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Abstract. What are the most important problems of computational intelli-
gence? A sketch of the road to intelligent systems is presented. Several ex-
perts have made interesting comments on the most challenging problems.  

1 Introduction. 

In the introduction to the “MIT Encyclopedia of Cognitive Sciences” M. Jordan 
and S. Russell [33] used the term “computational intelligence” to cover two views 
of artificial intelligence (AI): engineering and empirical science. Traditional AI 
started as an engineering discipline concerned with the creation of intelligent ma-
chines. Computational modeling of human intelligence is an empirical science. 
Both are based on computations.  

Artificial Intelligence (AI) has established its identity quite early, during the 
Dartmouth conference in 1956 [6]. It had clearly defined goals, exemplified by 
great early projects, such as the General Problem Solver of Simon and Newell. 
There are many definitions of AI [48,64], for example: “... the science of making 
machines do things that would require intelligence if done by humans” (Marvin 
Minsky), “The study of how to make computers do things at which, at the mo-
ment, people are better” [48]. In essence AI tries to solve problems for which 
effective algorithms do not exist, using knowledge-based methods.  

In the 1970-ties AI has contributed to the development of cognitive science and 
to the goal of creating “unified theories of cognition”, as Allen Newell called it. 
Ambitious theories of high cognitive functions were formalized by John Anderson 
in his Act* theory [3], and by Newell and his collaborators in the Soar theory [43]. 
Both were very successful and led to many practical (and commercial) applica-
tions. In the last decade intelligent agents become the focus of AI, entities that can 
perceive and act in a rational goal directed way to achieve some objectives.  

Machine learning has been important from the beginning in AI. Samuel’s 
checker-playing system (1959) learned to play far superior checkers than its crea-
tor. Although initially research on perceptrons has developed as a part of AI in the 
late 1950-ties machine learning became preoccupied with inductive, rule based 
knowledge [50]. AI development has always been predominately concerned with 
high-level cognition, where symbolic models are appropriate.  
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In 1973 the book of Duda and Hart on pattern recognition appeared [18]. The 
authors wrote that “pattern recognition might appear to be a rather specialized 
topic”. It is obviously a very broad topic now, including good part of neural net-
works research [5]. In 1982 Hopfield network [26], in 1986 the backpropagation 
algorithm [49], and a year later the PDP books [7] brought the neural network 
field to the center of attention. Since that time the field of neural computing has 
been growing rapidly in many directions and became very popular in the early 90-
ties. Computational neuroscience, connectionist systems in psychology and neural 
networks for data analysis are very different branches with rather different goals. 
The last of these branches gained solid foundations in statistics and Bayesian 
theory of learning [5,25].  

Soft computing conferences started to draw people from neural, fuzzy sets and 
evolutionary algorithms communities. Applications of these methods overlap with 
those dealt with by pattern recognition, AI and optimization communities.  

Computational Intelligence (CI) is used as a name to cover many existing 
branches of science. This name is used sometimes to replace artificial intelligence, 
both by book authors [47] and some journals (for example, “Computational Intel-
ligence. An International Journal”, by Blackwell Publishers). There are several 
computational intelligence journals dedicated to the theory and applications of 
artificial neural networks, fuzzy systems, evolutionary computation and hybrid 
systems. In our opinion it should be used to cover all branches of science and 
engineering that are concerned with understanding and implementing functions for 
which effective algorithms do not exist. From this point of view some areas of AI 
and a good part of pattern recognition, image analysis and computational neuro-
science are subfields of CI.  

What is the ultimate goal of computational intelligence and what are the short-
term and the long term challenges to the field? What is it trying to achieve? With-
out setting up clear goals and yardsticks to measure progress on the way, without 
having a clear sense of direction many efforts will end up nowhere, going in cir-
cles and repeating the same problems.  

We hope that this paper will start a discussion about the future of CI that should 
clarify some of the issues involved. First we shall make some speculations about 
the goals of computational intelligence, think how to reach them, and raise some 
questions worth answering. Then we will write about some challenges. We have 
asked several experts what they consider to be the greatest challenges in their 
field. Finally some conclusions will be given.  

2 The ultimate goals of CI.  

From the perspective of cognitive sciences artificial intelligence is concerned 
with high level cognition, dealing with such problems as understanding of lan-
guage, problem solving, reasoning, planning and knowledge engineering at the 
symbolic level. Knowledge has complex structure, the main problems are combi-
natorial in nature and their solution requires heuristic search techniques. Learning 
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is used to gain knowledge that expert systems may employ for reasoning, and is 
frequently based on logic.  

Other branches of computational intelligence are concerned with lower level 
problems, are more on the pattern recognition side, closer to perception, are at the 
subsymbolic level. Complex knowledge structures do not play important role, 
most methods work in fixed dimensional feature spaces. Combinatorial character 
of problems and knowledge-based heuristic search are not an issue. Numerical 
methods are used more often than discrete mathematics.  

The ultimate goal of AI is to create a program that would pass the Turing test, 
that is would understand human language and be able to think in a similar way to 
humans. The ultimate AI project is perhaps CYC, a super-expert system with over 
a million of logical assertions describing all aspects of the world.  

The ultimate goal of other CI branches may be to build an artificial rat (this was 
the conclusion of a discussion panel on the challenges to CI in the XXI century, at 
the World Congress on Computational Intelligence in Anchorage, Alaska, in 
1998). Problems involved in building an artificial animal that may survive in a 
hostile environment are rather different than problems related to the Turing test. 
Instead of symbolic knowledge problems related to perception, direction of atten-
tion, orientation, motor control and motor learning have to be solved. Behavioral 
intelligence that is embodied in the Cog project is perhaps the most ambitious 
project of this kind [1]. 

Each branch of CI has its natural areas of application and the overlap between 
them is sometimes small. For example, with very few exceptions AI experts are 
separated from communities belonging to other CI branches, and vice versa. Even 
neural networks and pattern recognition communities, despite a considerable over-
lap in applications, tend to be separated.  

Is there a common ground where the two fields could meet? The ultimate chal-
lenge for CI seems to be a robot that combines high behavioral competence with 
human-level higher cognitive competencies. Building creative systems of such 
kind all branches of CI will be required, including symbolic AI and lower level 
pattern recognition methods. At the one end of the spectrum we have neurons, at 
the other brains and societies.  

3 A roadmap to creative systems.  

The brain is not a homogenous, huge neural network, but has quite specific 
modular and hierarchical structure. Neural network models are inspired by proc-
esses at a low level of this hierarchy, while symbolic AI works at the highest level. 
Little work has been devoted to the description and understanding of intermediate 
levels, although investigation of connections between them can be quite fruitful 
[9].  

