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Abstract— A comparison between five feature ranking methods
based on entropy is presented on artificial and real datasets.
Feature ranking method using ��� statistics gives results that
are very similar to the entropy-based methods. The quality of
feature rankings obtained by these methods is evaluated using
the decision tree and the nearest neighbor classifier with growing
number of most important features. Significant differences are
found in some cases, but there is no single best index that works
best for all data and all classifiers. Therefore to be sure that
a subset of features giving highest accuracy has been selected
requires the use of many different indices.

I. INTRODUCTION

Feature selection is a problem that has to be addressed in
many areas, especially in bioinformatics, text analysis, object
recognition or in modeling of complex technological pro-
cesses. Bioinformatics datasets frequently contain thousands,
or even hundreds of thousands of features. Good examples of
several highly-dimensional datasets have been provided in the
NIPS 2003 challenge on feature extraction 1. All features may
be important for some problems, but from a specific point of
view, frequently related to recognition of some target concepts,
only a small subset of features is usually relevant. Many
solutions in highly dimensional feature spaces with limited
amount of available data exist due to accidental correlations
between the target concept and various ways of partitioning
the data, making these solutions worthless. To deal with such
problems dimensionality of the feature space has to be reduced
first. This may be done by selecting a subset of relevant
features from the total number of features, or by ranking these
features and selecting the most important ones.

Many feature selection and feature ranking methods have
been proposed in the literature (see for example [2], [9],
[11], [14]). Ranking of features determines the importance of
any individual feature, neglecting their possible interactions.
Ranking methods are based on statistics, information theory,
or on some functions of classifier’s outputs [5]. In this paper
a few entropy based methods are compared. Algorithms for
feature selection fall into two broad categories: wrappers that
use the learning algorithm itself to evaluate the usefulness
of features, and filters that evaluate features according to

1http://clopinet.com/isabelle/NIPS2003/

heuristics based on general characteristics of the data [4],
[7]. Some classification algorithms have inherent ability to
focus on relevant features and ignore irrelevant ones. Decision
trees are primary example of a class of such algorithms [1],
[15], but also multi-layer perceptron (MLP) neural networks
with strong regularization of the input layer may turn off the
irrelevant features in an automatic way [3]. Such methods may
also benefit from independent feature selection. On the other
hand some algorithms have no provisions for feature selection.
The k-nearest neighbors algorithms ( � -NN) are one family of
such methods that classify novel examples by retrieving the
nearest stored training example, relying on independent feature
selection methods.

Wrapper methods employ statistical re-sampling technique
(such as crossvalidation) using the actual target learning
algorithm to estimate the accuracy of feature subsets. This
approach has proved useful, but is very slow to execute
because the learning algorithm is called repeatedly. For this
reason wrappers do not scale well to large datasets containing
many features. Filter methods, on the other hand, operate inde-
pendently of any learning algorithm and undesirable features
are filtered out of the data. Filters typically make use of all
the available training data when selecting a subset of features.
Other filter methods attempt to rank features according to a
relevancy score.

The next section discusses entropy based feature ranking
indices. Section 3 describes the datasets used in experiments.
Section 4 presents experimental results comparing five entropy
based methods to a method introduced here, based on a
simple statistical measure ��� of independence of feature/class
distributions. A summary of the results and plans for future
work is given in the last section.

II. THEORETICAL FRAMEWORK

A typical ranking process consists of four steps:

1) Initialize set � to the whole set of 	 features. 
 is an
empty set.

2) For all features ���� compute ������� -coefficient.
3) Find feature � that maximizes ������� and move it to 
��

������������ ���"!#�$���

4) Repeat until the cardinal of 
 is 	 .



where ������� is a criterion function (different for any ranking
algorithm) which gives a measure of dependency between
features ( � ) and classes ( � ).

