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ABSTRACT 
Probabilistic distance functions, including several variants of 
value difference metrics, minimum risk metric and Short-
Fukunaga metrics, are used with prototype-based rules (P-rules) 
to provide a very concise and comprehensible classification 
model. Application of probabilistic metrics to nominal or discrete 
features is straightforward. Heterogeneous metrics that handle 
continuous attributes with discretized or interpolated probabilistic 
metrics were combined with several methods of probability 
density estimation. Numerical experiments on artificial and real 
data show the usefulness of such approach as an alternative to 
neurofuzzy models.   

1. INTRODUCTION 

One of the most important goals of computational 
intelligence is data understanding. Many popular pattern 
recognition methods used for classification, such as the 
artificial neural networks, Support Vector Machines or 
statistical methods [1],[2] have limited applications because 
their recommendations cannot be explained in simple terms. 
As a result there is a danger that “black box” predictions 
may completely fail for some specific inputs and thus in 
safety-critical applications (such as autopilot vehicle 
control, or medical applications) they should not be used. 
Algorithms based on logical rules are much better in this 
respect, but generation of sets of rules that are reliable, 
accurate and sufficiently simple to understand them is a 
difficult problem [3]. Most popular methods for rule 
generation are based on univariate decision trees, with rule 
conditions that operate on each attribute separately. 
Examples include Quinlan’s C4.5 algorithm [4], CART [5] 
and SSV trees [6]. These types of trees have limited 
expressive powers; for example, they are not able to 
discover a simple rule “majority agrees” for N binary 
inputs, producing instead exponentially large number of 
prepositional rules.  

Neurofuzzy systems [7]-[9] have found a very wide use for 
fuzzy rule construction, combining fuzzy modeling and 
neural adaptation. Such systems are applicable directly only 
to numerical inputs. Prototype-based rules (P-rules) [10] 
provide an alternative way to understand data, generating 
small and comprehensible sets of rules, frequently with 
higher accuracy than crisp or fuzzy rules [11]. Generation 
of P-rules requires optimization (or selection from the 
training set) of the position of a prototype (reference vector) 
to which the unknown vectors are compared, together with 
the optimization of the distance function or similarity 
measure (including feature scaling or selection). Two types 
of P-rules may be used: either the threshold-based rules 
(distance of X to P is smaller than some threshold), or the 
nearest prototype (neighbor) rules, where the shortest 
distance between X (unknown case) and all the prototypes 
is taken as an indication that the class of X is the some as 
the class of its nearest prototype.  

Selection of the type of distance measure is obviously of 
primary importance. For numerical inputs weighted 
Euclidean distance function is frequently a good choice. 
However, in practical applications many datasets have 
mixed attribute types, some are continuous, some are 
discrete, and some are symbolic or nominal. In this case 
result will strongly depend on the method of conversion of 
nominal to numerical values. Fuzzy modeling and 
neurofuzzy systems have to face a more difficult problem, 
how to generate membership function for nominal data. 

In general in the similarity-based methods [12]-[14], and in 
particular in the prototype-based rules, such problems are 
solved using heterogeneous distance functions based on 
probabilistic distances [15]. Different types of distance 
measures for different type of attributes are combined 
together, adding weighted Euclidean contributions for 
numerical attribute to contributions from the Value 
Difference Metrics (VDM), Short and Fukunaga Metrics 



(SFM) and Minimum Risk Metrics (MRM) [16]. The use of 
probabilistic metrics for continuous attributes requires 
estimation of probability density functions, and the 
estimation methods may have important influence on 
overall classification accuracy.  

Comparing to the fuzzy rules and neurofuzzy systems 
prototype-rules and algorithms to generate them are used 
very rarely. To show that P-rules are an interesting 
alternative to F-rules in this paper prototype-based rules are 
generated using heterogeneous distance functions with 
several methods for evaluation of probabilities for 
continuous features. In the next section different 
heterogeneous distance functions based on three types of 
probability difference metrics are presented, and methods to 
estimate probabilities based on discretization, Gaussian 
smoothing and Parzen windows described. Numerical 
experiments are presented in section 3, and in section 4 
summary and discussion of the results is given. 