Below we have sketched a roadmap from the level of single neurons to the 
highest level of creative societies of brains, presenting some speculations and 
research directions that seem unexplored. Cooperation of individual elements that 
have some local knowledge leads to emergence of a higher-order unit that should 
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be regarded at its own footing. The same principles may operate at different scales 
of complexity. A major challenge for CI is to create models and learn how to scale 
up systems to reach higher level.  

3.1 Threshold neurons and perceptrons 

Neurons in simple perceptrons have only one parameter, the threshold for their 
activity, and the synaptic weights that determine their interactions. Combined 
together perceptrons create the popular multi-layer perceptron (MLP) networks 
that are quite powerful, able to learn any multidimensional mapping starting from 
examples of required input/output relations. Usually the network aspect is stressed 
while learning processes are discussed: the whole, with interacting elements, is 
bigger than its parts. Real biological networks involve a huge number of neurons 
with thousands of connections each. Instead of looking at the fixed architecture of 
neural network it may be better to imagine that synaptic connections define inter-
actions between subsets of individual elements. Clusters of activity, or forming 
sub-networks, has been observed in networks of spiking neurons [24]. Similar 
effects have not been investigated in MLP networks.  

Perceptron neural networks may be regarded as collections of primitive proc-
essing elements (PEs). Individual element do not understand the task the whole 
collection is faced with, but are able to adjust to the flow of information, perform-
ing local transformations of the incoming data and being criticized or corrected by 
other members of the team (i.e. network). Hebb principle provides reinforcement 
for PE, regulating the level of their activity in solving different cooperative prob-
lems. Backpropagation procedure provides another kind of critique of the activity 
of single neurons.  

Some parameters are internal to the neural units (thresholds), while other pa-
rameters are shared, allowing for interactions between units during the learning 
procedure. Neural networks use many units (neurons) that cooperate to solve prob-
lems that are beyond the capabilities of a single unit. Interactions and local knowl-
edge of a simple PEs determine the type of problems that networks of such ele-
ments may solve.  

Networks are able to generalize what has been learned, creating a model of 
states of local environment they are embedded in. Generalization is not yet crea-
tivity, but is a step in the right direction.  

3.2 Increasing complexity of internal PE states 

Next step beyond the single parameter (threshold) describing internal state of a 
neuron is to add more internal parameters, allowing each PE to realize a bit more 
than a hyperplane discrimination. Perceptrons are not able to solve the famous 
connectedness and other problems posed by Minsky and Papert [39] as a challenge 
for neural networks. Adding more network layers does not help (see the second 
edition of [39]), the problem scales exponentially with the growing size of images. 
This problem may be solved with neural oscillator networks in a biologically 
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plausible way [61], but rather complex networks are required. Adding one addi-
tional internal parameter (phase) is sufficient to solve this problem [32]. What is 
the complexity class of problems that may be solved this way? Can all problems 
of finding topological invariants be solved? What can be gained by adding more 
parameters? The answers are not clear yet.  

Computational neuroscience investigates models of cortical columns or Heb-
bian cell assemblies. Modular neural networks may be regarded as networks with 
super PEs that adapt to requirements of the complex environment. Instead of sim-
ple units with little internal knowledge and fixed relations (fixed architecture of 
MLP networks), more powerful PEs dynamically forming various configurations 
(virtual networks) should be used. More complex internal knowledge and interac-
tion patterns of PEs are worth investigation.  

The simplest extension of network processing elements that adds more internal 
parameters requires abandoning the sigmoidal neurons and using a more complex 
transfer functions. A Gaussian node in a Radial Basis Function network [5] has at 
least N internal parameters, defining position of the center of the function in N-
dimensional space. Weights define the inverse of dispersions for each dimension, 
determining interaction with other network nodes through adaptation of parame-
ters to the data flow. Although research efforts have been primarily devoted to 
improvement of neural training algorithms and architectures there are good rea-
sons to think that transfer functions may significantly influence the rate of conver-
gence, complexity of the network and the quality of solution it provides [16].  

What do these more complex PEs represent? If their inputs are values of some 
features they model areas of the feature space that may be associated with some 
objects, frequently appearing input patterns. Recurrent neural networks, including 
networks of spiking neurons, are used as autoassociative memories that store pro-
totype memories as attractors of network dynamics [2]. Basins of these attractors 
define areas of the feature space associated with each attractor. A single complex 
PE, or a combination of a few PEs, represent such areas directly, replacing a sub-
network of simpler neurons.  

This was the original motivation for the development of the Feature Space 
Mapping (FSM) networks [13,9]. Nodes of FSM networks use separable transfer 
functions G(X)=ΠiGi(xi), instead of radial functions (the only separable radial 
function is Gaussian). Their outputs model the probability of recognizing a par-
ticular combination of input features as some object. Each PE may be treated as a 
fuzzy prototype of an object, while each component Gi(xi) may be treated as a 
membership function for feature xi. Thus FSM is a neurofuzzy system that allows 
for control of the decision borders around each prototype by modifying the inter-
nal parameters of the PEs (transfer functions). Precise control of basins of attrac-
tors in dynamical networks is usually impossible.  

In contrast to MLP neural networks many types of functions with different in-
ternal parameterizations are used. First steps towards neural networks with heter-
ogonous PEs were made [11,17,29]. Theoretically they should allow for discovery 
of an inductive bias in the data, selecting or adapting transfer functions to the data 
using minimal number of parameters. Creation of efficient algorithms for net-
works with heterogonous PEs is quite challenging task. 
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Each complex PE represents a module that adapts to the data flow adjusting its 
basin of influence in the feature space. Is this approximation sufficient to replace 
dynamical networks with spiking neurons or recurrent networks? What are the 
limitations? Many questions are still to be answered.  

3.3 Increasing complexity of PE interactions 

Rigorous transition from attractor networks to equivalent FSM networks may 
be based on fuzzy version of symbolic dynamics [4] or on the cell mapping 
method [28]. It should be possible to characterize not only the asymptotic proper-
ties of dynamical models, but also to provide simplified trajectories preserving 
sufficient information about basins of attractors and transition probabilities. This 
level of description is more detailed than the finite state automata, since each state 
is an objected represented in the feature space.  

Such models are a step from neural networks to networks representing low-
level cognitive processes. They are tools to model processes taking place in fea-
ture spaces. FSM networks use clusterization-based procedures to create initial 
model of the input data and then learn by adaptation of parameters. Adding 
knowledge to the feature space is easy by creating, deleting and merging nodes of 
the network. FSM may work as associative memory, unsupervised learning, pat-
tern completion system or a fuzzy inference system. Constraints on variables, such 
as arithmetic relations, or laws Y=F(X1,..XN) may be directly represented in feature 
spaces.  

