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Google: Duch

Abstract. Feedforward neural networks make incomprehensible decisions re-
sulting from mappings learned from training examples defined in high dimen-
sional feature spaces. What kind of internal representations are developed by
multi-layered perceptrons (MLPs) and how do they change during training? Scat-
terograms of the training data transformed to the hidden and the output space
reveal the dynamics of learning and variety of internal representations that may
be formed. Approximately linearly separable problem and non-linearly separa-
ble problem (XOR) have been used for illustration. Observation of the activity
of neural nodes leads to a number of interesting conclusions about the quality
of MLP mappings and their potential for generalization, suggesting various im-
provements of the training process.

1 Introduction

Feedforward neural networks have been very successful in real life applications, but
there is one serious obstacle to a wider acceptance of this technology. Neural networks
are black boxes that may show surprising behavior in novel situations and therefore
should not be used for safety-critical applications. Multidimensional mappings learned
by the hidden layers and mappings from inputs to outputs provided by neural networks
are incomprehensible, possibly containing singularities and various kinks.

An alternative to the opaque character of neural networks, advocated by the machine-
learning community, is to use logical rules [8]. A rule-based solutions are transparent,
expose potential problems and they are easy to explain and understand. Neural network
decisions may be converted to logical rules [10, 7]. Unfortunately all attempts to use
logical rules always have their price. They imply partitioning of the feature space into
hypercuboids (for crisp logical rules) or ellipsoids (for typical triangular or Gaussian
fuzzy membership functions), each corresponding to a rule. Such decision borders may
be too simple to solve the problem accurately with small number of rules. Moreover,
frequently the number of logical rules needed for accurate description is large and they
are neither comprehensible nor reliable. Each data analysis method introduces an induc-
tive bias, and rule based methods work well only for data with inherent logical structure
that are rare in pattern recognition.

Visualization is the simplest way to understand neural mappings [5, 6, 4] without
distorting them by conversion to logical rules, and without loosing important informa-
tion about the types of errors that the network makes. Error functions optimized by
neural networks force the mappings to take a few discrete values. Frequently point-like



images in the output space are generated, with a single output equal 1 and all others 0.
Even for separable data clusters such mapping may lose important information about
data clusters (homogeneity of classes, typicality) and their relations (for example, are
B hand-written characters easier to confuse with 8 characters than with E). For non-
separable data clusters distinct output values of a network correspond to partitioning of
the input space into regions where vectors from a single class dominate. Not only im-
portant information is lost in this way, but neural mapping may be quite hard to learn, be
unstable against small perturbations of the training set, show poor generalization, and its
values (network decisions) may change rapidly for very similar inputs [4]. Regulariza-
tion [2] and early stopping [11, 9] partially cure these problems, avoiding the point-like
final mappings, but an optimal image of the feature space remains to be defined.

Several conclusions concerning the training process may be drawn from careful
observation of the network node activity during the learning dynamics. This article is
focused on better understanding of the learning process, creation of internal representa-
tions, stability and generalization potential of neural mappings. To simplify visualiza-
tions only two-diemensional problems are considered, allowing for faithful creation of
images of the activity of the hidden and output neurons, and illustrating the creation of
internal representation during the learning process. In the next section approximately
linearly separable case is analyzed, while section 3 contain analysis of the fuzzy XOR
problem.

2 Approximately linearly separable case

For neural classifiers, committees and several other classification systems, inputs are
mapped first to at least one internal space X → H, and from there to the output space,
H → Y . In case of feedforward neural networks each hidden layer k defines such
internal space Hk. For committees of classification models the outputs of individual
classifiers form an internal representation H of the input data, with the final output
obtained from some kind of voting procedure. Images of the training data and of the
query vectors in relation to the training data both in the internal and the output spaces
should be visualized.

The training data set T = {X(i)}, i = 1 . . . n is defined in N -dimensional input
space, Xi ∈ X , i = 1..N . In some dimensions feature values Xi are nominal (in
this case binary or several distinct values are assumed), and in some real-valued. The
training data is divided into subsets Tk, k = 1 . . .K , and in most cases each subset of
data corresponds to a single class and forms a small number of clusters. Neural networks
and other classification systems usually try to map each of the training subsets Tk to
one of the K vertices of the hypercube. If the desired outputs are all zero, except for
the one that flags the class of the query vector, for every X ∈ Tk, M(X;W) = Y =
[0, 0, .., 1, 0, ..0], these vertices are on the coordinate axes.

