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1 Introduction to filter methods for feature selection

Feature ranking and feature selection algorithms may roughly be divided into
three types. The first type encompasses algorithms that are built into adaptive
systems for data analysis (predictors), for example feature selection that is a
part of embedded methods (such as neural training algorithms). Algorithms
of the second type are wrapped around predictors providing them subsets of
features and receiving their feedback (usually accuracy). These wrapper ap-
proaches are aimed at improving results of the specific predictors they work
with. The third type includes feature selection algorithms that are indepen-
dent of any predictors, filtering out features that have little chance to be useful
in analysis of data. These filter methods are based on performance evaluation
metric calculated directly from the data, without direct feedback from pre-
dictors that will finally be used on data with reduced number of features.
Such algorithms are usually computationally less expensive than those from
the first or the second group. This chapter is devoted to filter methods.

The feature filter is a function returning a relevance index J(S|D) that
estimates, given the data D, how relevant a given feature subset S is for the
task Y (usually classification or approximation of the data). Since the data and
the task are usually fixed and only the subsets S vary the relevance index may
be written as J(S). In text classification these indices are frequently called
“feature selection metrics” [19], although they may not have formal properties
required to call them a distance metric. Instead of a simple function (such as a
correlation or information content) some algorithmic procedure may be used
to estimate the relevance index (such as building of a decision tree or finding
nearest neighbors of vectors). This means that also a wrapper or an embedded
algorithm may be used to provide relevance estimation to a filter used with
another predictor.

Relevance indices may be computed for individual features Xi, i = 1 . . .N ,
providing indices that establish a ranking order J(Xi1) ≤ J(Xi2 ) · · · ≤
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J(XiN ). Those features which have the lowest ranks are filtered out. For inde-
pendent features this may be sufficient, but if features are correlated many of
important features may be redundant. Moreover, the best pair of features do
not have to include a single best one [48, 8]. Ranking does not guarantee that
the largest subset of important features will be found. Methods that search
for the best subset of features may use filters, wrappers or embedded feature
selection algorithms. Search methods are independent of the evaluation of fea-
ture subsets by filters, and are a topic of Chapter 5. The focus here is on filters
for ranking, with only a few remarks on calculation of relevance indices for
subsets of features presented in Sec. 8.

The value of the relevance index should be positively correlated with ac-
curacy of any reasonable predictor trained for a given task Y on the data D
using the feature subset S. This may not always be true for all models, and
on theoretical grounds it may be difficult to argue which filter methods are
appropriate for a given data analysis model. There is little empirical experi-
ence in matching filters with classification or approximation models. Perhaps
different types of filters could be matched with different types of predictors
but so far no theoretical arguments or strong empirical evidence has been
given to support such claim.

Although in the case of filter methods there is no direct dependence of the
relevance index on the predictors obviously the thresholds for feature rejection
may be set either for relevance indices, or by evaluation of the feature contribu-
tions by the final system. Features are ranked by the filter, but how many are
finally taken may be determined using the predictor in a “wrapper setting”.
This “filtrapper” approach is computationally less expensive than the original
wrapper approach because the evaluation of the predictor’s performance (for
example by a cross-validation test) is done only for a few pre-selected feature
sets. There are also theoretical arguments showing that this technique is less
prone to overfitting than pure wrapper methods [40]. In some data mining
applications (for example, analysis of large text corpora with noun phrases as
features) even relatively inexpensive filter methods, with costs linear in the
number of features, may be prohibitively slow.

Filters, as all other feature selection methods, may be divided into local
and global types. Global evaluation of features takes into account all data
in a context-free way. Context dependence may include different relevance for
different tasks (classes), and different relevance in different areas of the feature
space. Local classification methods, for example nearest neighbor methods
based on similarity, may benefit more from local feature selection, or from
filters that are constructed on demand using only data from the neighborhood
of a given vector. Obviously taking too few data samples may lead to large
errors in estimations of any feature relevance index and the optimal tradeoff
between introduction of context and the reliability of feature evaluation may
be difficult to achieve. In any case the use of filter methods for feature selection
depends on the actual predictors used for data analysis.
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In the next section general issues related to the filter methods are dis-
cussed. Section 3 is focused on the correlation based filtering, Sec. 4 on rel-
evance indices based on distances between distributions and Sec. 5 on the
information theory. In Section 6 the use of decision trees for ranking as well
as feature selection is discussed. Reliability of calculation of different indices
and bias in respect to the number of classes and feature values is very impor-
tant and is treated in Section 7. This is followed by some remarks in Sec. 8
on filters for evaluation of feature redundancy. The last section contains some
conclusions.

2 General issues related to filters

What does it mean that the feature is relevant to the given task? Artificial
Intelligence journal devoted in 1996 a special issue to the notion of relevance
(Vol. 97, no. 1–2). The common-sense notion of relevance has been rigorously
defined in an axiomatic way (see the review in [4]). Although such definitions
may be useful for the design of filter algorithms a more practical approach is
followed here. [31] give a simple and intuitive definition of relevance that is
sufficient for the purpose of feature selection: a feature X is relevant in the
process of distinguishing class Y = y from others if and only if for some values
X = x for which P(X = x) > 0 the conditional probability P(Y = y|X = x)
is different than the unconditional probability P(Y = y). Moreover, a good
feature should not be redundant, i.e. it should not be correlated with other
features already selected. These ideas may be traced back to the test theory
[20] developed for psychological measurements.

The main problem is how to calculate the strength of correlations between
features and classes (or more generally, between features and target, or out-
put, values), and between features themselves. The Bayesian point of view is
introduced below for the classification problems, and many other approaches
to estimation of relevance indices are described in subsequent sections. Some
of these approaches may be used directly for regression problems, others may
require quantization of continuous outputs into a set of pseudo-classes.

Consider the simplest situation: a binary feature X with values x = {0, 1}
for a two class y = {+,−} problem. For feature X the joint probability P(y, x)
that carries full information about the relevance of this feature is a 2 by 2 ma-
trix. Summing this matrix over classes (“marginalizing”, as statisticians say)
the values of P(x) probabilities are obtained, and summing over all feature
values x gives a priori class probabilities P(y). Because class probabilities
are fixed for a given dataset and they sum to P(y = +) + P(y = −) = 1
only two elements of the joint probability matrix are independent, for ex-
ample P(y = −, x = 0) and P(y = +, x = 1). For convenience notation
P(yi, xj) = P(y = i, x = j) is used below.

The expected accuracy of the majority classifier (MC) AMC = maxy P(y)
is independent of the feature X because MC completely ignores informa-
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tion about feature values. The Bayesian Classifier (BC) makes optimal de-
cisions based on the maximum a posteriori probability: if x = x0 then for
P(y−, x0) > P(y+, x0) class y− should always be selected, giving a larger frac-
tion P(y−, x0) of correct predictions, and smaller fraction P(y+, x0) of errors.
This is equivalent to the Maximum-a-Posteriori (MAP) rule: given X = x se-
lect class that has greater posterior probability P(y|x) = P(y, x)/P(x). The
Bayes error is given by the average accuracy of the MAP Bayesian Classifier
(BC). For a single feature, the Bayes error is given by:

ABC(X) =
∑

j=0,1

max
i
P(yi, xj) =

∑
j=0,1

max
i
P(xj |yi)P(yi). (1)

Precise calculation of “real” joint probabilities P(yi, xj) or the conditional
probabilities P(xj |yi) using observed frequencies require an infinite amount
of the training data, therefore such Bayesian formulas are strictly true only
in the asymptotic sense. The training set should be a large, random sample
that represents the distribution of data in the whole feature space.