Although using complex PEs in networks adds internal degrees of freedom in-
teractions between the nodes are still fixed by the network architecture. Even if 
nodes are added and deleted the initial feature space is fixed. An animal has a very 
large number of receptors and is able to pay attention to different combinations of 
sensory stimuli. Attractor networks are combinatorially productive, activating 
many combinations of neural modules. Feedforward networks, even with complex 
PEs, have fixed path of data flow. Although internal representations of PEs go 
beyond logical predicates they are not dynamic. Thus they are not able to model 
networks of modules that interact in a flexible way depending on the internal 
states of their modules.  

One reason for changes in the internal states of cortical brain modules is due to 
the recent history (priming effects), another is due to changes in neuromodulation 
controlled by a rough recognition and emotional responses in the limbic areas. A 
simplified model of interacting modules should include the fact that all internal 
parameters should depend either directly on inputs P(X), or indirectly on hidden 
parameters P(H(X)) characterizing internal states of other modules. Each module 
should estimate how competent it is in a given situation and add its contribution to 
the interaction with other modules only if its competence is sufficient.   

Recently this idea has been applied to create committees of competent classifi-
ers [15]. A committee is a network of networks, or a network where each element 
has been replaced by a very complex PE, made from individual network. Outputs 
O(X;Mi) from all network modules (classifiers) Mi are combined together with 
weights Wi in the perceptron-like architecture. The weights of these combinations 
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are modulated (multiplied) by factors F(X;Mi) that are small in the feature space 
areas where the model Mi makes many errors and large where it works well. Thus 
the effective weights depend on the current state of the network, Wi(X) = Wi 
F(X;Mi). This method may be used to create virtual subnetworks, with different 
effective path of information flow.  

Modulation of the activity of modules is effective only if the information about 
the current state is distributed to all modules simultaneously. In the brain this role 
may be played by the working memory (cf. Newman and Baars [42]). The step 
from associations to sequential processing is usually modeled by recurrent net-
works. Here we have networks of modules adjusting their internal states (local 
knowledge that each module has learned) and their interactions (modulations of 
weights) to the requirements of the information flow through this system.  

At this level systematic search processes may operate. In [13] we have shown 
that a complex problem requiring combinatorial approach may be solved quite 
easily by search processes that activate simple FSM modules. The electrical circuit 
example from the PDP book has been used [7] to demonstrate it. Each FSM mod-
ule has learned qualitatively to analyze relations between the 3 variables, such as 
the Ohm’s law U=IR etc. The amazing result is [9] that almost any relation 
∆A=f(∆B, ∆C) representing changes of variables leads to the same objects in the 
feature space model. In the electric circuit example there are 7 variables and 5 
laws that may be applied to this circuit. If values of some variables are fixed activ-
ity of the 5 FSM modules (each corresponding to a 3-term relation, and each iden-
tical) that are competent to add something new to the solution is sufficient to spec-
ify the behavior of the remaining variables.  

Thus modular networks, such as the FSM model, may be used as powerful heu-
ristics to solve problems requiring reasoning. The solution is found by systematic 
search, as in the reasoning systems, but each logical (search) step is supported by 
the intuitive knowledge of the whole system (level of activity of the competent 
modules). Such systems may be used for simple symbolic processing, but creating 
flexible modular networks of this type that could compete with experts systems is 
still a challenge.  

3.4 Beyond the vector space concept  

Feature space representation lies at the foundation of pattern recognition [18], 
but it is doubtful that it plays such an important role in the brain. Even at the level 
of visual perception similarity and discrimination may be sufficient to provide the 
information needed for visual exploration of the world [44]. At the higher cogni-
tive levels, in the abstract reasoning or sentence analysis processes, vector spaces 
with fixed number of features are of little use. In such applications complex 
knowledge structures are created and manipulated by knowledge-based AI expert 
systems.  

Although a general framework for processing of structural data, based on recur-
rent neural networks and hidden Markov models, has been introduced [20], it is 
rather difficult to implement and use. Perhaps a simpler approach could be suffi-
cient. The two most common knowledge representation schemes in AI are based 
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on the state or the problem description [48,64]. The initial state and the goal state 
are also represented in the same way, the goal being usually a desired state, or a 
simple problem that has known solution. A set of operators is defined, transform-
ing the initial object (state, problem), into the final object (goal). Each operator 
has some costs associated with its use. Solutions are represented by paths in the 
search graph. The best solution has lowest costs of transforming the initial object 
into the final object. An efficient algorithm to compute such distances may be 
based on dynamical programming [36]. 

Lowest costs of transformation that connect two complex objects are a measure 
of similarity of these objects. Mental operations behind evaluations of similarity 
are rather complex and are not modeled directly at this level. Similarity is suffi-
cient for categorization and once it has been evaluated original features are not 
needed any more. At the level of perception sensory information is of course fea-
ture-based, but different types of higher-level features are created for different 
objects from the raw sensory impressions. At the higher cognitive level “intuitive 
thinking” is probably based on similarity evaluation that cannot be analyzed by 
logical rules. Crisp or fuzzy rules have limited expressive powers [12], prototype-
based rules that evaluate similarity are more powerful alternative [14]. General 
framework for similarity-based systems includes most types of neural networks as 
special cases [10]. Pattern recognition methods that are based on similarity or 
dissimilarity matrices and do not require vector spaces based on features have 
been published (cf. [45]).  

Another research direction may be inspired by Lev Goldfarb's criticism of the 
vector space as a foundation for inductive class generalization [23]. His system of 
evolving transformations tries to synthesize new operators for object transforma-
tion and similarity functions, allowing for evaluation of similarities between two 
objects that have quite different structure. This is necessary for example in chem-
istry, comparing molecules that have different structure although they belong to 
the same class (have the same activity or other high-level properties). In other 
words some kind of a measure of functional isomorphism or similarity (not neces-
sarily corresponding to the structural one) is required in such applications.  

3.5 Flexible incremental approaches 

One of the fundamental impediments in building large, scalable learning sys-
tems based on neural networks is the problem of catastrophic forgetting. In order 
to alleviate this problem several ideas concerning both the network structures and 
the training algorithms have been introduced. The main approaches reported in the 
literature include modular networks [60,52,41], constructive approaches [19,21]. 