The images of the training data set vectors in the output space Y(X) and in the in-
ternal (hidden) space H(X) carry important information. Neural networks may achieve
the same result in many different ways, as will be evident from visualization of the
structure of internal representations of the training data subsets Tk, k = 1 . . .K . Two
vectors X,X′ that are very similar should be mapped to similar vectors H,H ′ in the



hidden space and in the output space Y,Y ′ (the converse is obviously not true). The
stability of the mapping may be identified by small perturbation of the input vectors [4].

Mappings provided by networks of different type will significantly differ. This is
illustrated by comparing the two most popular network types, MLP with sigmoidal
functions, and RBF with Gaussian functions, trained on two slightly overlapping Gaus-
sian clusters, each forming its own class. Both networks have two inputs, two hidden
and two output nodes, but in case of RBF output nodes are linear and in case of MLPs
outputs are sigmoidal. The two network outputs are normalized, but independent (i.e.
they do not have to sum to 1), therefore their joint activity (Y 1, Y2) is a point some-
where in a unit square. The training is done using Scaled Conjugated Gradient (SCG)
procedure for the MLP and Maximum Likelihood for RBF [2].
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Fig. 1. Left: training data (two Gaussian clusters) mapped to the 2D output space by a typical
MLP network; right: same data mapped with RBF network; in both cases two hidden nodes were
used and the number of errors is similar, but MLP shows over-confidence, mapping most points
close to the two corners of the square.

If the values of two outputs of the mapping are forced to sum to 1 to estimate poste-
rior probabilities p(Ci|X; M) = Yi(X), images of all vectors will fall on a single line
Y1 + Y2 = 1 connecting the (0, 1) and (1, 0) corners. MLP networks with two outputs
trained on the (1, 0) and (0, 1) targets develop symmetric solutions W (1) = −W(2) for
the output perceptrons in the first few iterations; the output perceptrons find the same
line (or in general, hyperplane), mirroring each other. This is evident in Fig. 1, showing
mappings obtained with standard MLP (left) and RBF network (right) with Gaussian
functions and linear outputs. To avoid the overlap of points from different classes a
small shift has been applied to the vectors represented by circles. Both output neurons
receives the same activations from the hidden layer and because of the symmetry of
the data distribution develop mirror hyperplanes. This symmetry will be broken if each
output is calculated by two independent networks with a single output each, because
the stochastic nature of training algorithm may produce different hyperplanes.

The decision border Y1 = Y2 shown in Fig. 1 divides the output space into regions
where Y1 > Y2. However, well trained MLP shows errors that are far from decision
border, close to the (0, 1) corner; in fact some training methods will make the separating
plane almost infinitely steep, creating the network that is overconfident in its decisions.
This is a result of rapid growth of the output weights that may reduce error function



to zero (in a separable case) or to a minimum even if the input hyperplanes are not
optimal. On the other hand RBF networks are less confident as long as dispersions of
Gaussians functions are not very small (Fig. 1). Vectors that correspond to images near
the decision border are easily identified and may be traced back in the input space, but
are they outliers, far from the main data clusters, or do they come from the overlapping
region, where data clusters are quite dense? In the first case their images should be
closer to the (0, 0) corner, indicating low confidence in classification, or “don’t know”
answer, in the second case they should be closer to the (1, 1) corner. Classifiers that
estimate probability density may provide such information.