2. HETEROGENEOUS DISTANCE 
FUNCTIONS 

2.1 Probability difference metrics 

All similarity based systems compare unknown case with 
reference cases using some type of distance (or similarity) 
measures [12]-[14]. Euclidean distance functions are most 
popular, giving in the nearest-prototype methods the same 
shape of decision borders as Gaussian membership 
functions used in similarity measures [11]. This is easily 
generalized to the Minkovsky distance function 
parameterized by the value of exponent that has strong 
influence on the decision borders. 

Unfortunately these functions cannot be applied to the 
symbolic feature values directly, and the results are strongly 
dependent on the transformation used to convert symbolic 
into numerical values. The only principled solution to this 
problem is based on conditional probabilities. There are a 
few different ways to calculate probability difference 
metrics. The most popular is the Value Difference Metric 
[15], based on calculation of the differences between a 
posteriori probabilities:  
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where x and y are input vectors with symbolic feature 
values, n is the number of classes, m is the number of 
symbolic features, and more general Minkovsky form may 
be used. Probabilities are calculated using frequencies: 
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Here N(xa) is number of instances in the training set with 
value x for the attribute a, and among them N(Ci,xa) is the 
number of instances from class Ci. 

VDM is a heuristic metric. Alternative probability 
difference metric derived from probabilistic considerations 
has been proposed by Short and Fukunaga (SFM) and is 
calculated using the following formula [16]: 
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Assuming independence of all features the distance between 
(x,y) vectors is a sum over these contributions:  

( ) ( )
1

, ,
m

a a
a

SFM sfm x y
=

=∑x y    (5) 

 
Another well-founded distance measure called Minimum 
Risk Metric (MRM) has been proposed by Blanzieri and 
Ricci [16]. MRM tries to minimize the risk of 
misclassification directly and is calculated from: 

( ) ( )
1

( , ) | 1 |
n

a a i a i a
i

mrm x y p C x p C y
=

= -∑  (6) 

with MRM(x,y) distance taken as a sum of contributions 
from all features:  
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2.2 Heterogeneous distance functions  

Many real world datasets include mixture of attribute types 
– symbolic, linear, discrete and nominal. P-rules and other 
methods based on similarity need heterogeneous distance 
functions (HDFs), taking advantage of additive form of the 
distance functions (this can be justified only for 
independent features). 

2.2.1 Heterogeneous distance functions 

Combining the Euclidean and the Value Difference 
probabilistic metric a Heterogeneous Metric (HM) is 
obtained [15]: 
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For nominal data da(x,y) assumes one of the forms: 
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depending on which type of difference metrics is used. For 
continuous features:  
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where sa is the standard deviation for the attribute a. 
Scaling components of Euclidean distance by standard 
deviation helps to reduce the influence of outliers, but other 
normalization techniques could also be used. 

The main problem of using HM metric is the scaling of 
different components, because contributions from different 
types of features may not be combined in an optimal way. 
In [15] authors use three different forms of VDM distance 
with different normalizations, leaving the decision which 
one should be chosen to the designer of the system. Because 
good theoretical arguments are lacking a question which 
distance function is most reliable and which normalization 
to use should be answered by empirical calculations.  

2.2.2 Probability estimation by discretization and 
interpolation 

The problem of normalization does not occur if all 
components of the distance functions are based on the 
probability difference metrics with posterior probabilities 
estimated for both discrete and continues features. 
However, in such a case the estimation of probability 
density for continuous features becomes a problem. Wilson 
and Martinez [15] advocate here Discretized Value 
Difference Metrics (DVDM). Discretization is used for 
continuous attributes to calculate posterior probabilities. In 
the simplest case equal width discretization method is used, 
described by the following formula: 
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mina is the minimum of the attribute a and wa is a parameter 
describing the number of bins. Step-wise discretization is 
rather inaccurate. In the Interpolated Value Difference 
Metrics (IVDM) linear interpolation is used for continuous 
values to improve the calculation of posterior probability: 

( ) ( ), 1
, 1 ,

| au
ai aiu ai u aiu

a u a u

x mid
p C x p p p

mid mid +

+

-
= + -

-
 (12) 

where paiu and pai,u+1 are posterior probabilities calculated in 
the middle of the discretized range u and u+1, u=disc(x) 

and midau £ x £mida,u+1 are the middles of discretized ranges 
u and u+1. In this case the main problem is how to estimate 
the distribution of the posterior probabilities accurately. For 
discrete or symbolic features it can be easily computed 
using frequencies (eq. 3) but for continuous features it will 
not work. Better algorithms used for determining posterior 
probabilities may lead to better overall results. Several 
methods for estimation of the probability densities are 
presented below. 