In modular networks the problem to be learned is divided into subproblems, 
each of which is learned independently by a separate module and then the solution 
for the whole problem is obtained as a proper combination of subproblem solu-
tions. In constructive approaches the network starts off with a small number of 
nodes and its final structure is being built systematically by adding nodes and 
links whenever necessary. Both types of methods are well known in the commu-
nity so their advantages and weak points will not be discussed here.  
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Other examples of flexible incremental approaches are the lifelong learning 
methods [57,58] in which learning new tasks becomes relatively easier when the 
number of already learned tasks increases.   

One possible approach of that type is to start training procedure based on  very 
simple, “atomic” problems. Structures developed while solving these atomic prob-
lems are frozen and consequently will not be obliterated in subsequent learning – 
only fine tuning would be permitted. These small atomic networks will serve as 
building blocks for solving more complicated problems – say level 1 problems. 
Larger structures (networks) obtained in the course of training for solving level 1 
problems will serve as blocks of building even larger structures capable of solving 
more complex problems (level 2 ones), etc. Once in a while the whole system is 
tested based on the previously learned (or similar to them) atomic, level 1, level 2, 
etc. problems.  

The above scheme can be viewed as an example of constructive approach, 
however - unlike in typical constructive approaches – it is postulated that the net-
work starts off with the number of nodes and links a few times exceeding the 
number of actually required ones (i.e. “enough” spare nodes and links is available 
in the system). Hence the potential informational capacity of the system is avail-
able right from the beginning of the learning process (similarly to biological 
brains). After completion of the training process the nodes and links not involved 
in the problem representation are pruned unless the system is going to be exposed 
to another training task in future.  
 We have used similar to the above scheme to solving supervised classification 
problem. The training scheme called Incremental Class Learning (ICL) was suc-
cessfully applied to unconstrained Handwritten Digit Recognition problem 
[34,35]. The system was trained digit by digit (class by class) and atomic features 
developed in the course of learning were frozen, and available in subsequent 
learning. These frozen features were shared among several classes. The ICL ap-
proach not only takes advantage of existing knowledge when learning a new prob-
lem, it also offers a large degree of immunity from the catastrophic interference 
problem. The ICL idea can possibly be extended to the case of multimodal sys-
tems performing several learning tasks where different tasks are characterized by 
different features. This would require adaptation of the above scheme to the case 
of multimodal feature spaces. 

  
The above mentioned incremental learning methods are suitable for supervised, 

off-line classification tasks in which multi-pass procedure is acceptable. Alterna-
tive approaches – probably based on unsupervised training – must be used in prob-
lem domains requiring real-time learning ability. Ideally, large, scalable network 
structures should be suited to immediate, one pass incremental learning schemes. 
An examples – to some extent – of such fast trainable networks are Probabilistic 
Neural Networks [53] and General Regression Neural Networks [54] often applied 
to financial prediction problems [51]. However the cost of fast training ability is a 
tremendous increase of memory requirements since all training patterns must be 
memorized in the network. The other disadvantage is relatively slow response of 
the system in the testing phase. The search for efficient, fast incremental training 
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algorithms and suitable network architectures is regarded as one of the challenges 
in computational intelligence. 

3.6 Evolution of networks 

 Another important research direction is changing from static (deterministic) 
networks into evolving (context dependent) ones. Possible approaches here in-
clude networks composed of nodes with local memory that process information 
step-wise, depending on the previous state(s). Evolving networks should be capa-
ble of adding and pruning nodes and links along with the learning process. More-
over, the internal knowledge representation should be based on redundant features 
sets as opposed to highly distributed representations. Non-determinism and con-
text dependence can, for example, be achieved by using nodes equipped with 
simple fuzzy rules (stored in their local memories) that would allow for intelligent, 
non-deterministic information processing. These fuzzy rules should take into ac-
count both local parameters (e.g. the number of active incoming links, the degree 
of local weights density, etc.) as well as global ones (e.g. the average level of 
global activation – ``temperature of the system’’,  global level of wiring of the 
system, etc.). 
 Knowledge representation should allow for off-line learning, which will be 
performed by separate parts of the systems – not involved in the very fast, on-line 
learning. The off-line learning should allow for fine tuning of the knowledge rep-
resentation and also would be responsible for implementation of appropriate re-
learning schemes. One of the possible approaches are the ECOS (Evolving COn-
nectionist Systems) introduced by Kasabov [31], which implement off-line re-
training schemes based on internal representation of the training examples in the 
system. Similar idea was also introduced in our paper [35] where the network was 
trained layer by layer and the upper layer was trained based on the feature repre-
sentation developed in the lower layer. 
 Another claim concerning flexible learning algorithms and network structures is 
that structures of network modules as well as training methods should have some 
degree of fuzziness or randomness. Ideally, several network modules starting with 
exactly the same structure and internal parameters after some training period 
should diverge from one another though still stay functionally isomorphic. Some 
amount of randomness in the training procedure would allow for better generaliza-
tion capabilities and higher flexibility of these modules.   

Flexibility and hierarchy of information (knowledge) can be partly realized by 
the use of multidimensional links. Very simple associations will be represented by 
classical one dimensional links (form one neuron to another neuron). More com-
plex facts will be represented by groups of links joint together and governed by 
sophisticated fuzzy rules taking into account context information. In other words 
multidimensional link will be a much more complex and powerful structure than 
the simple sum of all one dimensional links being their parts. A dimension of the 
link will be proportional to the degree of complexity of information it represents. 
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This idea has its roots in the design of associative memories where depending on 
the nature and complexity of stored associations suitable type of memory can be 
used (autoassociative, bidirectional or multidirectional). 
 

3.7 Transition to symbolic processing 

AI has concentrated on symbolic level of information. Problems related to per-
ception, analysis of visual or auditory scenes, analysis of olfactory stimuli are 
solved by real brains working on spatiotemporal patterns. There are many chal-
lenges facing the computational cognitive neuroscience field that deals with mod-
eling such brain functions. Spiking networks may have some advantages in such 
applications [61]. Several journals specialize in such topics and a book with subti-
tle “Towards Neuroscience-inspired computing” appeared recently [63], discuss-
ing modular organization, timing and synchronization, learning and memory mod-
els inspired by understanding of the brain.  

We are interested here only in identification of promising routes to simplified 
models that may be used for processing of dynamic spatiotemporal patterns, going 
from low to high-level cognition. One mechanism proposed by Hopfield and 
Brody [27] is based on recognition of the spatiotemporal pattern via transient 
synchrony of the action potentials of a group of neurons. The recognition is in 
their model invariant to uniform time warp and uniform intensity change of the 
input events. Although modeling of recognition in feature spaces is rather straight-
forward invariance is rather difficult to obtain.  