Because AMC(X) ≤ ABC(X) ≤ 1, a Bayesian relevance index scaled for
convenience to the [0, 1] interval may be taken as:

JBC(X) = (ABC(X)−AMC(X))/(1−AMC(X)) ∈ [0, 1]. (2)

The JBC(X) may also be called “a purity index”, because it indicates how
pure are the discretization bins for different feature values (intervals). This
index is also called “the misclassifications impurity” index, and is sometimes
used to evaluate nodes in decision trees [17].

Two features with the same relevance index JBC(X) = JBC(X ′) may be
ranked as equal, although their joint probability distributions P(yi, xj) may
significantly differ. Suppose that P(y−) > P(y+) for some feature X , there-
fore AMC(X) = P(y−). For all distributions with P(y−, x0) > P(y+, x0) and
P(y+, x1) > P(y−, x1) the accuracy of the Bayesian classifier is ABC(X) =
P(y−, x0)+P(y+, x1), and the error is P(y+, x0)+P(y−, x1) = 1−ABC(X). As
long as these equalities and inequalities between joint probabilities hold (and
P(yi, xj) ≥ 0) two of the probabilities may change, for example P(y+, x1) and
P(y+, x0), without influencing ABC(X) and JBC(X) values. Thus the Bayesian
relevance index is not sufficient to uniquely rank features even in the simplest,
binary case. In fact most relevance indices cannot do that without additional
conditions (see also Sec. 7).

This reasoning may be extended to multi-valued features (or continuous
features after discretization [36]), and multi-class problems, leading to proba-
bility distributions that give identical JBC values. The expected accuracy of a
Bayesian classification rule is only one of several aspects that could be taken
into account in assessment of such indices. In the statistical and pattern recog-
nition literature various measures of inaccuracy (error rates, discriminability),
imprecision (validity, reliability), inseparability and resemblance (resolution,
refinement) are used (see [24, 15] for extended discussion). Knowing the joint
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P(y, x) probabilities and using the MAP Bayesian Classifier rule confusion
matrices Fij = N(yi, yj)/m = Mij/m may easily be constructed for each
feature, representing the joint probability of predicting sample from class yi

when the true class was yj:

F (true, predicted) =
1
m

[
M++ M+−
M−+ M−−

]
=

1
m

[
TP FN
FP TN

]
(3)

where M++ is the number of hits or true positives (TP); M−− is the number of
hits in the y− class, or true negatives (TN); M−+ is the number of false alarms,
or false positives (FP) (for example, healthy people predicted as sick), and
M+− is the number of misses, or false negatives (FN) (sick people predicted
as healthy), and the number of samples m is the sum of all Mij .

Confusion matrices have only two independent entries because each row
has to sum to F+j+F−j = P(yj), the a priori true class probability (estimated
as the fraction of all samples that belong to the class yj). Class accuracies,
or conditional probabilities that given a sample from class y it will be really
classified as class y are usually taken as the two independent variables. In
medical informatics S+ = F++/P(y+) = F(y+|y+) is called sensitivity or
true positive rate (in information retrieval the name recall or detection rate is
used), and S− = F−−/P(y−) = F(y−|y−) is called specificity. These diagonal
elements of the conditional confusion matrix F(yi|yi) reflect the type of errors
that the predictor makes. For example, sensitivity shows how well sick people
(class y = +) are correctly recognized by classification rule based on some
feature (results of a medical test), and specificity shows how well healthy
people (class y = −) are recognized as healthy by the same test. Generalization
to the K-class case is obvious. Standard classifier accuracy is obtained as a
trace of the F(yi, yj) matrix, or Acc =

∑
i F(yi|yi)P(yi). The arithmetic

average of class accuracies F(yi|yi) is called a balanced accuracy

Acc2 =
1
K

K∑
i=1

F(yi|yi). (4)

The Balanced Error Rate BER=1 − Acc2 is particularly useful evaluation
measure for unbalanced datasets. For feature ranking, using accuracy-based
relevance indices, such as the ABC, JBC indices, is equivalent to comparing
F(y+, y+)−F(y+, y−) (true positives minus false positives), while using bal-
anced accuracy is equivalent to F(y+|y+) − F(y+|y−) (true positives ratio
minus false positives ratio), because terms that are constant for a given data
will cancel during comparison. This difference may be rescaled, for example
by using [19]:

BNS = G−1 (F(y+|y+))−G−1 (F(y+|y−)) (5)

where G−1(·) is the z-score, or the standard inverse cumulative probability
function of a normal distribution. This index, called bi-normal separation
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index, worked particularly well in information retrieval (IR) [19]. Another
simple criterion used in this field is called the Odds Ratio:

Odds =
F(y+|y+)F(y−|y−)
F(y+|y−)F(y−|y+)

=
F(y+|y+)(1 −F(y−|y+)
(1−F(y+|y+))F(y−|y+)

(6)

where zero probabilities are replaced by small positive numbers.
Ranking of features may be based on some combination of sensitivity and

specificity. The cost of not recognizing a sick person (low sensitivity) may
be much higher than the cost of temporary hospitalization (low specificity).
Costs of misclassification may also be introduced by giving a factor to spec-
ify that F+− type of errors (false positive) are α times more important than
F−+ type of errors (false negative). Thus instead of just summing the num-
ber of errors the total misclassification cost is E(α) = αF−+ + F+−. For
binary feature values the BC decision rule has no parameters, and costs E(α)
are fixed for a given dataset. However, if the P(y, x) probabilities are calcu-
lated by discretization of some continuous variable z so that the binary value
x = Θ(z − θ) is calculated using a step function Θ, the values of sensitivity
F(y+|y+; θ) and specificity F(y−|y−; θ) depend on the threshold θ, and the
total misclassification cost E(α, θ) can be optimized with respect to θ.

A popular way to optimize such thresholds (called also “operating points”
of classifiers) is to use the receiver operator characteristic (ROC) curves
[24, 45]. These curves show points R(θ) = (F(y+|y−; θ), F(y+|y+; θ)) that
represent a tradeoff between the false alarm rate F(y+|y−; θ) and sensi-
tivity F(y+|y+; θ) (true positives rate). The Area Under the ROC curve
(called AUC) is frequently used as a single parameter characterizing the
quality of the classifier [25], and may be used as a relevance index for
BC or other classification rules. For a single threshold (binary features)
only one point R = (F(y+|y−),F(y+|y+)) is defined, and the ROC curve
has a line segment connecting it with points (0, 0) and (1, 1). In this case
AUC= 1

2 (F(y+|y+) + F(y−|y−)) is simply equal to the balanced accuracy
Acc2, ranking as identical all features that have the same difference between
true positive and false positive ratios. In general this will not be the case and
comparison of AUCs may give a unique ranking of features. In some applica-
tions (for example, in information retrieval) classifiers may have to work at
different operating points, depending on the resources that may change with
time. Optimization of ROC curves from the point of view of feature selection
leads to filtering methods that may be appropriate for different operating
conditions [7].