More insight may be gained by looking at the image of the training set in the hid-
den space H. Comparing such images for different mappings will immediately show
significant differences despite similar classification accuracy. The position of the image
Y of a new vector X in relation to the images of training vectors Y (k) shown in the
scatterogram may allow for evaluation of the reliability of its classification. For two-
dimensional images all information is contained in scatterograms. In Fig. 2 three types
of internal representations are shown for the MLP mapping of two overlapping Gaus-
sian clusters. The first two were obtained without regularization. Although initialization
may place perceptron planes (shown as lines in Fig. 2, left column) provided by hidden
neurons close to the optimal positions (as in the bottom row), backpropagation training
may move them quite far away. Without regularization weights are growing quickly
and there is no time for optimal internal representations to form. Unstable representa-
tions are created, with two basic types being: 1) a single neuron representation, with
one neuron decision surface removed far from the data and thus contributing a constant
value to the network activity, leading to decision lines parallel to one of the axis in the
hidden space (Fig. 2, middle row); or 2) neurons that cut through the center of clusters,
leading to the scattered internal representations (Fig. 2, top row). Due to the symmetry
of the problem any reflection and rotation by multiple of 90 degrees of the hidden layer
scatterogram is possible.

Adding regularization at the 0.5 level leads to a perfect solution (Fig. 2, bottom row),
with the weights of two hidden layer perceptrons becoming essentially identical but of
the opposite sign (positive side of the sigmoidal function is indicated by the dashed
line), cutting between the clusters in an optimal way. Each hidden layer perceptron
solves the problem, mapping the training data on a diagonal line; the output layer is
redundant and simply cuts the line into two. In contrast to the representation presented
in the middle row both neurons have relatively high variance. In the training procedure
regularization term keeps the weights low and the error function contains information
about distribution of data in a larger region; perfect internal representation is slowly
reached even though the total cost function does not decrease (the regularization and the
error term change, but their sum is almost constant). Thus it may be worthwhile to train
the network for a longer time, improving internal representation. Weights of the output
perceptrons grow too quickly, preventing formation of good internal representations,
therefore different regularization parameters for each layer should be beneficial.

The variance of training with regularization is very small, while the variance of
standard training is quite high, reflecting the variability of internal representations. In
crossvalidation essentially all variance is due to the statistical sampling. The quality
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Fig. 2. Overlapping Gaussian clusters in the feature, hidden and output space mapped by an MLP
with logistic output neurons. Left column: feature space, showing data and hidden perceptron
lines; middle column: hidden space, transformed data and output perceptron lines; right column:
output space. First row: most common solution without regularization; second row: only one
neuron utilized by the network; third row: perfect solution with regularization coefficient α =
0.5.

of the internal representation is seen in the errors that networks make on the test data,
especially if probabilities, not the number of errors, are counted. One way to measure
that is to sum probabilities p(C|X) for all vectors that have been misclassified and
divide it by the sum of all probabilities. The difference for the two Gaussian clusters is
as high as 12%. If sharp decision borders are desired (they may reduce the number of
errors, especially if the problem has inherent logical structure) regularization coefficient
should be reduced near the end of the training to allow for weight growth, as it is done
in the MLP2LN algorithm for logical rule extraction [7].

3 Non-linearly separable case

For each of the four XOR points a small Gaussian cluster with 100 vectors is generated.
For two well separated clusters both hidden neurons will implement the same hyper-
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Fig. 3. Overlapping Gaussian clusters (top row) and fuzzy XOR clusters (bottom row) in the
feature, hidden and output space mapped by an MLP with linear outputs. Note that interenal
representations are quite different than in the previous case and the quality of output separation
is not so good.

planes W (1) = ±W (2); if the orientation of these planes is identical the hidden space
image shows the data along h1 = h2 line, with images of vectors from one cluster
around (0, 0) and from the second around (1, 1); otherwise the planes point in two dif-
ferent directions, with data along h1 = 1 − h2 line, clustering around (1, 0) and (0, 1)
corners.

The first row of Fig. 4 shows one of the well converged solutions, with the final val-
ues of weights exceeding 10. Perfect division of the circles and triangles is observed,
with all 200 vectors from each class mapped to the (1, 0) or (0, 1) corner. The internal
representation shows both clusters of circles in the (0, 0) corner because the two sig-
moidal functions are zero in the region between the lines (left column) and one outside.
SCG training finds this solution most of the time. Although it seems perfect after a
small perturbation of the input data many errors will be generated, mapping vectors to
the wrong corner, far from decision border in the output space.

The second row shows one of the failed solutions, with one clusters from each class
mapped into the same (0, 1) corner by the hidden perceptrons, and the remaining two
clusters well separated. In the output space vectors from the two mixed clusters are
mapped exactly on the decision border, activating both output neurons in the same way
(test accuracy in most cases is 66%). This solution is found only with logistic output
functions and no regularization or small regularization coefficients α < 0.2 .