Recognition or categorization of spatiotemporal patterns allows for their sym-
bolic labeling, although such labeling may sometimes be a crude approximation. 
Transition from recurrent neural networks (RNNs) to finite state automata rules 
and symbols may be done in several ways: extracting transition rules from dynam-
ics of RNNs, learning finite state behavior by RNNs, or encoding finite-state 
automata in neural networks [63,22]. Although a lot of effort has been devoted to 
this subject most papers assume only two internal states (active or not) for auto-
mata and for network PEs, severely restricting their possibilities. Relations be-
tween more complex PEs and automata with complex internal states are very 
interesting but not much is known about them. Sequential processes in modular 
networks, composed of subnetworks with some local memory, should roughly 
correspond to the information processing by neocortex.  These processes could be 
approximated by probabilistic multi-state fuzzy automata. Complex network proc-
essing elements with local memory may process information step-wise, depending 
on their history. Modules, or subnetworks, should specialize in solving fragments 
of the problem. Such approach may be necessary to achieve the level of non-trivial 
grammar that should emerge from analysis of transitions allowed in finite state 
automata corresponding to networks. 
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3.8 Up to the brains and the societies of brains  

The same scheme may be used at higher levels: modular networks described 
above are used to process information in a way that roughly corresponds to func-
tions of various brain areas, and these networks become modules that are used to 
build next-level “supernetworks”, functional equivalents of whole brains. The 
principles at each level are similar: networks of interacting modules adjust to the 
flow of information changing their internal knowledge and their interactions with 
other modules. Only at quite low level, with very simple interaction and local 
knowledge of PEs, efficient algorithms for learning are known. The process of 
learning leads to emergence of novel, complex behaviors and competencies. 
Maximization of system information capacity may be one guiding principle in 
building such systems: if the supernetwork is not able to model all relations in the 
environment then it should recruit additional members that will specialize in learn-
ing facts, relations or behaviors that have been missing.  

At present all systems that reach the level of higher cognitive functions and are 
used for commonsense reasoning and natural language understanding are based on 
artificial intelligence expert system technology. The CYC system (www.cyc.com) 
with over one million assertions and tens of thousands of concepts does not use 
any neural technology or cognitive inspirations. It is a brute-force symbolic ap-
proach. Other successful AI models, such as the Soar [43] or Act [3] systems, 
have developed also quite far remaining at the level of purely symbolic process-
ing. Can such technology be improved using subsymbolic computational intelli-
gence ideas? Belief networks may be integrated in such systems in relatively eas-
ily, but it is still a big challenge for neural systems to scale up to such applications. 
DISCERN was the only really ambitious project that used neural lexicon for natu-
ral language processing [38], but it did not go too far and has been abandoned.   

Very complex supernetworks, such as the individual brains, may be further 
treated as units that co-operate to create higher-level structures, such as groups of 
experts, institutions, think-tanks or universities, commanding huge amounts of 
knowledge that is required to solve the problems facing the whole society. Brain-
storming is an example of interaction that may bring ideas up that are further 
evaluated and analyzed in a logical way by groups of experts. The difficult part is 
to create ideas. Creativity requires novel combination, generalization of knowl-
edge that each unit has, applying it in novel ways. This process may not funda-
mentally differ from generalization in neural networks, although it takes place at 
much higher level of complexity. The difficult part is to create a system that has 
sufficiently rich, dense representation of useful knowledge to be able to solve the 
problem by combining or adding new concepts/elements. 

4 Problems pointed out by experts 

Certainly, the statements presented in the previous sections, reflecting authors’ 
point of view on the subject, do not pretend to be a complete and comprehensive 
answer to the question “Quo vadis, computational intelligence?”. The field of CI is 
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very broad and still expanding, so – in a sense – even listing all of its branches or 
sub-fields may be considered a challenge itself.  

Having that in mind we had an idea that a good way to make the real and effi-
cient search for the challenging problems is to post this question to a group of the 
well known experts in several branches of CI. Therefore, we asked a few leading 
scientists working in the field of computational intelligence (understood in a very 
broad sense) what - according to them – would be the most challenging problems 
for the next 5-10 years in their area of expertise, and what solutions (if known) are 
at the horizon.  

CI disciplines represented by the experts included neural networks, genetic al-
gorithms, evolutionary computing, swarm optimization, artificial life, Bayesian 
methods, brain sciences, neuroinformatics, robotics, computational biology, fuzzy 
systems, rough sets, mean field methods, control theory, and related disciplines. 
Both theoretical as well as applicative challenges were asked for.  

Our first idea was to collect the answers and then try to identify some number 
of common problems that may be of general interest for computational intelli-
gence community. However, after collecting the responses we decided that presen-
tation of individual experts’ opinions with some comments from us will be more 
advantageous to potential readers. In order to precisely express views and opinions 
provided by the experts we have decided to present several citations from their 
responses. For the sake of clarity of the presentation in the following text all cita-
tions of experts’ opinions will be distinguished by italic font.  

 
Problems posted by the experts can be divided into two main categories: 
 

• general CI problems related to human-type intelligence, 
• specific problems within various CI disciplines. 

4.1 General CI problems related to human-like intelligence 

Among general problems envisioned by the experts two were proposed by Lee 
Giles. The first one concerns bringing robotics into the mainstream world. Proba-
bly the effective way of bringing robotics (and CI in general) into the mainstream 
world will require the development of CI-based user-friendly everyday applica-
tions able to convince people of the usefulness and practical value of CI research. 
Several devices of that kind already exist, e.g. intelligent adaptive fuzzy control-
lers installed in public lifts or various household machines. These bottom-level, 
practical successes of CI are however not well advertised and therefore not well 
known (or actually not at all known) to general public. Paradoxically, events 
which seem to be much more “abstract” achievements of AI (at least for non-
professionals) became recently very influential signs of AI successes. These in-
clude the defeat of Kasparov by Deep Blue supercomputer or design of artificial 
dogs – Aibo and Poo-Chi.  

The other challenge pointed out by Giles is integrating the separate successes 
of AI - vision, speech, etc - into an intelligent SYSTEM. In fact building of intelli-
gent agents has been of primary concern for AI experts for about a decade now. 
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Development of new robotic toys, such as the Aibo dogs, requires integration of 
many branches of CI. What capabilities will such toy robots show in 20 years? 
Perhaps similar progress as in the case of personal computer hardware (for exam-
ple graphics) and software (from DOS to Windows XP) should be expected here. 
Several advanced robotics projects are being currently developed in the industrial 
labs. The most ambitious one concerning humanoid robots - developed from and 
around the Cog project at MIT - demanded integration of several perceptual and 
motor systems [1]. Social interaction with humans demands much more: identifi-
cation and analysis of emotional cues during interactions with humans, speech 
prosody, shared attention and visual search, learning through imitation, and build-
ing theory of mind. 