A number of relevance indices based on modified Bayesian rules may be
constructed, facilitating feature selection not only from the accuracy, but also
from the cost or confidence point of view. The confusion matrix F(y1, y2) for
the two-class problems may be used to derive various combinations of accuracy
and error terms, such as the harmonic mean of recall and precision called the
F1-measure,

JF (X) = 2F++/(1 + F++ −F−−), (7)
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well-justified in information retrieval [50]. Selection of the AUC or balanced
accuracy instead of the standard accuracy corresponds to a selection of the
relative cost factor α = P(y−)/P(y+) [15]. An index combining the accuracy
and the error term J(γ) = F−−+F++−γ(F−++F+−) = A−γE does not favor
one type of errors over another, but it may be used to optimize confidence
and rejection rates of logical rules [14]. For γ = 0 this leads to the ABC

Bayesian accuracy index, but for large γ a classification rule that maximizes
J(γ) may reduce errors increasing confidence in the rule at the expense of
leaving some samples unclassified. Non-zero rejection rates are introduced if
only significant differences between the P(y, x) values for different classes are
kept, for example the feature is may be rejected if |P(y+, x) − P(y−, x)| < θ
for all values of x.

From the Bayesian perspective one cannot improve the result of the max-
imum a posteriori rule, so why is the JBC(X) index rarely (if ever) used,
and why are other relevance indices used instead? There are numerous the-
oretical results [12, 2] showing that for any method of probability density
estimations from finite samples convergence may be very slow and no Bayes
error estimate can be trusted. The reliability of P(y, x) estimates rapidly
decreases with a growing number of distinct feature values (or continuous val-
ues), growing number of classes, and decreasing number of training samples
per class or per feature value. Two features with the same JBC(X) index may
have rather different distributions, but the one with lower entropy may be
preferred. Therefore methods that compare distributions of feature and class
values may have some advantages [47]. An empirical study of simple relevance
indices for text classification shows [19] that accuracy is rather a poor choice,
with balanced accuracy (equivalent to comparison of AUCs for the two-class
problems) giving much higher recall at similar precision. This is not surpris-
ing remembering that in the applications to text classification the number of
classes is high and the data are usually very unbalanced (P(y+) is very small).

Distribution similarity may be estimated using various distance measures,
information theory, correlation (dependency) coefficients and consistency mea-
sures, discussed in the sections below. Some theoretical results relating various
measures to the expected errors of the Bayesian Classifier have been derived
[51, 49] but theoretical approaches have met only with limited success and em-
pirical comparisons are still missing. Features with continuous values should be
discretized to estimate probabilities needed to compute the relevance indices
[37, 36]. Alternatively, the data may be fitted to a combination of some con-
tinuous one-dimensional kernel functions (Gaussian functions are frequently
used), and integration may be used instead of summation.

The relevance indices J(X) introduced above are global or context-free,
evaluating the average usefulness of a single feature X . This may be sufficient
in many applications, but for some data distributions and for complex domains
features may be highly relevant in one area of the feature space and not
relevant at all in some other area. Some feature selection algorithms (such
as Relief described below) use local information to calculate global, averaged
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indices. Decision trees and other classification algorithms that use the “divide
and conquer” approach hierarchically partitioning the whole feature space,
need different subsets of features at different stages. Restricting calculations
to the neighborhood O(x) of some input vector x, local or context-dependent,
relevance indices J(X, O(x)) are computed.

In multiclass problems or in regression problems features that are impor-
tant for specific target values (“local” in the output space) should be rec-
ognized. For example, if the data is strongly unbalanced, features that are
important for discrimination of the classes with small number of samples may
be missed. In this case the simplest solution is to apply filters to multiple
two-class problems. In case of regression problems filters may be applied to
samples that give target values in a specific range.

3 Correlation-based filters

Correlation coefficients are perhaps the simplest approach to feature rele-
vance measurements. In contrast with information theoretic and decision tree
approaches they avoid problems with probability density estimation and dis-
cretization of continuous features and therefore are treated first.

In statistics “contingency tables” defined for pairs of nominal features X, Y
are frequently analyzed to determine correlations between variables. They
contain the numbers of times Mij = N(yi, xj) objects with feature values
Y = yj , X = xi appear in a database. In feature selection m training samples
may be divided into subsets of Mij samples that belong to class yi, i = 1 . . .K
and have a specific feature value xj ; summing over rows of the Mij matrix
marginal distribution Mi· of samples over classes is obtained, and summing
over columns distribution M·j of samples over distinct feature values xj is ob-
tained. The strength of association between variables X, Y is usually measured
using χ2 statistics:

χ2 =
∑
ij

(Mij −mij)2/mij , where mij = Mi·M·j/m, (8)

Here mij represent the expected number of observations assuming X, Y
independence. Terms with mij = 0 should obviously be avoided (using suf-
ficient data to have non-zero counts for the number of samples in each class
and each feature value), or replaced by a small number. If feature and target
values were completely independent mij = Mij would be expected, thus large
differences show strong dependence. To estimate the significance of the χ2 test
an incomplete gamma function Q(χ2|ν) is used [41]. The number of degrees of
freedom ν is set to K − 1. This approach is justified from the statistical point
of view only if the number of classes or the number of feature values are large.
In contrast to the Bayesian indices the χ2 results depend not only on the joint
probabilities P(xi, yj) = N(xi, yj)/m, but also on the number of samples m,
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implicitly including the intuition that estimation of probabilities from small
samples is not accurate and thus the significance of small correlations is rather
low. χ2 statistics have been used in several discretization methods combined
with feature selection [37, 36].

The linear correlation coefficient of Pearson is very popular in statistics
[41]. For feature X with values x and classes Y with values y treated as random
variables it is defined as:

�(X, Y ) =
E(XY )− E(X)E(Y )√

σ2(X)σ2(Y )
=

∑
i(xi − x̄i)(yi − ȳi)√∑

i(xi − x̄i)2
∑

j(yi − ȳi)2
. (9)

�(X, Y ) is equal to ±1 if X and Y are linearly dependent and zero if they
are completely uncorrelated. Some features may be correlated positively, and
some negatively. Linear coefficient works well as long as the relation between
feature values and target values is monotonic. Separation of the means of the
class distributions leads to an even simpler criterion:

µ(X, Y ) =
µ(y+)− µ(y−)

(σ(y+) + σ(y−))
, (10)

where µ(y+) is the mean value for class y+ vectors and σ(y+) is the variance
for this class. For continuous targets a threshold y < θ divides vectors into y+

and y− groups. The square of this coefficient is similar to the ratio of between-
class to within-class variances, known as the Fisher criterion [17]. The T-test
uses slightly different denominator [41]:

T (X, Y ) =
µ(y+)− µ(y−)√

σ(y+)2/m+ + σ(y−)2/m−
, (11)

where m± is the number of samples in class y±. For ranking absolute values
|�(X, Y )|, |µ(X, Y )| and |T (X, Y )| are taken. How significant are differences in
�(X, Y ) and other index values? The simplest test estimating the probability
that the two variables are correlated is:

P(X ∼ Y ) = erf
(
|�(X, Y )|

√
m/2

)
, (12)

where erf is the error function. Thus for m = 1000 samples linear correlations
coefficients as small as 0.02 lead to probabilities of correlation around 0.5.
This estimation may be improved if the joint probability of X, Y variables is
binormal. The feature list ordered by decreasing values (descending order) of
the P(X ∼ Y ) may serve as feature ranking. A similar approach is also taken
with χ2, but the problem in both cases is that for larger values of χ2 or corre-
lation coefficient, probability P(X ∼ Y ) is so close to 1 that ranking becomes
impossible due to the finite numerical accuracy of computations. Therefore an
initial threshold for P(X ∼ Y ) may be used in ranking only to determine how
many features are worth keeping, although more reliable estimations may be



10 W�lodzis�law Duch

done using cross-validation or wrapper approaches. An alternative is to use
a permutation test, computationally expensive but improving accuracy for
small number of samples [9] (see also Neal and Zhang, this volume).

If a group of k features has already been selected, correlation coefficients
may be used to estimate correlation between this group and the class, includ-
ing inter-correlations between the features. Relevance of a group of features
grows with the correlation between features and classes, and decreases with
growing inter-correlation. These ideas have been discussed in theory of psy-
chological measurements [20] and in the literature on decision making and ag-
gregating opinions [26]. Denoting the average correlation coefficient between
these features and the output variables as rky = �̄(Xk, Y ) and the average
between different features as rkk = �̄(Xk,Xk) the group correlation coefficient
measuring the relevance of the feature subset may be defined as:

J(Xk, Y ) =
krky√

k + (k − 1)rkk

. (13)

This formula is obtained from Pearson’s correlation coefficient with all vari-
ables standardized. It has been used in the Correlation-based Feature Selec-
tion (CFS) algorithm [23] adding (forward selection) or deleting (backward
selection) one feature at a time.

Non-parametric, or Spearman’s rank correlation coefficients may be useful
for ordinal data types. Other statistical tests of independence that could be
used to define relevance indices, such as the Kolmogorov-Smirnov test based
on cumulative distributions and G-statistics [41].

A family of algorithms called Relief [43] are based on the feature weight-
ing, estimating how well the value of a given feature helps to distinguish
between instances that are near to each other. For a randomly selected sam-
ple x two nearest neighbors, xs from the same class, and xd from a different
class, are found. The feature weight, or the Relief relevance index JR(X)
for the feature X , is increased by a small amount proportional to the differ-
ence |X(x)−X(xd)| because relevance should grow for features that separate
vectors from different classes, and is decreased by a small amount propor-
tional to |X(x)−X(xs)| because relevance should decrease for feature values
that are different from features of nearby vectors from the same class. Thus
JR(X) ← JR(X) + η(|X(x) − X(xd)| − |X(x) − X(xs)|), where η is of the
order of 1/m. After a large number of iterations this index captures local
correlations between feature values and their ability to help in discrimination
of vectors from different classes. Variants include ratio of the average over all
examples of the distance to the nearest miss and the average distance to the
nearest hit, that self-normalizes the results [22]:

JR(X) =
Ex(|X(x)−X(xd)|)
Ex(|X(x)−X(xs)|) . (14)

The ReliefF algorithm has been designed for multiclass problems and is
based on the k nearest neighbors from the same class, and the same number of
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vectors from different classes. It is more robust in the presence of noise in the
data, and includes an interesting approach to the estimation of the missing
values. Relief algorithms represent quite original approach to feature selection,
that is not based on evaluation of one-dimensional probability distributions
[43]. Finding nearest neighbors assures that the feature weights are context
sensitive, but are still global indices (see also [29] for another algorithm of the
same type). Removing context sensitivity (which is equivalent to assuming
feature independence) makes it possible to provide a rather complex formula
for ReliefX:

JRX(Y, X) =
GSx

(1 − Sy)Sy
; where

Sx =
K∑

i=1

P(xi)2; Sy =
MY∑
j=1

P(yj)2 (15)

G =
∑

j

P(yj)(1− P(yj))−
K∑

i=1


P(xi)2

Sx

∑
j

P(yj|xi)(1− P(yj |xi))


 .

The last term is a modified Gini index (Sec. 6). Hall [23] has used a sym-
metrized version of JRX(Y, X) index (exchanging x and y and averaging) for
evaluation of correlation between pairs of features. Relief has also been com-
bined with a useful technique based on the successive Gram-Schmidt orthogo-
nalization of features to the subset of features already created [22]. Connection
to the Modified Value Difference Metric (MVDM) is mentioned in the next
section.

4 Relevance indices based on distances between
distributions

There are many ways to measure dependence between the features and classes
based on evaluating differences between probability distributions. A simple
measure – a difference between the joint and the product distributions – has
been proposed by Kolmogorov:

DK(Y, X) =
∑

i

K∑
j=1

|P(yj , xi)− P(xi)P(yj)|. (16)

This is very similar to the χ2 statistics except that the results do not depend
on the number of samples. After replacing summation by integration this
formula may be easily applied to continuous features, if probability densities
are known or some kernel functions have been fitted to the data. It may reach
zero for completely irrelevant features, and it is bounded from above:
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0 ≤ DK(Y, X) ≤ 1−
∑

i

P(xi)2, (17)

if the correlation between classes and feature values is perfect. Therefore this
index is easily rescaled to the [0, 1] interval. For two classes with the same a
priori probabilities Kolmogorov measure reduces to:

DK(Y, X) =
1
2

∑
i

|P(xi|y = 0)− P(xi|y = 1)|. (18)

The expectation value of squared a posteriori probabilities is known as
the average Euclidean norm of the conditional distribution, called also the
Bayesian measure [49]:

JBM(Y, X) =
∑

i

P(xi)
K∑

j=1

P(yj |xi)2, (19)

It measures concentration of the conditional probability distribution for dif-
ferent xi values in the same way as the Gini index (Eq. 39) used in decision
trees (Sec. 6).

The Kullback-Leibler divergence:

DKL((P(X)||(P(Y )) =
∑

i

PY (yi) log
PY (yi)
PX(xi)

≥ 0, (20)

is used very frequently, although it is not a distance (it is not symmetric).
The KL divergence may be applied to relevance estimation in the same way
as the χ2 statistics:

DKL(P(X, Y )||P(X)P(Y )) =
∑

i

K∑
j=1

P(yj, xi) log
P(yj, xi)
P(xi)P(yj)

. (21)

This quantity is also known as “mutual information” MI(Y, X). The Kullback-
Liebler measure is additive for statistically independent features. It is sensitive
to the small differences in distribution tails, which may lead to problems, es-
pecially in multiclass applications where the relevance index is taken as the
average value of KL divergences between all pairs of classes.