First ranking algorithm uses normalized information gain,
called the asymmetric dependency coefficient (ADC) [14]:
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where for � classes information entropy
� �
� � and

� ����� ,
and mutual information

�	� �
� � ��� between � and � is defined
according to Shanonn [13] as:
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Here the sum over � is used only for features � that take
discrete values, for continuous features it should be replaced
by an integral or discretization should be performed first to
estimate probabilities 	����"�#� � .

The ranking algorithm proposed by Setiono [11] uses a
normalized gain ratio:

$�% ��� � ���&� �	� �
� � ���� � ��� (3)

Another normalization may be used to calculate infromation
gain for class-feature entropy :

$�' �
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where
� ��� �)� � is the joint entropy of � and � variables.

Mantaras [9] has proposed an interesting criterion
�+*-,

which fulfills all axioms of distance, that may be defined by:� *-, � �
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� �0/

. 1
��� � �0/�

1
�2� � �

1
� .

Weighted joint entropy index introduced by Chi [2] is
defined as:
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An alternative statistical measure of the dependence be-
tween two random variables – in this case the relationship

between the value of a feature and the class – may be based
on the ��� statistics. The ��� coefficient is given by:
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where 	��<A � are probabilities. Large values of � � signify strong
correlation between feature values and class labels, and there-
fore may be used for ranking features. The � � statistics has
been previously used in the discretization process by Setiono
and Liu [12].

Although many other coefficients measuring similarity of
distributions may be introduced (for example, correlation-
based coefficients [6]) it is not clear if there is any difference
between them in practice. To answer this questions computa-
tional experiments described below were performed.

III. DATASETS USED FOR TESTING

Artificial datasets called “Gauss1" and “Gauss2" have been
generated by Duch et al. [5] to compare different feature
ranking and feature selection methods on data for which the
importance of feature is known. Two real datasets for tests
were used, the “hypothyroid" and “abalone" data, both taken
from the UCI repository of machine learning databases [10].

A. Artificial data

* Gauss1,Gauss2
These datasets have four and eight features, respectively.
In the first dataset four Gaussian functions with unit
dispersion have been used to generate vectors in
4 dimensions, each Gaussian cluster representing a
separate class. The first Gaussian is centered at (0,0,0,0),
the next at B �<C �DCFEHG �DCIEHJ �KCIEIL#� �)GHB �MC��DCIENG#�DCIEFJ �KCIEOL#� ,JPB �MC �KCIENG �DCFEFJ �DCIEFL � , respectively ( B is a constant). The
dataset contains 4000 vectors, 1000 per each class. In
this case the ideal ranking should give the following
order: � �RQ � � Q �TS Q �VU .
The second dataset (Gauss2) is an extension of the first,
containing eight features. Additional 4 linearly dependent
features have been created by taking �

��W
UX�YGF�

�
�[Z ,

where Z is a uniform noise with unit variance. In this
case the ideal ranking should give the following order:� � Q �]\ Q � � Q �T^ Q � S Q �T_ Q � U Q �T` .

B. Real data

* Hypothyroid
This data contains results from real medical screening
tests for the thyroid problems. The class distribution is
about 92.5% normal, 5% of the primary hypothyroid and
2.5% of the compensated hypothyroid type. The data
offers a good mixture of nominal (15) and continuous
(6) features. A total of 3772 cases are given for training
(results from one year) and 3428 cases for testing (results
from the next year of data collection).

* Abalone
The age of abalone molluscs should be predicted from



their physical measurements. This is essentially an ap-
proximation problem, but because the age is quantized
into 29 bins (the number of rings, equivalent to the age
in full years) it may be treated as a classification problem
with a large number of classes. 4177 cases with 8 features
are given, including one nominal feature, six continuous
measurement values, and feature number one with values
created randomly in the � � �DC�� range.

IV. EXPERIMENTS AND RESULTS

Four datasets described above have been used in numerical
experiments. In each case six methods of feature ranking
(Eq.1 to Eq.7) have been applied. Because the datasets have
both discrete and continuous features different discretization
procedures have been used first. Continuous features have
been discretized in the simplest possible way: ranges of each
of the features have been divided into 16 to 32 intervals of
equal width. Although much better results may be expected
with more sophisticated discretization [5] this is sufficient for
relative comparison of entropy based methods. This has been
verified using the artificial datasets Gauss1 and Gauss2. All
six ranking algorithms gave optimal results in agreement with
theoretical predictions, so in tests on artificial data of this type
they all seem to be equivalent.