Similar challenge concerning the design of the advanced user interfaces using 
natural language, speech, and visualizations is listed by Erkki Oja. According to 
Oja realization of such integrated, human friendly interfaces requires very ad-
vanced and robust pattern recognition methods. As a possible approach to tackle 
these tasks Oja proposes application of some kind of machine learning, as well as 
probabilistic modeling methods aimed at finding – in unsupervised manner – a 
suitable compressed representation of the data. The underlying idea is that when 
models are learned from the actual data, they are able to explain the data, and 
meaningful inferences and decisions can be based on the compressed models. 
These issues are also connected with the questions about functioning of the learn-
ing algorithms in human brains. If we can really find out the learning algorithms 
that the brain is using, this will have an enormous impact on both neuroscience 
and on the artificial neural systems (Oja). 

A related challenge from the domain of intelligent human-like interfaces is also 
stated by John Taylor: how is human language understanding achieved? This is 
needed to be answered to enable language systems to improve and to allow hu-
man-machine interaction. Before answering this questions two other major chal-
lenges in the area of building intelligent autonomous systems need to be consid-
ered. The first one is concerned with the problem of how is attention-controlled 
processing achieved to create (by learning) internal goals for an autonomous 
system? This requires a reward learning structure, but more specifically a way of 
constructing (prefrontal-like) representations of goals of action/object character 
at the basis of schema development. Current research on reinforcement learning 
draws little inspiration from brain research. Perhaps the subject is not understood 
well enough. On the other hand considerable progress has been achieved by Ai 
Enterprises in building a “child machine”, trained by reinforcement learning to 
respond to symbols like an infant [39]. The transcripts from the program have 
been evaluated by a developmental psychologist as a healthy bubbling of 18-
month old baby. This is still only bubbling and it will be fascinating to see how far 
can one go in this way.  

The other challenging problem is answering the question of how is automatisa-
tion of response achieved by learning? Initial controlled response needs to be 'put 
on automatic' in order to enable an autonomous system to concentrate on other 
tasks. This may be solved by further understanding of the processes occurring in 
the frontal lobes in their interaction with the basal ganglia. At the same time epi-
sodic and working memory are clearly crucially involved (Taylor). In other words, 
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how is the task initially requiring conscious decisions taken by the brain at the 
highest level, such as learning to drive, becomes quite automatic? What is the role 
of working memory here? Perhaps it is needed only to provide reinforcement by 
observing and evaluating the actions that the brain has planned and executed? Is 
this the main role of consciousness? Relating one’s own performance to memo-
rized episodes of performance observed previously requires evaluation and com-
parison followed by emotional reactions that provide reinforcement and increase 
neuromodulation, facilitating rapid learning. Working memory is essential to per-
form such complex task, and after the skill is learned there is no need for rein-
forcement and it becomes automatic (subconscious). Unfortunately working 
memory models are not well developed.  

Similarly to Oja, the need for appropriate data (state) representation is also 
stressed by Christoph von der Malsburg: In the classical field of AI, this question 
is left entirely open, a myriad of different applications being dealt with by a myr-
iad of different data formats. In the field of Artificial Neural Networks, there is a 
generic data format – neurons acting as elementary symbols – but this data format 
is too empoverished, having no provision for representing hierarchical structures, 
and having no provision of the equivalent of the pointers of AI.  

A related challenging problem pointed out by von der Malsburg is design of 
autonomous self-organization processes in the (hierarchical) state organization – 
the state of an intelligent system must be built up under the control of actual in-
puts and of short-term and long-term stored information. The algorithmic ap-
proach to state construction … must be overcome and be replaced by autonomous 
organization. State organization must be conformed to a general underlying idea 
of the ability of intelligent systems to generalize based on the current state: Intelli-
gent systems relate particular situations to more general patterns. This is the basis 
for generalization, the hall-mark of intelligence. Each situation we meet is new in 
detail. It is important to recognize general patterns in them so that known tools 
and reactions can be applied. To recognize a specific situation as an instance of a 
general pattern, the system must find correspondences between sub-patterns, and 
must be able to represent the result by expressing these correspondences as a set 
of links. Finding such sets of links is an exercise in network self-organization (von 
der Malsburg).  

On the other hand self-organization alone seems to be not powerful enough it 
order to create intelligent systems (behaviors) in limited time and with limited 
resources. Therefore some kind of learning with a teacher seems to be indispensa-
ble. An important sub-category of learning is guided by teaching. Essential in-
struments of teaching are: showing of examples, pointing, naming and explana-
tion. To provide the necessary instruments that underlay these activities consti-
tutes an considerable array of sub-problems. Human intelligence is a social phe-
nomenon and is based on teaching. The alternative is evolution, but we will hardly 
have the patience to create the intelligence if only of a mouse or a frog by purely 
evolutionary mechanisms (von der Malsburg).  

Another problem stressed by von der Malsburgh is the ability of intelligent 
autonomous systems to learn from natural environments: Intelligent systems must 
be able to pick up significant structure from their environment. Machine learning 
in AI is limited to pre-coded application fields. Artificial neural networks promise 
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learning from input, finding significant structure on the basis of input statistics, 
but that concept fails beyond a few hundred bits of information per input pattern, 
requiring astronomical learning times. Animals and humans demonstrate learning 
from one or a few examples. To emulate this, mechanisms must be found for iden-
tifying significant structure in single scenes. Similarly to Oja, von der Malsburg 
underlines the role of interaction with natural environment - intelligent systems 
must be able to autonomously interact with their environment, by interpreting the 
signals they receive and closing the loop from action to perception. 

The next step on the way of building intelligent systems is the stage of hierar-
chical integration of separate modules or operational paradigms into one, coherent 
organizational structure. Two major challenges concerning this issue were put 
forward by von der Malsburg. The first problem is the subsystem integration. An 
intelligent system is to be composed of (a hierarchy of) individual modules, each 
representing an independent source of information or computational process, and 
problems are to be solved by coupling these modules in a coherent way. This 
process may be likened to a negotiation process, in which the different players try 
to reach agreement with each other by adjusting internal parameters. If there is 
sufficient redundancy in the system, a globally coherent state of the system arises 
by self-organization. This process is the basis for the creativity of intelligent sys-
tems. The problem is to find the general terms and laws which make subsystem 
integration possible. 

The other – closely related – challenge is structuring of general goal hierar-
chies. Whatever intelligent systems do, they are pursuing goals, which they them-
selves set out with or recognize as important for a given scene or application 
area. To organize goal-oriented behavior, a system starts with rather generally 
defined goals (survive, don't get hurt, feed yourself,..) and must be able to 
autonomously break those goals down to specific settings, and to self-organize 
consistent goal hierarchies.  