The Jeffreys-Matusita distance (JM-distance) provides a more robust cri-
terion:

DJM(Y, X) =
∑

i

K∑
j=1

[√
P(yj , xi)−

√
P(xi)P(yj)

]2

. (22)

For Gaussian distributions DJM is related to the Bhattacharya distance. Be-
cause DJM ≤ 2(1 − exp(−DKL/8)) an exponential transformation JKL =
1 − exp(−DKL/8) is sometimes defined, reaching zero for irrelevant features
and growing to 1 for a very large divergences, or highly relevant features.
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There is some evidence that these distances are quite effective in remote sens-
ing applications [6].

The Vajda entropy is defined as [49]:

JV(Y, X) =
∑

i

P(xi)
K∑

j=1

P(yj |xi)(1− P(yj |xi)), (23)

and is simply equal to the JV(Y, X) = 1 − JBM(Y, X). The error rate of the
Bayesian Classifier is bounded by the Vajda entropy, ABC(X) ≤ JV(Y, X).
Although many other ways to compare distributions may be devised they
may serve as better relevance indicators only if tighter error bounds could be
established.

In the memory-based reasoning the distance between two vectors X, X ′

with discrete elements (nominal or discretized), in a K class problem, is com-
puted using conditional probabilities [52]:

V DM(X, X ′; Y )2 =
∑

i

K∑
j=1

|P(yj |xi)− P(yj|x′
i)|2 (24)

This formula may be used to evaluate feature similarity when redundant
features are searched for.

5 Relevance measures based on information theory

Information theory indices are most frequently used for feature evaluation.
Information (negative of entropy) contained in the class distribution is:

H(Y ) = −
K∑

i=1

P(yi) log2 P(yi), (25)

where P(yi) = mi/m is the fraction of samples x from class yi, i = 1..K.
The same formula is used to calculate information contained in the discrete
distribution of feature X values:

H(X) = −
∑

i

P(xi) log2 P(xi). (26)

Continuous features are discretized (binned) to compute information associ-
ated with a single feature or some kernel functions are fitted to approximate
the density of X values and integration performed instead of summation. In-
formation contained in the joint distribution of classes and features, summed
over all classes, gives an estimation of the importance of the feature. Informa-
tion contained in the joint distribution is:
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H(Y, X) = −
∑

i

K∑
j=1

P(yj , xi) log2 P(yj , xi), (27)

or for continuous features:

H(Y, X) = −
K∑

j=1

∫
P(yj , x) log2 P(yj, x)dx, (28)

where P(yj, xi), j = 1 . . .K is the joint probability (density for continuous
features) of finding the feature value X = xi for vectors x that belong to
some class yj and P(xi) is the probability (density) of finding vectors with
feature value X = xi. Low values of H(Y, X) indicate that vectors from a
single class dominate in some intervals, making the feature more valuable for
prediction.

Information is additive for the independent random variables. The differ-
ence MI(Y, X) = H(Y )+H(X)−H(Y, X) may therefore be taken as “mutual
information” or “information gain”. Mutual information is equal to the ex-
pected value of the ratio of the joint to the product probability distribution,
that is to the Kullback-Leibler divergence:

MI(Y, X) = −
∑
i,j

P(yj, xi) log2

P(yj, xi)
P(yj)P(xi)

= DKL(P(yj, xi)|P(yj)P(xi)).

(29)
A feature is more important if the mutual information MI(Y, X) between
the target and the feature distributions is larger. Decision trees use closely
related quantity called “information gain” IG(Y, X). In the context of fea-
ture selection this gain is simply the difference IG(Y, X) = H(Y )−H(Y |X)
between information contained in the class distribution H(Y ), and infor-
mation after the distribution of feature values is taken into account, that
is the conditional information H(Y |X). This is equal to MI(Y, X) because
H(Y |X) = H(Y, X)−H(X). A standard formula for the information gain is
easily obtained from the definition of conditional information:

IG(Y, X) = H(Y )−H(Y |X) = H(Y ) +
∑
ij

P(yj , xi) log2 P(yj |xi) (30)

= H(Y )−
∑
ij

P(xi) [−P(yj|xi) log2 P(yj|xi)] ,

where the last term is the total information in class distributions for subsets
induced by the feature values xi, weighted by the fractions P(xi) of the number
of samples that have the feature value X = xi. Splits induced by tests in nodes
of decision trees are usually not based directly on all attribute values and thus
information gain in general is different from mutual information, but for the
feature selection purposes these two quantities are identical.
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It is not difficult to prove that the Bayes error ABC is bounded from above
by half of the value of the conditional information and from below by the
Fano inequality,

H(Y |X)− 1
log2 K

≤ ABC ≤ 1
2
H(Y |X), (31)

although the left side is usually negative and thus not useful. Minimizing
H(Y |X) = H(Y )−MI(Y, X), or maximizing mutual information, leads to an
approximation of Bayes errors and optimal predictions. Error bounds are also
known for the Renyi entropy that is somehow easier to estimate in on-line
learning than the Shannon entropy [18].

Various modifications of the information gain have been considered in
the literature on decision trees (cf. [42]), aimed at avoiding bias towards the
multivalued features. These modifications include:

IGR(Y, X) = MI(Y, X)/H(X), (32)
DH(Y, X) = 2H(Y, X)−H(Y )−H(X), (33)
DM (Y, X) = 1−MI(Y, X)/H(Y, X), (34)

JSU(Y, X) = 1− DH(Y, X)
H(Y ) + H(X)

= 2
MI(Y, X)

H(Y ) + H(X)
∈ [0, 1]. (35)

where IGR is the information gain ratio, DH is the entropy distance, DM is
the Mantaras distance [11] and JSU is the symmetrical uncertainty coefficient.
The JSU coefficient seems to be particularly useful due to its simplicity and
low bias for multi-valued features [23].

The J-measure:

JJ(X) =
∑

i

P(xi)
∑

j

P(yj |xi) log
P(yj |xi)
P(yj)

, (36)

has been initially introduced to measure information content of logical rules
[44], but it is applicable also to the feature selection [32].

[38] has defined an index called “average weight of evidence”, based on
plausibility, an alternative to entropy in information:

JWE(X) =
K∑

j=1

∑
i

P(xi)
∣∣∣∣log
P(yj |xi)(1− P(yj))
(1− P(yj |xi))P(yj)

∣∣∣∣ . (37)

Minimum Description Length (MDL) is a general idea based on the Oc-
ckam’s razor principle and Kolmogorov’s algorithmic complexity [35]. The
joint complexity of the theory inferred from the data and the length of the
data encoded using this theory should be minimal. MDL has been applied
to the construction of decision trees and the selection of features [32]. As in
the description of χ2 test, m training samples are divided into subsets of Mij

samples that belong to class yj , j = 1 . . .K and have a specific feature value
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xi, i = 1 . . .Mx. The number of bits needed for optimal encoding of the infor-
mation about the class distribution for m training samples is estimated (this
number is fixed for a given dataset), and the same estimation is repeated for
each partitioning created by a feature value (or interval) x. Combinatorics
applied to the information coding leads to the MDL formula expressed using
binomial and multinomial coefficients m!/m1! . . .mK ! in the following way
[32, 23]:

MDL(Y, X) = log2

m!
M1·! . . . MK·!