With regularization coefficient α = 0.5 perfect solutions (bottom row, Fig. 4) are
generated in all runs. The network is not overconfident, and vectors close to the decision
borders are not mapped to the corners but fall on the diagonal closer to the middle of the
plot. Small perturbations may lead to small errors but not to a sudden jump to a wrong
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Fig. 4. Activity of two hidden neurons for overlapping XOR clusters. Left column: feature space,
showing data and hidden perceptron lines; middle: hidden space, transformed data and output
perceptron lines; right: output space. First row: most common solution without regularization;
second row: only one neuron used; third row: perfect solution with regularization coefficient
α = 0.5.

corner, equivalent to high confidence prediction of a wrong class. Thus networks with
regularization are rather safe, performing smoother mappings and providing optimal
internal representations.

4 Conclusions: some lessons learned from visualizations

Concentration on numbers makes it rather difficult to evaluate many aspects of neural
network mappings. It may seem that regularization should solve most problems, clar-
ifying internal representations. Because regularization encourages small weights deci-
sion borders become softer and the sum of several sigmoids has rounded, soft corners.
Unfortunately problems with inherent crisp logical structure require sharp decision bor-
ders and cannot be solved accurately unless the regularization term will encourage both
small and large weights and is decreased at the end of the training. Such regularization



terms are used in our MLP2LN networks for extraction of logical rules [7] and to some
degree with Weigend’s regularization term [2].

A surprising observation is that linear outputs, sometimes used in the MLP net-
works, lead to internal representation with hyperplanes that cut through the data clusters
rather than between them, measuring distance to the transformed training vectors (Fig.
3). These internal representations show band-like structure, needed to keep approximate
0 and 1 distance from the transformed data vectors and are quite different from internal
representations obtained with the logistic outputs. Although MLPs with linear outputs
always converged to the XOR solution while sigmoidal outputs led frequently to wrong
solutions the quality of solutions with linear outputs were not so good as with logistic
outputs. This clearly shows the weakness of the quadratic error function and suggests
its modifications (Duch, in preparation).

Scaled conjugated gradient gives better internal representation than conjugated gra-
dient (CG); this is also reflected in the CG output space images, with single vectors
placed very close to the decision border, and feature space images, with perceptron lines
cutting through the clusters instead of being optimally placed between them. Mapping
training data to vertices on the coordinate axes of the output hypercube is too restric-
tive. All that should be required in classification tasks is that the mapping of Tk subsets
preserves information about distribution of data in the input space. The definition of
appropriate targets that would be the easiest to learn is an open question.

If Tk subsets do not form a homogenous cluster several alternative targets could
be defined for each input vector. The Error-Correcting Output Codes approach [3] to
multiclass problems is a step in similar direction. Instead of K targets identified with
vertices on the coordinate axes, L-dimensional cube is defined (where L may be smaller
or larger than K), with targets coded as binary strings (vertices of this cube), in such a
way that the Hamming distance of outputs from different classes is large and individual
bits act as hints [1], coding the presence of some high-level features. A single classi-
fier (or L separate classifiers) mapping the query data to binary outputs makes a final
decision by selecting the target vertex with the shortest Hamming distance to its output.

The complexity of internal representations grows quickly and some loss of informa-
tion in the visualization process for more than 3 dimensions is inevitable. Visualizations
presented here were done only for two simple problems in two dimensions, but even that
enabled interesting observations. Higher-dimensional visualization techniques, such as
various linear projections, non-linear mappings and parallel coordinates plots, allow for
creation of scatterograms of the hidden and output layer activity on the training data,
evaluation of the quality of internal representations, discovering potential problems and
predicting the generalization potential of neural mappings. In practical applications, in-
stead of just getting a number (probability or predicted class) neural network outputs
show the new case in relation to the known cases, as seen by the trained network. 90%
accuracy does not mean that there is always 10% chance of error. If it falls close to
the border region it should be carefully inspected and alternative predictions should be
taken into account. Visualization should be a part of all neural network programs.
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