the differences are not significant. All solu-
tions are quite simple, including the C-rules from the tree: If F7<7520.5 and F4<12
then Class 2, else Class 1. For the remaining five datasets best balanced accuracy was
achieved using the CFCM algorithm, although for such small datasets standard devi-
ations are quite large and thus even 8% differences (Ionosphere) between P-rules and
F-rules are not statistically significant. P-rules generated in an automatic way using
the CFCM approach have comparable complexity to the manually optimized F-rules.
P-rules may be directly converted to the F-rules [6] and therefore algorithms for their
generation offer a competitive approach to the neurofuzzy algorithms.

7 Conclusions

In many data mining applications understanding and transparency of the results are of
great importance. Rule-based systems should be flexible to represent data accurately,



and should be easy to understand, implying a small number of accurate rules. Although
both P-rules and F-rules may fulfill these conditions for some reason P-rules are not so
popular, mistakenly believed to be difficult to understand. On the other hand complex
sets of fuzzy rules that no-one even tries to understand are hailed as comprehensible just
because they are logical rules. Comparison with neurofuzzy systems shows that P-rule
algorithms are frequently capable of generating simpler and more accurate description
of data in terms of prototypes. The balance between transparency (rule simplicity and
their number) and accuracy should be determined in each task individually, depending
on the application.

In this paper a new approach based on the conditional fuzzy C-means approach
with determination of the distance to the decision border has been introduced and used
for selecting good prototypes, optimizing their position and number. This algorithm
has several advantages: it limits the search area to the most probable space, facilitates
searching for good prototypes, reduces influence of outliers, reduces the number of
irrelevant prototypes, creating only prototypes that have important meaning for classi-
fication, and it automatically determines optimal number of prototypes for each class.

Although this approach introduces two new parameters that should be tuned exper-
iments showed that it is not sensitive to their values and leaving these values in the
μ=0.6-0.8 and σ=0.6-0.9 range is sufficient. The results presented in Tab.1 show that
the proposed coefficient for context clustering may significantly improve the prototype
selection based on clustering. For some datasets like Glass or Ionosphere the classifica-
tion quality increased by almost 20% comparing to the normal clustering, while for the
other datasets the increase was more modest.

So far the context dependent clustering algorithm was used only with the CFCM
clustering, but applications to other algorithms look also very promising and will be
investigated in our future work. Combination of this approach with feature selection
based on Relief index should lead to a P-rule system that should easily compete with
the best neurofuzzy systems.
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