+ log2

(
m + K − 1

K − 1

)
(38)

−
Mx∑
j=1

log2

(
M·j + K − 1

K − 1

)
−

Mx∑
j=1

log2

M·j!
M1j ! . . . MKj!

,

where Mi· and M·j are marginal distributions calculated from the Mij matrix.
The final relevance index JMDL(Y, X) ∈ [0, 1] is obtained by dividing this
value by the first two terms representing the length of the class distribution
description. A symmetrized version of MDL relevance index is used in [23],
calculated by exchanging features and classes and averaging over the two
values.

6 Decision trees for filtering

Decision trees select relevant features using top-down, hierarchical partition-
ing schemes. In the deeper branches of a tree only a small portion of all data
is used and only local information is preserved. In feature selection global
relevance is of greater importance. One way to achieve it is to create a single-
level tree (for algorithms that allow for multiple splits), or a tree based on a
single feature (for algorithms that use binary splits only) and evaluate their
accuracy. An additional benefit of using decision trees for continuous features
is that they provide optimized split points, dividing feature values into rela-
tively pure bins. Calculation of probabilities P(xj) and P(yi|xj) needed for
the estimation of mutual information and other relevance indices becomes
more accurate than with the näive discretization based on the bins of equal
width or bins with equal number of samples. Mutual information calculated
after discretization based on a decision tree may be a few times larger than
using naive discretization [16].

The 1R decision tree algorithm [28] is most appropriate for feature filtering
because it creates only single level trees. Features are analyzed searching for
a subset of values or a range of values for which vectors from a single class
dominate. The algorithm has one parameter (called the “bucket size”), an
acceptable level of impurity for each range of the feature values, allowing for
reduction of the number of created intervals. Performance may be estimated
using the JBC(Y, X) index, and the optimal bucket size may be evaluated
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using cross-validation or bootstrap sampling that can help to avoid the bias
for large number of intervals but will also increase computational costs.

The C4.5 tree [42] uses information gain to determine the splits and to
select the most important features, therefore it always ranks as the most
important features that are close to the root node. The CHAID decision tree
algorithm [30] measures association between classes and feature values using
χ2 values, as in Eq. 8. Although the information gain and the χ2 have already
been mentioned as relevance indices the advantage of using decision trees is
that automatic discretization of continuous features is performed.

The Gini impurity index used in the CART decision trees [5] sums the
squares of the class probability distribution for a tree node, JGini(Y ) = 1 −∑

i P(yi)2. Given a feature X a split into subsets with discrete feature values
xj (or values in some interval) may be generated and Gini indices in such
subsets calculated. The gain is proportional to the average of the sum of
squares of all conditional probabilities:

JGini(Y, X) =
∑

j

P(xj)
∑

i

P(yi|xj)2 ∈ [0, 1], (39)

giving a measure of the probability concentration useful for feature ranking.
This index is similar to the entropy of class distributions and identical with
the Bayesian measure Eq. 19.

The Separability Split Value (SSV) criterion is used to determine splits
in decision tree [21] and to discretize continuous features [15, 13], creating a
small number of intervals (or subsets) with high information content. It may
also be used as feature relevance index. The best “split value” should separate
the maximum number of pairs of vectors from different classes. Among all split
values that satisfy this condition, the one that separates the smallest number
of pairs of vectors belonging to the same class is selected. The split value for
a continuous feature X is a real number s, while for a discrete feature it is a
subset of all possible values of the feature. In all cases, the left side (LS) and
the right side (RS) of a split value s is defined by a test f(X, s) for a given
dataset D:

LS(s, f,D) = {x ∈ D : f(x, s) = T }}
RS(s, f,D) = D − LS(s, f,D), (40)

where the typical test f(x, s) is true if the selected feature xi < s or (for
discrete feature) xi ∈ {s}. The separability of a split value s is defined for a
given test f as:

SSV(s, f) = 2
K∑

i=1

|LS(s, f,Di)| · |RS(s, f,D −Di)| (41)

−
∑

i

min (|LS(s, f,Di)|, |RS(s, f,Di)|) ,

where Dk is the subset of D vectors that belong to the class k. If several
features separate the same number of pairs of training vectors the second
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term ranks higher the one that separates a lower number of pairs from the
same class. This index has smilar properties to Gini and is easily calculated
for both continuous and discrete features. For 10 or less feature values all
subsets are checked to determine the simplest groupings, for a larger number
of unique values the feature is treated as ordered and the best split intervals
are searched for. In the feature selection applications of the SSV, splits are
calculated and applied recursively to the data subsets Dk, creating a single-
feature tree. When pure nodes are obtained the algorithm stops and prunes the
tree. The Bayesian Classifier rule is applied in each interval or for each subset
created by this algorithm to calculate the JSSV(Y, X) relevance index. More
complex tree-based approaches to determine feature relevance use pruning
techniques [15].

7 Reliability and bias of relevance indices

How good are different relevance indices? Empirical comparisons of the influ-
ence of various indices are difficult because results depend on the data and
the classifier. What works well for document categorization [19] (large num-
ber of classes, features and samples), may not be the best for bioinformatics
data (small number of classes, large number of features and a few samples), or
analysis of images. One way to characterize relevance indices is to see which
features they rank as identical. If a monotonic function could transform one
relevance index into another the two indices would always rank features in the
same way. Indeed such relations may be established between some indices (see
Sec. 4), allowing for clustering of indices into highly similar or even equivalent
groups, but perhaps many more relations may be established.

The ranking order predicted by the mutual information and other informa-
tion theoretic measures, and by the accuracy of the optimal Bayesian Classifier
using information contained in a single feature, is not identical. It is easy to
find examples of binary-valued features where BC and MI predictions are re-
versed. Consider three binary features with the following class distributions:

P(Y, X) =
(

0.50 0.00
0.25 0.25

)
, P(Y, X ′) =

(
0.45 0.05
0.20 0.30

)
, P(Y, X ′′) =

(
0.41 0.09
0.10 0.40

)
.

The JBC relevance indices for the three distributions are 0.50, 0.50, 0.62, the
MI values are 0.31, 0.21, 0.30, and the JGini indices are 0.97, 0.98, and 0.99.
Therefore the ranking in descending order according of the Bayesian rele-
vance is X ′′, X = X ′, mutual information gives X, X ′′, X ′, and the Gini index
predicts X, X ′, X ′′.

The differences between relevance indices are apparent if the contour plots
showing lines of constant values of these three indices are created for proba-

bility distributions P(y, x) =
(

a 0.5− a
b 0.5− b

)
. These contour plots are shown in

Fig. 1 in the (a, b) coordinates. The JBC(Y, X) index is linear, the MI(Y, X)
has logarithmic nonlinearity and the Gini index has stronger quadratic nonlin-
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earity. For many distributions each index must give identical values. Unique
ranking is obtained asking for “the second opinion”, that is using pairs of
indices if the first one gives identical values. In the example given above the
Bayesian relevance index could not distinguish between X and X ′, but using
mutual information for such cases will give a unique ranking X ′′, X, X ′.
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Fig. 1. Contours of constant values for BC relevance index (left), MI index (middle)
and Gini index (right), in a, b coordinates.