2.2.3 Gaussian smoothing estimation 

A very popular method for density estimation is based on 
Gaussian smoothing. The posterior probability is calculated 
as: 
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where mi is the number of all vectors from the a given class 
i, s is the dispersion of the Gaussian function and norm is 
the normalization factor calculated from: 
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2.2.4 Estimation with rectangle Parzen window 

A very simple and very fast technique for estimating 
probability we call the Local Probability Matrix (LPM) like 
LVDM, LSFM and LMRM. This method is based on local 
calculation of data density surrounding the point of interest. 
Probability is calculated by the equation (3), with values of 
Nxai taken as the number of vectors from class i with the 
attribute value falling into the range 
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but calculated for all classes. Widtha  is a user-defined 
parameter determining the range of a window for attribute 
a. This works well if the number of points is sufficiently 
large.  

2.2.5 Motion Parzen window probability estimation 

An obvious generalization of the LPM approach to density 
estimation is based on Parzen Windows. A rectangular 
window is moved by a small step through the whole range 
of attribute a and the probability is calculated as a mean 
value of all probabilities for which x occured in the 
window: 
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where Z is the number of windows,
a aZ width step= , b is 

the index of the first window where x occurs, Niz(xa) number 
of data points in z-th window which class is i, Nz(xa) is the 
same as Niz(xa) but summed over all classes, widtha is the 
window width for attribute a, and stepa is the size of 
window shifts. 

3. EXPERIMENTS AND RESULTS 

Experiments were performed in two steps. In the first step 
quality of probability estimation, and influence of the 
estimation parameters, was verified. For this purpose two 
artificial datasets were generated. The first dataset was two-
dimensional, three class problem where the distribution of 
cases for each class was sampled from a normal 
distribution, and the second dataset, also two dimensional 
three class problem, with data points sampled from a 
uniform distribution. In both datasets classes were 
overlapping.  

In the second step P-rules for several datasets taken from 
the UCI repository [17] were generated. The datasets 
selected had different type of attributes: continuous, 
discrete and nominal. All tasks were carried out using the 
Similarity Based P-rule generation System (SBPS) of 
programs. It allows defining different types of distance 
functions for different attributes that are combined into a 
single distance measure. SBPS has several build-in 
algorithms for prototype selection and optimization that are 
used to search for the simplest P-rules. To make results 
obtained for each problem comparable only one method 
was used in all experiments below, a simple Fuzzy C-means 
algorithm for prototype selection, and the LVQ algorithm 
for their optimization [1]. Thus the results do not represent 
the highest accuracy that may be achieved using SBPS.  

3.1 Artificial datasets 

Artificial datasets were created to verify quality of 
probability estimation and to evaluate the influence of 
discretization and smoothing parameters on the final 
classification results. For the first artificial dataset with 
vectors in each class taken from normal distributions 
optimal Bayesian borders can be obtained using Euclidean 
distance function. These results determine a basis to judge 
and compare quality of probability estimation and 
classification for other functions. In this test only one 
prototype per class was selected and to reduce influence of 
randomness and verify generalization ten fold cross 
validation tests were performed. Results presented in Tab. 1 
show balanced accuracy for each method. 

3.2 Real datasets 

The three heterogeneous distance functions (Sec. 2.2) have 
been tested also on real datasets using different probability 
density estimators. A number of datasets with different 

types of attributes were selected from the UCI repository 
[17]: Flag, Glass, Iris, Pima Indians diabetes, Promoters, 
the Wisconsin Brest Cancer (WBC), and the Lancet data 
(obtained from the authors of paper [18]), but due to the 
lack of space not all results can be presented here. Because 
our aim was to obtain maximum balanced accuracy for all 
this distance measures we have used the algorithm for 
constructive rule generation to control P-rules capabilities.  