 
The key issues in development of computational intelligence field according to 

Harold Szu lie in the area of unsupervised learning. The CI science is now in the 
cross road of taking the advantage of the exponential growth of information sci-
ences modeling and linear growth of neurosciences experiments. The key is to find 
the proper representation of the complex neuroscience experiment data that can 
couple the two together. The idea of learning without a teacher has a “natural” 
support in biological world, since we – people have pairs of eyes, ears, etc. There-
fore, the proper representation is a vector time series whose components are input 
of a pair of eyes, ears, etc. - smart sensor pairs. Szu believes that the unsupervised 
learning Hebb rule results from the thermodynamics Helmholtz free energy (see 
[56] for mathematical formulation). 

According to Szu one of the intermediate problems that need to be solved on 
the way is developing of appropriate and efficient procedures for sampling infor-
mation from the environment. One of the key sub-issues are the redundancy prob-
lem and the problem of dimensionality reduction.  
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Another central challenge is stated by Paul Werbos in his recent paper [62]1: 
Artificial neural networks offer both a challenge to control theory and some ways 
to help meet that challenge. We need new efforts/proposals from control theorists 
and others to make progress towards the key long-term challenge: to design ge-
neric families of intelligent controllers such that one system (like the mammal 
brain) has a general-purpose ability to adapt to a wide variety of large nonlinear 
stochastic environments, and learn a strategy of action to maximize some measure 
of utility across time. New results in nonlinear function approximation and ap-
proximate dynamic programming put this goal in sight, but many parallel efforts 
will be needed to get there. Concepts from optimal control, adaptive control and 
robust control need to be unified more effectively.  

The above citation presents the general statement concerning the need for new 
ideas/proposals that might influence research in the intelligent control area. Going 
further Werbos states several goals and suggests possible approaches to achieve 
them. In fact the paper [62] was written with the similar intention as our work and 
we encourage anybody interested in the subject to read it. Since we are unable to 
present all ideas from this paper we have chosen only two problems that appear to 
us to be very important. One of them addresses the problem of appropriate balance 
between problem independent approach to learning in intelligent systems versus 
methods taking advantage of problem specific knowledge. In the most challenging 
applications, the ideal strategy may be to look for a learning system as powerful 
as possible, a system able to converge to the optimal strategy without any prior 
knowledge at all – and then initialize that system to an initial strategy and model 
as close as possible to the most extensive prior knowledge we can find. 

Another suggestion is to regard artificial intelligent systems in the rational 
framework which means defining our goals and expectations towards them in the 
realistic way. We cannot expect the brain or any other physical device to guaran-
tee an exact optimal strategy of action in the general case. That is too hard for 
any physically realizable system. We will probably never be able to build a device 
to play a perfect game of chess or a perfect game of Go. … We look for the best 
possible approximations, trying to be as exact as we can, but not giving up on the 
true nonlinear problems of real interest. We would definitely agree with that. In 
any real situation when non-trivial goals are to be achieved the optimal strategy 
cannot be “calculated” in a reasonable time. We believe that one of the main ob-
stacles on the way of developing intelligent autonomous systems were – right 
from the beginning – too high expectations regarding their abilities and the lack of 
properly defined, achievable, realistic goals. The brains are not all-powerful de-
vices, but have been prepared by millions of years of evolution to make reasonable 
decisions in situations that are natural from the environmental point of view. In 
many unnatural situations humans suffer from “cognitive illusions” [46].  

                                                           
1 Submitted to IEEE CDC02 conference by invitation.  

  



18 

4.2 General problems within certain CI disciplines 

Several problems stated by the experts concerned particular disciplines that 
constitute computational intelligence. In the context of neural networks two of the 
proposed problems were connected with the reduction of data dimension in both 
theoretical as well as applicative aspects.  

 
One of them known as the curse of dimensionality is pointed out by Vera 

Kurkova: for some tasks implementation of theoretically optimal approximation 
procedures becomes unfeasible because of unmanageably large number of pa-
rameters. In particular, high-dimensional tasks are limited by the “curse of di-
mensionality”, i.e., an exponentially fast scaling of the number of parameters with 
the number of variables. One of the challenges of mathematical theory of neuro-
computing is to get some understanding what properties make high-dimensional 
connectionist models efficient, what attributes of multivariable mappings guaran-
tee that their approximation by certain types of neural networks guarantee does 
not exhibit the “curse of dimensionality”.  

Similar challenging problem concerned with unmanageable data dimensionality 
is put forward by Lipo Wang: which features are relevant and which of them are 
important for a task at hand? In several application domains high-dimensional 
data, except for being computationally infeasible, is also difficult to be properly 
interpreted. In other words when data dimensionality is high, information can be 
obscured, because of the presence of irrelevant features. This is important for 
many data mining tasks, such as classification, clustering, and rule extraction. In 
most practical problems estimation of relative importance of particular data prop-
erties comes out from experts’ knowledge or experience. Quite rarely it becomes 
available as a result of theoretical analysis. In neural networks domain some gen-
eral methods supporting that kind of analysis have been already developed. The 
most popular examples include the Principal Component Analysis – allowing 
reduction of data dimensionality based on its orthogonalisation and defining the 
most relevant dimensions. The other well known method is Independent Compo-
nent Analysis – allowing for blind source separation in case of multi-source and 
noisy data. Both methods perform well in many cases however their applicability 
is not unconditional. For example application of PCA method in case of highly 
interrelated data (e.g. when sampled from multidimensional chaotic systems) may 
lead to degradation of performance compared to using data that was not pre-
processed by PCA [30].  

The need for reliable identification of relevant features in multidimensional 
data is especially important within popular, fast growing disciplines where the 
increase of the amount of available data is enormous. Indeed, in bioinformatics – 
for example - tens or even hundreds of thousands of features are defined for some 
problems, and the selection of information becomes a central issue. One possible 
approach is to use feature aggregation instead of feature selection. Such hierarchi-
cal processing of information allows for integration of very rich input data into 
simpler, but more informative, higher-level structures. Integration of distributions 
of time-dependent input (sensory) signals creates distributions at the higher levels. 
Although interval arithmetic is known, relevant mathematics for computing with 
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arbitrary distributions has not yet been formulated. The other promising idea – 
similar to the way in which attention facilitates control - is selecting subsets of 
relevant features. This results in a dynamical process, serving the short and long-
term goals of the system.  