A. Results for hypothyroid dataset

Hypothyroid dataset has a large training and test part. 21
features are given, 15 binary and 6 continuous features (no. 1,
17, 18, 19, 20, 21) obtained from medical tests. Discretization
of these 6 features based on 16 or 32 intervals does not change
results. The ranking of features obtained for the training
data by all six ������� indices is presented in Tab. 1. The
first 4 features (all continuous) are consistently ranked as
the top, although features 21 and 17 are reversed in some
rankings. Significant differences are observed in the order of
the remaining features.

For each ranking method investigation of classification
accuracy on the test data as a function of the � best features
has been done. Two classifiers were used: the nearest neighbor
(as implemented in the GhostMiner package 2) and the C4.5
decision tree [15], as implemented in Weka 3. Both of these
classifiers give deterministic results, simplifying the compar-
ison (in contrast to these methods, neural classifiers give
slightly different results after each restart, therefore averaging
and variance of results should be taken into account).

Classification results are presented in Fig.1. Feature number
17, predicted by the

$�%
,
$ '

and
� *-,

indices, is definitely
more important than 21. Up to 4 features these 3 methods give
similar results, but then only

$%
index provides important

feature, all other indices leading to significant degradation
of results. The last 6 features evidently confuse the nearest
neighbor classifier, therefore they should always be deleted in
this type of methods.

2http://www.fqspl.com.pl
3http://www.cw.waikato.ac.nz/ ml/weka/
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Fig. 1. Classification accuracy for the hypothyroid dataset: upper figure –
1NN classifier, lower – C4.5.

Also in case of the C4.5 decision tree classifier selection
of feature 21 as the first feature gives poor results, and the
peak performance is reached for 5 features. Because C 4.5
removes less useful features automatically pruning its tree
accuracy does not drop but stays at the peak level as long
as all important features are included. Unfortunately this time$ %

index selects suboptimal feature number 3 and 7, while
other indices opt for 1 and 20 and reach higher accuracy. Still$�%

index is the first to add both features 10 and 8, reaching
highest performance with 9 features. Thus although there is
no clear overall winner, different classification methods may
show some preferences, normalized information gain index

$ %
performs very well.

B. Results for the abalone datasets

Similar calculations were performed for the abalone dataset.
First the ranking algorithms were applied to the whole dataset,
and since there is no test datasets classification accuracy
was estimated using ten-fold crossvalidation. For our purpose
– comparing different ranking methods – this approach is



TABLE I

RESULTS OF FEATURE RANKING ON THE HYPOTHYROID DATA; SEE DESCRIPTION IN THE TEXT.

Method Most – Least Important��� � index, Eq. 1 21 17 19 18 1 20 3 10 16 2 6 7 8 13 5 4 11 12 14 9 15$ %
index, Eq. 3 17 21 19 18 3 7 13 10 8 15 6 16 5 4 12 1 20 2 11 9 14$ '
index, Eq. 4 17 21 19 18 3 10 1 20 7 16 6 8 13 2 5 4 11 12 14 9 15� *-,

index, Eq. 5 17 21 19 18 3 10 1 20 7 16 6 8 13 2 5 4 11 12 14 9 15�43 index, Eq. 6 21 17 19 18 1 20 3 10 16 2 6 7 8 13 5 4 11 12 14 9 15
��� index, Eq. 6 21 17 19 18 1 20 3 10 2 6 16 7 8 13 5 11 4 12 14 9 15

TABLE II

RESULTS OF RANKING METHODS ON THE ABALONE DATASET WITH THE

EQUAL-WIDTH DISCRETIZATION.