 

  Parameters   VDM SFM MRM   VDM SFM MRM 

  Euclidean   96,83 96,83 96,83   90,00 90,00 90,00 
W0.05   96,50 92,67 96,67 85,17 73,67 86,00 

W0.1   96,50 92,67 96,67 85,17 73,67 86,00 

W0.3   96,50 92,67 96,67 85,17 73,67 86,00 

W0.5   96,50 92,67 96,67 85,17 73,67 86,00 
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W0.7   96,50 92,67 96,67 85,17 73,67 86,00 

W0.05 St0.01 96,50 92,67 96,67 85,17 73,67 86,00 

W0.1 St0.01 96,50 92,67 96,67 85,17 73,67 86,00 

W0.3 St0.01 96,50 92,67 96,67 85,17 73,67 86,00 

W0.5 St0.01 96,50 92,67 96,67 85,17 73,67 86,00 

W0.7 St0.01 96,50 92,67 96,67 85,17 73,67 86,00 

W0.05 St0.05 51,17 47,17 46,67 61,83 51,17 51,50 

W0.1 St0.05 96,50 92,67 96,67 85,17 73,67 86,00 

W0.3 St0.05 96,50 92,67 96,67 85,17 73,67 86,00 

W0.5 St0.05 96,50 92,67 96,67 85,17 73,67 86,00 

W0.7 St0.05 96,50 92,67 96,67 85,17 73,67 86,00 

W0.05 St0.1 33,33 33,33 33,33 33,33 33,33 33,33 

W0.1 St0.1 87,50 87,50 87,50 66,00 66,00 66,00 

W0.3 St0.1 96,50 92,67 96,67 85,17 73,67 86,00 

W0.5 St0.1 96,50 92,67 96,67 85,17 73,67 86,00 
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W0.7 St0.1 96,50 92,67 96,67 85,17 73,67 86,00 

Si0.2   96,50 92,67 96,67 85,17 73,67 86,00 

Si0.5   96,00 91,33 96,83 86,33 73,67 86,33 

G
au

ss
 

Si0.7   95,00 91,33 96,50 86,33 81,67 87,50 

Discret_10 96,50 92,67 96,67 85,17 73,67 86,00 

Discret_2 95,17 89,33 95,17 86,17 81,83 83,83 

Discret_4 95,67 95,17 95,67 89,33 81,83 89,33 

Discret_6 95,83 95,83 95,83 89,67 74,50 89,33 
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Discret_8 96,33 85,50 96,00 86,67 70,33 89,33 

Discret_10 95,17 92,50 95,67 86,83 74,83 87,83 

Discret_2 96,17 92,50 96,17 89,00 84,50 88,17 

Discret_4 96,50 95,17 96,17 89,17 83,83 89,00 

Discret_6 96,17 94,83 96,33 85,83 77,67 86,67 
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95,17 91,33 95,67 
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87,33 82,00 87,33 

Table 1. Results obtained on artificial datasets for 
different probability density estimation algorithms and 
different probability metric; in the top row results with 
Euclidean distances are given.  

The constructive algorithm used in our tests does not favor 
any distance function because it adds new prototype to the 
class with lowest accuracy, maximizing overall balanced 
accuracy calculated as a mean value of the accuracies for 
each class. In all cases constructive algorithm was stopped 
after the maximum of 10 iterations, providing no more than 
10 prototypes per class, in form of a simple and 
understandable set of rules.  

All continuous features in all datasets were initially 
standardized and then normalized to the interval [0,1]. The 
results obtained from this approach – highest balanced 



accuracy for each combination of parameters – are 
presented in Table 2. Results for a few interesting datasets 
containing only discrete features and presented in Table 3. 

4. DISCUSSION AND CONCLUSIONS 

The “no free lunch” theorem [1]-[2] says that no method 
may beat all the others on all data and the results obtained 
here confirm it. For the artificial data the Gaussian MRM 
distance function is usually better than all other methods, 
achieving for the first dataset results identical with the 
Euclidean distance (which obviously is optimal for this data 
set), proving that probabilistic functions may be competitive 
even on purely numerical data.  

 

Moreover, for the second artificial data set accuracy 
obtained using all VDM, SFM and MRM metrics was 
significantly lower then obtained with Euclidean distance. It 
was predictable that this algorithm should give very good 
results because for such data distribution with quite high 
density of points Gaussian smoothing generates the best 
approximation to the estimated probability. Low accuracy 
of the SFM measure, which on the real datasets gives quite 
good results, is also interesting and seems to confirm 
previous observations [16]. Optimization of parameter 
values for density estimation has a very significant 
influence on performance.  