 
Another challenging issue connected with data processing is design and con-

struction of intelligent systems capable of providing a focused search through the 
huge amount of available data (e.g. published over the Internet). According to Oja 
in short and medium term, we will have a great demand for fast and reliable com-
puter systems to manage and analyze the vast and ever increasing data masses 
(text, images, measurements, digital sound and video, etc.) available in databases 
and the Web. How to extract information and knowledge, to be used by humans, 
from this kind of scattered data storages? The problem is well known and various 
solutions are being proposed. One group of solutions is based on visualization 
techniques, for example using the Web-SOM variant of Kohonen’s networks. 
Many other clusterization methods and visualization techniques are certainly 
worth using. Data mining techniques for modeling the user interest and extracting 
knowledge from data are in the experimental stage. Latent Semantic Indexing [8] 
is based on the analysis of the terms-document frequency matrix using singular 
Value Decomposition to find Principal Components that are treated as “concepts”. 
Unfortunately these concepts are vector coefficients and are only useful for esti-
mation of similarity of documents - but they are not understandable concepts in-
teresting to humans. The Interspace Research Project is aimed at semantic index-
ing of multimedia information and facilitating communication between different 
communities of experts that use similar concepts. Only a few CI methods have 
been applied to this field so far.  

Certainly, the problem of explosive growing of the amount of accessible data 
has a great impact on artificial systems’ (and also humans’) ability to preprocess 
and analyze this data and consequently make optimal (or at least efficient) deci-
sions. Gathering a compact set of relevant and complete information concerning a 
given task requires much more efficient search engines than those available now. 
One of the underlying features of these “future” search engines must be ability to 
analyze the data contextually. Ultimately understanding of texts requires sophisti-
cated natural language processing techniques. At this stage the best programs for 
natural language understanding (NLU) are based on huge ontologies, human cre-
ated hierarchical description of concepts and their interrelations. The release of the 
OpenCyc tools by CycCorp in 2001 made such applications easier, but hybrid 
systems, combining NLU techniques developed by AI experts with the data min-
ing techniques developed by CI experts, have not yet been created.  

One of the possible directions on the way to design intelligent decision support 
systems capable of extracting useful information and knowledge form large data 
repositories is distributive multi-agent approach in which a set of agents automati-
cally searches various databases and professional services (e.g. the Internet ones) 
in real time in order to provide an up-to-date, relevant information. This would 
also require the soft mechanisms for checking information reliability. Further-
more, efficient mechanisms of automated reasoning based on CI techniques need 
to be applied in such systems.  
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Another challenge was identified in the area of combinatorial optimization 

(Lipo Wang): evolutionary computation and neural networks are effective ap-
proaches to solving optimization problems. How can we make them more power-
ful? This question is really hard to answer. In the framework of neural networks  
two main approaches to solving constraint optimization problems exist: evolving 
template matching and Hopfield-type networks. Both of them suffer from serious 
intrinsic limitations. Template matching methods require that the problem to be 
solved has appropriate geometrical representation. Hopfield-type approaches suf-
fer from gradient minimization scheme and the lack of general recipes for defining 
constraints coefficients in the energy function. Despite enormous number of pa-
pers devoted to the above two types of approaches and despite the development of 
various modifications to their original formulations it seems that the efficacy of 
neural network-based optimization methods – although significantly increased 
compared to the initial approaches - cannot be proven for the problems exceeding 
a certain level of complexity. Similar situation exists in evolutionary computation 
domain where, for example, no general rules were yet developed concerning the 
efficient coding scheme or choosing a priori a suitable form of crossover opera-
tion or appropriate mutation probability. In most cases the above very basic 
choices are still being decided by trial and error methods. Consequently, in com-
plex problem domains the time required to achieve reasonably good solutions is 
prohibitive.  
 

Similar problems concerning scalability of evolutionary computation algo-
rithms are pointed out by Xin Yao: There have been all kinds of evolutionary 
techniques, methods and algorithms published in the literature which appear to 
work very well for certain classes of problems with a relatively small size. How-
ever, few can deal with large and complex real world problems. It is well known 
that divide-and-conquer is an effective and often the only strategy that can be used 
to tackle a large problem. It is unclear, though, how to divide a large problem and 
how to put the individual solutions back together in a knowledge-lean domain. 
Automated approaches to divide-and-conquer will be a challenge, as well as an 
opportunity to tackle the scalability issue, for evolutionary computation research-
ers. 

An issue closely related to scalability problem is the lack of theoretical estima-
tions of computational complexity of evolutionary methods: We still know very 
little about the computational time complexity of evolutionary algorithms on vari-
ous problems. It is interesting to observe that a key concern in the analysis of 
algorithms in the mainstream computer science is computational time complexity, 
while very few complexity results have been established for evolutionary algo-
rithms. It is still unclear where the real power, if any, of evolutionary algorithms 
is (Yao).  

Another problem emphasized by Yao is the need for suitable mechanisms that 
allow promotion of a "team work" rather than the best (highest scored) individu-
als: Evolutionary computation emphasizes populations. While one can use a very 
large population size, it is often the best individual that we are after. This is in 
sharp contrast to our own (human) experience in problem solving, where we tend 
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to use a group of people to solve a large and complex problem. Clearly, we need 
to rethink our endeavour in finding the best individual. Instead, we need the best 
team to solve a large and complex problem. This challenges us to think about 
questions such as how to evolve/design the best team and how to scale up the team 
to deal with increasingly large and complex problems. 

5 Summary 

In this short article only a few challenges facing various branches of computa-
tional intelligence may obviously be identified. According to several suggestions 
the underlying issues are related to – generally speaking – emulation of human-
type intelligent behavior. Within this research area several specific goals and chal-
lenges are identified, e.g.  

• flexible data (state) representations and suitable, context (state) depend-
ent training methods, 

• training methods involving both supervised and unsupervised paradigms 
allowing to combine learning from examples with self-organizing evolu-
tionary development of the system, 

• further investigation of the working mechanisms of biological brains,  
• integration of solutions achieved for partial (individual) problems into 

more complex, efficiently working systems, 
• theoretical investigations on the complexity, potential applicability and 

limitations of explored ideas. 
 
 

We have tried to show some promising directions that should allow to model 
certain brain-like functions, going beyond the current applications of neural net-
works in pattern recognition. UCI repository of data for machine learning methods 
[37] has played a very important role in providing the pattern recognition prob-
lems to be solved. Collection of more ambitious problems for testing new ap-
proaches going beyond classification and approximation is urgently needed.  

We hope that the issues pointed out by professionals and by ourselves will 
serve as useful pointers – especially for young and less experienced researchers 
looking for interesting problems – in developing computational intelligence in 
promising directions.  
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