Method Most – Least Important
�����

index, Eq. 1 9 4 3 6 8 7 5 2 1���
index, Eq. 3 5 9 4 3 8 6 2 7 1���
index, Eq. 4 9 5 4 6 3 8 7 2 1�
	��

index, Eq. 5 9 5 4 6 3 8 7 2 1��
index, Eq. 6 9 4 3 6 8 7 5 2 1

� � index, Eq. 7 4 3 9 6 8 5 7 2 1

sufficient, producing one ranking for each index. For real
application this could lead to some overfitting, therefore
ranking and classification should be done separately for each
training partition. Good generalization may be obtained by
selecting only those features that were highly ranked in all
data partitions.

The ranking of features for 6 indices is presented in Tab.
2. For the abalone dataset the quality of classification is
obviously quite low, but many errors are small, getting the
predicted age of the abalone wrong by one or two years. The
number of data vectors for ages 6-13 years is significantly
larger than for very young or old abalones, thus many larger
errors are made outside this range.

Classification accuracy for the � -NN and C4.5 classifiers
is presented in Fig. 2. Unfortunately

$�%
index selects now

as the only one a rather poor feature number 5, followed
by the best feature number 9. Peak accuracy is reached on
the 6 best features in ranking by � � index. These results are
quite different than for the previous dataset. Calculations on
more datasets confirm that there is no clear winner among the
entropy and � � indices.

V. CONCLUSIONS

Ranking methods may filter features leading to reduced
dimensionality of the feature space. This is especially effective
for classification methods that do not have any inherent feature
selections build in, such as the nearest neighbor methods or
some neural networks. Five entropy-based ranking methods
have been evaluated and compared with an index based on
the ��� values. Although they all perform in a similar way (as
verified on the artificial Gauss 1 and Gauss2 data), accuracy
of the nearest neighbor classifier (and to some degree also the
C.4.5 classifier) has been significantly influenced by the rank-
ing index. For the two experiments presented here, and other
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Fig. 2. Classification accuracy for the abalone dataset: upper figure – 1NN
classifier, lower – C4.5 .

experiments that have not been reported, different ranking
methods emerge as the winner. The simple � � statistical test
gives similar results to the entropy based indices, reaching for
the Abalone data highest accuracy. From computational point
of view this index is slightly less expensive then entropy based
indices, although in practice this may not be so important.

The algorithms and datasets used in this paper were selected
according to precise criteria: entropy-based algorithms and
several datasets either real or artificial with nominal, binary
and continuous features. The two real datasets illustrated the



fact that the best index (
$%

) on one of them may select
the worst first feature on the other. The classifiers used for
evaluation of feature subsets generated by ranking procedures
were deterministic, to avoid additional source of variance.

What conclusions may one draw from this study? There
is no best ranking index, for different datasets and different
classifiers accuracy curves as a function of the number of
features used may significantly differ. Evaluation of ranking
indices is fast. The only way to be sure that the highest
accuracy is obtained in practical problems requires testing a
given classifier on a number of feature subsets, obtained from
different ranking indices. The number of tests needed to find
the best feature subset is very small comparing to the cost of
wrapper approach for larger number of features.

Several improvements of the ranking methods presented
here are possible:

� Results of ranking algorithms depend on discretization
procedure for continuous features, therefore better dis-
cretization should be used.

� Crossvalidation techniqes may be used to select features
that are important in rankings on all partitions.

� Features with lowest ranking values of various indices in
all crossvalidations may be safely rejected.

� The remaining features should be analyzed with selection
methods that allow for elimination of redundant and
correlated features.

� More ranking indices similar to � � that evaluate similarity
of statistical distributions may be introduced.

These conclusions and recommendations will be tested on
larger datasets using various classification algorithms in the
near future.
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[3] Duch W., Adamczak R., Grąbczewski K., “A new methodology of

extraction, optimization and application of crisp and fuzzy logical rules."
IEEE Transactions on Neural Networks, vol. 12, pp. 277-306, 2001.

[4] Duch W., Biesiada J., Winiarski T., Grudziński T., Grąbczewski K.,
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