 

 

 flag glass pima-indians-diabetes 
 VDM SFM MRM VDM SFM MRM VDM SFM MRM 
Heterogeneous 23,51 11 23,43 16 24,58 16 47,83 10 47,83 10 47,83 10 73,74 7 73,74 7 73,74 7 
Local Estimation                            
W0.05  34,08 10 22,56 14 23,91 12 53,87 14 30,01 11 38,11 14 71,27 9 70,41 5 70,25 5 
W0.1  33,69 10 23,26 16 24,58 15 44,58 13 40,31 11 53,57 14 72,50 10 71,96 10 69,95 10 
W0.3  34,18 13 24,24 14 27,94 14 42,21 12 31,89 14 54,65 14 71,91 9 71,91 10 69,09 10 
W0.5  37,73 14 24,01 14 35,48 16 45,80 14 39,38 14 34,29 10 71,46 9 71,70 9 67,96 9 
W0.7   34,16 11 29,65 15 27,59 11 42,39 10 39,92 11 27,04 7 71,68 10 71,73 10 63,16 9 
Parzen                             
W0.05 St0.01 34,08 10 22,56 14 23,91 12 53,87 14 30,01 11 38,11 14 71,27 9 70,41 5 70,25 5 
W0.1 St0.01 33,69 10 23,26 16 24,58 15 44,58 13 40,31 11 53,57 14 72,50 10 71,96 10 69,95 10 
W0.3 St0.01 34,18 13 24,24 14 27,94 14 42,21 12 31,89 14 54,65 14 71,91 9 71,91 10 69,09 10 
W0.5 St0.01 37,73 14 24,01 14 35,48 16 45,80 14 39,38 14 34,29 10 71,46 9 71,70 9 67,96 9 
W0.05 St0.05 34,08 10 22,56 14 23,91 12 53,87 14 30,01 11 38,11 14 71,27 9 70,41 5 70,25 5 
W0.1 St0.05 33,69 10 23,26 16 24,58 15 44,58 13 40,31 11 53,57 14 72,50 10 71,96 10 69,95 10 
W0.3 St0.05 34,18 13 24,24 14 27,94 14 42,21 12 31,89 14 54,65 14 71,91 9 71,91 10 69,09 10 
W0.5 St0.05 37,73 14 24,01 14 35,48 16 45,80 14 39,38 14 34,29 10 71,46 9 71,70 9 67,96 9 
W0.05 St0.1 34,08 10 22,56 14 23,91 12 53,87 14 30,01 11 38,11 14 71,27 9 70,40 5 70,25 5 
W0.1 St0.1 33,69 10 23,26 16 24,58 15 44,58 13 40,31 11 53,57 14 72,50 10 71,96 10 69,95 10 
W0.3 St0.1 34,18 13 24,24 14 27,94 14 42,21 12 31,89 14 54,65 14 71,91 9 71,91 10 69,09 10 
W0.5 St0.1 37,73 14 24,01 14 35,48 16 45,80 14 39,38 14 34,29 10 71,46 9 71,70 9 67,96 9 
Gauss                                       
Si0.05  26,38 9 25,75 16 29,81 16 48,11 13 44,70 13 59,76 13 71,83 9 73,12 10 69,00 10 
Si0.1  31,18 9 24,86 12 35,42 15 43,63 10 58,25 14 52,2 13 71,40 8 72,29 9 68,83 7 
Si0.3  36,83 14 33,51 16 34,66 16 51,01 14 60,33 12 33,64 13 71,20 9 71,51 10 56,66 10 
Si0.5  36,41 14 34,69 16 23,81 12 56,75 12 56,73 12 24,28 9 71,40 7 71,09 7 50,00 2 
Si0.7   34,50 15 33,85 16 23,18 12 47,77 9 55,85 14 20,33 7 71,39 7 71,47 7 50,00 2 
Discretization                            
Discret_1 33,25 16 18,92 13 24,33 12 44,40 14 30,06 8 38,95 14 71,08 10 70,98 10 68,37 10 
Discret_2 36,15 14 24,03 14 31,8 15 43,69 11 45,45 12 46,39 13 65,89 8 64,96 4 65,38 9 
Discret_4 31,47 10 27,51 13 35,96 16 47,42 14 38,01 13 44,37 9 68,61 9 67,92 6 67,20 9 
Discret_6 30,26 14 25,5 13 26,98 16 49,58 10 42,21 11 40,80 14 72,73 9 73,85 9 69,95 9 
Discret_8 32,06 11 25,5 15 27,3 15 53,74 12 38,95 10 54,76 12 74,11 10 73,66 10 71,10 10 
Interpolation                                     
Discret_1 33,42 11 22,27 15 27,74 14 47,48 10 34,83 11 41,18 12 70,82 7 71,22 9 69,92 10 
Discret_2 32,17 10 25,82 14 29,81 13 59,04 14 57,82 14 41,73 14 73,00 2 73,07 8 62,48 10 
Discret_4 31,74 9 27,76 13 36,69 16 41,10 10 53,01 14 56,34 14 71,57 9 71,87 9 69,92 7 
Discret_6 33,75 11 26,05 16 29,5 16 49,59 9 42,96 14 54,71 14 72,16 7 72,60 10 69,22 8 
Discret_8 32,40 14 19,41 16 32,13 15 48,49 7 40,83 13 45,70 7 72,11 10 71,97 10 70,39 8 