Calculation of indices based on information theory for discrete features is
straightforward, but for the continuous features the accuracy of entropy cal-
culations based on simple discretization algorithms or histogram smoothing
may be low. The literature on entropy estimation is quite extensive, especially
in physics journals, where the concept of entropy has very wide applications
(cf. [27]). The variance of the histogram-based mutual information estimators
has been analyzed in [39]. A simple and effective way to calculate mutual
information is based on Parzen windows [33]. Calculation of mutual informa-
tion between pairs of features and the class distribution is more difficult, but
interesting approximations based on the conditional mutual information have
been proposed recently to calculate it [34].

Filters based on ranking using many relevance indices may give similar
results. The main differences between relevance indices of the same type is
in their bias in relation to the number of distinct feature values, and in their
variance in respect to the accuracy of their estimation for small number of
samples. The issue of bias in estimating multi-valued features has initially been
discussed in the decision tree literature [42]. Gain-ratio and Mantaras distance
have been introduced precisely to avoid favoring attributes with larger number
of values (or intervals). Biases of 11 relevance indices, including information-
based indices, Gini, J-measure, weight of evidence, MDL, and Relief, have
been experimentally examined for informative and non-informative features
[32]. For the two-class problems biases for a large number of feature values
are relatively small, but for many classes they become significant. For mutual
information, Gini and J-measure approximately linear increase (as a function
of the number of feature values) is observed, with steepness proportional to the
number of classes. In this comparison indices based on the Relief (Sec. 3) and
MDL (Sec. 5) came as the least biased. Symmetrical uncertainty coefficient
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JSU has a similar low bias [23]. Biases in evaluation of feature correlations
have been examined by Hall [23].

Significant differences are observed in the accuracy and stability of cal-
culation of different indices when discretization is performed. Fig. 2 shows
convergence plots of 4 indices created for overlapping Gaussian distributions
(variance=1, means shifted by 3 units), as a function of the number of bins of
a constant width that partition the whole range of the feature values. Analyt-
ical values of probabilities in each bin were used to simulate infinite amount of
data, renormalized to sum to 1. For small (4-16) number of bins errors as high
as 8% are observed in the accuracy of JBC Bayesian relevance index. Conver-
gence of this index is quite slow and oscillatory. Mutual information (Eq. 21)
converges faster, and the information gain ratio (Eq. 32) shows similar be-
havior as the Gini index (Eq. 39) and the symmetrical uncertainty coefficient
JSU (Eq. 35) that converge quickly, reaching correct values already for 8 bins
(Fig. 2). Good convergence and low bias make this coefficient a very good
candidate for the best relevance index.
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Fig. 2. Differences between the Gini, JSU, MI , and JBC indices and their exact
value (vertical axis), as a function of the number of discretization bins (horizontal
axis).
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8 Filters for feature selection

Relevance indices discussed in the previous sections treat each feature as in-
dependent (with the exception of Relief family of algorithms Sec. 3 and the
group correlation coefficient Eq. 13), allowing for feature ranking. Those fea-
tures that have relevance index below some threshold are filtered out as not
useful. Some feature selection algorithms may try to include interdependence
between features. Given a subset of features X and a new candidate feature
X with relevance index J(X) an index J({X, X}) for the whole extended set
is needed. In theory a rigorous Bayesian approach may be used to evaluate
the gain in accuracy of the Bayesian classifier after adding a single feature.
For k features the rule is:

ABC(X) =
∑

x1,x2,..xk

max
i
P(yi, x1, x2, . . . xk) (42)

where the sum is replaced by integral for continuous features.
This formula converges slowly even in one dimension (Fig. 2), so the main

problem is how to reliably estimate the joint probabilities P(yj, x1, x2 . . . xk).
The density of training data ∝ P(x)k goes rapidly to zero with the growing
dimensionality k of the feature space. Already for 10 binary features and less
than 100 data samples less than 10% of 210 bins are non-empty. Although vari-
ous histogram smoothing algorithms may regularize probabilities, and hashing
techniques may help avoiding high computational costs [16], a reliable estima-
tion of ABC(X) is possible only if the underlying distributions are fully known.
This may be useful as a “golden standard” to calculate error bounds, as it is
done for one-dimensional distributions, but it is not a practical method.

Calculating relevance indices for subsets selected from a large number of
features it is not possible to include full interactions between all the features.
Note however that most wrappers may evaluate full feature interactions, de-
pending on the classification algorithm used. Approximations based on sum-
ming pair-wise interactions offer a computationally less expensive alternative.
The CFS algorithm described in Sec. 3 is based on Eq. 13, calculating aver-
age correlation coefficients between features and classes and between different
features. Instead of a ratio for some relevance indices that may measure corre-
lation or dependency between features one may use a linear combination of the
two terms: J(Y, X ;S) = J(Y, X)− β

∑
s∈S J(X, Xs), where the user-defined

constant β is introduced to balance the importance of the relevance J(Y, X)
and the redundancy estimated by the sum of feature-feature relevancies. Such
algorithm has been used with mutual information as relevance measure by
[3]. In this way redundancy of features is (at least partially) taken into ac-
count and search for good subsets of features may proceed at the filter level.
A variant of this method may use a maximum of the pair relevance J(X, Xs)
instead of the sum over all features s ∈ S; in this case β is not needed and
fewer features will be recognized as redundant.
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The idea of inconsistency or conflict – a situation in which two or more
vectors with the same subset of feature values are associated with different
classes – leads to a search for subsets of features that are consistent [10, 1].
This is very similar to the indiscernability relations and the search for reducts
in rough set theory [46]. The inconsistency count is equal to the number of
samples with identical features, minus the number of such samples from the
class to which the largest number of samples belong (thus if there is only
one class the index is zero). Summing over all inconsistency counts and di-
viding by the number of samples m the inconsistency rate for a given subset
is obtained. This rate is an interesting measure of feature subset quality, for
example it is monotonic (in contrast to most other relevance indices), decreas-
ing with the increasing feature subsets. Features may be ranked according to
their inconsistency rates, but the main application of this index is in feature
selection.

9 Summary and comparison

There are various restrictions on applications of the relevance indices discussed
in the previous sections. For example, some correlation coefficients (such as the
χ2 or Pearson’s linear correlation) require numerical features and cannot be
applied to features with nominal values. Most indices require probabilities that
are not so easy to estimate for continuous features, especially when the number
of samples is small. This is usually achieved using discretization methods [36].
Relevance indices based on decision trees may automatically provide such
discretization, other methods have to rely on external algorithms.

In Table 1, information about the most popular filters is collected, in-
cluding the formulas, the types of inputs X (binary, multivalued integer or
symbolic, or continuous values), and outputs Y (binary for 2-class, multival-
ued integer for multiclass problems and continuous for regression).

The first method, Bayesian accuracy ABC, is based on observed probabil-
ities P(yj, xi) and provides a “golden standard” for other methods. Relations
between the Bayesian accuracy and mutual information are known 31, and
such relations may be inferred for other information-based indices, but in
general theoretical results of this sort are difficult to find and many indices
are simply based on heuristics. New methods are almost never tested against
Bayesian accuracy for simple binary features and binary classes. Differences
in ranking of features between major relevance indices presented in Sec. 7
are probably amplified in more general situations, but this issue has not been
systematically investigated so far.