Table 2. Balanced accuracy and the total number of P-rules for different values of parameters of probability estimators and 
different probability metrics. W – window width, St – Window step, Si – sigma value, Discret – number of discretization 
intervals. Reference results obtained with heterogeneous distance functions are given at the top. 

 



On the real datasets adjustment of parameters values is 
also an important problem with heterogeneous VDM 
functions. Choosing correct value is now much more 
important and selection of the best method is not so easy, 
sometimes even impossible. Highest accuracies, marked as 
bold in Tab 2 and 3, appear for different methods for each 
dataset. In general even for dataset with numerical values 
of the attributes, such as the Pima-indian-diabetes, results 
are not worse than for the Euclidean distance, while for 
datasets with many symbolic features they are significantly 
better. VDM metrics is rather stable for wide range of 
parameter values. MRM seems to give the best balanced 
accuracy in most cases (Tab. 3).  

Results presented above unfortunately do not lead to any 
simple conclusions about what type of distance should be 
used or which parameter values are the best. If some values 
of estimation parameters are wrongly chosen (for example 
the window width is smaller than the Parzen step size) 
estimation of probabilities may become quite inaccurate, as 
it is shown in Tab. 1. Step size in Parzen Windows 
algorithms has little impact on results, therefore rather high 
value (0.1) may be taken. For Gaussian smoothing the 
middle ranges of analyzed parameter values are the best. 
Even the simplest discretized DVDM measure may give 
quite good results, which can be slightly improved by 
interpolation. In situations when vectors from different 
classes are very close density estimation become quite 
difficult and discretization may bring some benefits. This 
becomes especially important for datasets with small 
number of training vectors. Exploration of more advanced 
discretization algorithms seems worthwhile. 

  Lancet promoters promoters_4 wbc 

VDM 90.33 5 90.83 4 92.67 8 97.68 7 

MRM 90.77 5 89.67 8 94.50 8 97.80 9 

SFM 90.22 4 89.67  4 92.67 8 97.59 5 

Table 3. Balanced accuracy and the number of 
prototypes for datasets with discrete or nominal features 
only, for different probability metrices.  

Although comparison of P-rule accuracy with other 
systems is not the main subject of this paper it is 
worthwhile to mention that some results are much better 
than those obtained from decision trees or neurofuzzy 
systems, providing a simple description of this data. For 
example, on the Promoters data [17] four P-rules with 
VDM lead to a balanced accuracy exceeding 90%, and 8 
rules with 4 best features and MRM metrics give 94.5%, 
while optimal results from decision trees (C4.5, SSV) on 
data with A, C, T, G features replaced by 1-4 numbers lead 
to 9 rules with balanced accuracy below 75%. 

P-rules in combination with probabilistic metrics and 
discretization techniques seem to be a powerful alternative 

to a better established decision trees and neurofuzzy 
methods, especially for nominal features and certainly 
deserve more attention. 
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