Other methods that belong to the first group of methods in Tab. 1 are
somehow special. They are based on evaluation of confusion matrix elements
and thus are only indirectly dependent on probabilities P(yj , xi). Confusion
matrix may be obtained by any classifier, but using Bayesian approach for clas-
sification balanced accuracy, area-under-curve (AUC), F-measure, Bi-normal
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separation and odds ratio are still the best possible approaches, assuming
specific costs of different type of errors.

Many variants of a simple statistical index based on separation of the
class means exist. Although these indices are commonly applied to problems
with binary targets extension to multiple target values is straightforward. In
practice pair-wise evaluation (single target value against the rest) may work
better, finding features that are important for discrimination of small classes.
Feature values for statistical relevance indices must be numerical, but target
values may be symbolic. Pearson’s linear correlation coefficient can be applied
only for numerical feature and target values, and its averaged (or maximum)
version is used for evaluation of correlations with a subset of features. Decision-
tree based indices are applicable also to symbolic values and may be computed
quite rapidly. Some trees may capture the importance of a feature for a local
subset of data handled by the tree nodes that lie several levels below the root.
The Relief family of methods are especially attractive because they may be
applied in all situations, have low bias, include interaction among features and
may capture local dependencies that other methods miss.

Continuous target values are especially difficult to handle directly, but
distance-based measures of similarity between distributions may handle them
without problems. Kolmogorov distance and other relevance indices from this
group may be expressed either by a sum of discrete probabilities or an inte-
gral over probability density functions. Bayesian measure, identical with the
Gini index for discrete distributions, generalizes it to continuous features and
continuous targets. The only exception in this group is the Value Difference
Metric that has been specifically designed for symbolic data.

Indices based on information theory may also be used for continuous fea-
tures and targets if probability densities are defined. Information gain ratio
and symmetrical uncertainty coefficient are especially worth recommending,
sharing low bias with the MDL approach (Sec. 5), and converging in a stable
and quick way to their correct values.

10 Discussion and conclusions

Filters provide the cheapest approach to the evaluation of feature relevance.
For a very large number of features they are indispensable, and only after fil-
tering out most of the features other, more expansive feature selection methods
become feasible.

Many approaches to filters discussed in the preceding sections show that
there is no simple answer to the question: which relevance index is the best
to construct a good filter? If there is sufficient data and joint probabilities
may be estimated in a reliable way there is no reason why Bayesian relevance
JBC should not be used. After all other relevance indices, and in particular
indices based on the theory of information, are only approximations to the
Bayesian relevance. Unfortunately this index seems to be the most difficult
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Method X Y Comments

Name Formula B M C B M C

Bayesian accuracy Eq. 1 + s + s Theoretically the golden standard, rescaled Bayesian relevance Eq. 2.
Balanced accuracy Eq. 4 + s + s Average of sensitivity and specificity; used for unbalanced dataset,

same as AUC for binary targets.
Bi-normal separation Eq. 5 + s + s Used in information retrieval.
F-measure Eq. 7 + s + s Harmonic of recall and precision, popular in information retrieval.
Odds ratio Eq. 6 + s + s Popular in information retrieval.

Means separation Eq. 10 + i + + Based on two class means, related to Fisher’s criterion.
T-statistics Eq. 11 + i + + Based also on the means separation.
Pearson correlation Eq. 9 + i + + i + Linear correlation, significance test Eq. 12, or a permutation test.
Group correlation Eq. 13 + i + + i + Pearson’s coefficient for subset of features.
χ2 Eq. 8 + s + s Results depend on the number of samples m.
Relief Eq. 15 + s + + s + Family of methods, the formula is for a simplified version ReliefX,

captures local correlations and feature interactions.
Separability Split Value Eq. 41 + s + + s Decision tree index.

Kolmogorov distance Eq. 16 + s + + s + Difference between joint and product probabilities.
Bayesian measure Eq. 16 + s + + s + Same as Vajda entropy Eq. 23 and Gini Eq. 39.
Kullback-Leibler divergence Eq. 20 + s + + s + Equivalent to mutual information.
Jeffreys-Matusita distance Eq. 22 + s + + s + Rarely used but worth trying.
Value Difference Metric Eq. 22 + s + s Used for symbolic data in similarity-based methods,

and symbolic feature-feature correlations.

Mutual Information Eq. 29 + s + + s + Equivalent to information gain Eq. 30.
Information Gain Ratio Eq. 32 + s + + s + Information gain divided by feature entropy, stable evaluation.
Symmetrical Uncertainty Eq. 35 + s + + s + Low bias for multivalued features.
J-measure Eq. 36 + s + + s + Measures information provided by a logical rule.
Weight of evidence Eq. 37 + s + + s + So far rarely used.
MDL Eq. 38 + s + s Low bias for multivalued features.

Table 1. Summary of the relevance measures suitable for filters. Features X and targets Y may be of the B = binary type (+), M
= mutivalued, s (symbolic), or i (integer) only (symbolic implies integer), or C = continuous, real numbers (+). Methods that cannot
work directly with continuous values need discretization.



Filter methods 25

to estimate reliably (see Fig. 2), leaving room for other approaches. In some
applications including costs of different types of misclassifications (Sec. 2) is
a better choice of relevance index, leading to the balanced accuracy (Eq. 4),
F-measure or optimization of ROC curves. Evaluation of all such quantities
will suffer from the same problem as evaluation of the Bayesian relevance
JBC, and therefore other, approximate but more reliable methods should be
studied.

Different approaches to relevance evaluation lead to a large number of in-
dices for ranking and selection. Certainly more papers with new versions of
relevance indices for information filters will be published, but would they be
more useful? As noted in the book on CART [5] the splitting criteria do not
seem to have much influence on the quality of decision trees, so in the CART
tree an old index known as Bayesian measure JBM (Eq. 19) or Vajda En-
tropy (Eq. 23) has been employed, under the new name “Gini”. Perhaps the
actual choice of feature relevance indices also has little influence on perfor-
mance of filters. For many applications a simple approach, for example using
a correlation coefficient, may be sufficient.

Not all options have been explored so far and many open questions re-
main. Similarities, and perhaps equivalence up to monotonic transformation
of relevance indices, should be established. The reliability of estimation of
relevance indices – with the exception of entropy estimations – is not known.
Biases towards multi-valued features of several indices have been identified
but their influence on ranking is not yet clear. Little effort has been devoted
so far towards cost-sensitive feature selection. In this respect the accuracy of
Bayesian classification rules and other performance metrics related to logical
rules are worth investigating.

Not much attention has been paid towards specific class-oriented and lo-
cal, context-dependent filters. Some problems (especially in bioinformatics)
require the simultaneous identification of several features that may individu-
ally have quite poor relevance. The paradigmatic benchmark problems of this
sort are the parity problems, starting from the XOR. Only context-dependent
local feature selection methods (like Relief, or filter methods applied to vectors
in a localized feature space region) seem to be able to deal with such cases. Al-
though our knowledge of filter-based feature selection has significantly grown
in recent years still much remains to be done in this field.
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