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Abstract— Neural networks are commonly regarded as black
boxes performing incomprehensible functions. For classification
problems networks provide maps from high dimensional feature
space to K-dimensional image space. Images of training vector are
projected on polygon vertices, providing visualization of network
function. Such visualization may show the dynamics of learning,
allow for comparison of different networks, display training vec-
tors around which potential problems may arise, show differences
due to regularization and optimization procedures, investigate
stability of network classification under perturbation of original
vectors, and place new data sample in relation to training data,
allowing for estimation of confidence in classification of a given
sample. An illustrative example for the three-class Wine data is
described. The visualization method proposed here is applicable
to any black box system that provides continuous outputs.

I. INTRODUCTION

In common opinion neural networks are black boxes that
should not be used for safety-critical applications. Some un-
derstanding of network decisions may be found if the network
is converted to logical rules [1]. This understanding always
comes at a price. If network function is approximated decision
borders provided by neural networks are severely distorted,
since feature space has to be partitioned into hypercuboids (for
crisp logical rules) or ellipsoids (for typical triangular or Gaus-
sian fuzzy membership functions). An alternative is to convert
the neural network itself to a simplified structure performing
logical functions. Since neural networks are universal approx-
imators, and regularization leads to low-complexity models
that perform quite well providing estimation of posterior
probabilities, approximation by logical rules always distorts
the mapping found by the network. Although for some data
classification accuracy obtained with optimized logical rules
is higher than the accuracy obtained by neural networks, it
seems to be an artifact of quantization of outputs (for example,
forcing the patient into "healthy" or "sick" categories) [1].

What information do we get from a typical neural network?
Estimation of the overall classification accuracy, mean square
error (MSE), and sometimes estimation of the classification
probability. The quality of two networks is compared only
by looking at their accuracy, or at best at the Receiver
Operator Characteristics (ROC) curves [2]. All such measures
are global; they do not distinguish between easy and difficult
cases. Overall classification accuracy is not a good estimator
of the accuracy for the particular problem at hand, since
all errors may be confined to a distant and localized region
of the feature space. Multilayer Perceptron (MLP) networks
provide outputs close to 0 and 1, making them overconfident in

their predictions. There is a big difference between networks
that make 10 errors, each time predicting wrong answer with
probability close to 1, and networks that make the same wrong
answers but with probability only slightly higher than that for
the correct answer. Regularization may improve generalization
[3] but since stochastic learning algorithms create networks
with identical accuracy, but quite different weights and biases,
which network should finally be choosen? Is the network
hidding some strange behavior that may lead to completely
wrong results for new data? Visualization of mappings per-
formed by neural networks will certainly widen their range of
applicability.

Since feature spaces are highly dimensional faithful pre-
sentation of the mapping learned by neural network is not
possible. An interesting information is contained in perceived
similarities of the training data samples. For classification
problems with K categories these similarities may be displayed
as a scatterogram in K-dimensional space. In the next section a
linear projection method is introduced, projecting the network
outputs into K vertices of a polygon. Section three presents a
detailed case study using an MLP and RBF networks for the 3-
class Wine dataset, and some examples for 5-class Satimage
dataset. In the last section discussion and some remarks on
the usefulness and further development of such visualization
methods are given. Since the use of color makes it much easier
to understand the figures the reader is advised to view the PDF
version of the paper [4].

II. PROJECTION OF NETWORK OUTPUTS.

Assume that in K-class problem for each training vector
X neural network outputs oi(X) ∈ [0,1], i = 1 . . .K are given.
They may come either from a single network, or K networks
with single output that specialize in discrimination of vectors
from a single class. The target output in a typical classification
problem has K−1 zero outputs, and one o j(X) = 1 output that
corresponds to the class Cj the input vector X belongs to. This
requirement is in many cases artificial. The output classes may
form continuum, rather then a small set of integer numbers,
leading to a fuzzy “degree of membership” replacing crisp
labeling. The outputs oi(X) may be treated as an estimation of
this degree of membership, and in some caes as an estimation
of similarity of the vector X to other vectors of the same
class. In some network realizations the outputs are estimations
of posterior probabilities p(Ci|X;M), given the network M
and the vector X. Since probabilities sum to 1 the number
of independent outputs is reduced to K−1. Networks outputs
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Fig. 1. Polygon used for projection of K-dimensional data.

are K-dimensional images of inputs, created by the non-linear
function that the network has learned. For vectors of different
classes images created by neural networks that do not make
any errors are separable clusters, otherwise these clusters will
overlap.

Visualization of network decisions is possible in K-
dimensional space, presenting images of all training vectors.
For K=2, if the network outputs are independent (i.e. they do
not sum to 1) the desired answers fall into (1,0) and (0,1)
corners of a square in (o1,o2) coordinates. Images of vectors
that belong to the overlapping regions may be close to (1,1)
vertex, while vectors that are not recognized are close to (0,0)
vertex. Vectors X that are far from decision borders and are
classified correctly have scatterogram images O(X) clustering
around (1,0) and (0,1) corners. Images of vectors that are
close to the decision borders fall closer to the middle of the
square. Vectors from different classes are distinguished using
different markers. Comparing such scatterograms for different
networks will immediately show significant differences despite
similar accuracies. The position of the image of a new vector
X in relation to the images of training vectors shown in
scatterogram allows for evaluation of the reliability of its
classification.

Similar representation is possible for K=3, but for larger
number of classes some projection on two or three dimensions
is needed. Although all linear projections loose some infor-
mation and more sophisticated projections could be devised,
simple approach presented below is already quite useful. The
hypercube corners that correspond to binary labels (from
(1,0, ..,0) to (0,0, ..,1)) will correspond to K corners of reg-
ular polygon in two dimensions. Coordinates of this polygon,
with (0,0) vertex corresponding to (1,0, ..,0) point, and (0,1)
vertex corresponding to (0,1, ..,0) point, are calculated from
(see Fig. 1):
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Fig. 2. Characteristic points and lines in the image space used for projection
of 3-dimensional data.

The transformation x = AO + B may be found by setting
up 2K + 2 linear equations: 2K equations for projections
of (1,0, ..,0) to (0,0, ..,1) unit vectors on (x j,y j) polygon
vertices, and two equations for projection of (1,1, ...,1)
point on the polygon center S, with coordinates (x c,yc) =(

1
2 , 1

2 tan( π
2 − π

K )
)
.

This projection has several interesting features. For K=3
the center of the triangle corresponds to all (a,a,a) points
(where a is arbitrary number) in 3 dimensions. Cases where
all three outputs are 1 fall there, as well as cases where all
three outputs are 0 (see Fig.2). Since all outputs are assumed to
lie in the unit interval [0,1], all points will lie within hexagon,
with corners corresponding to binary (o1,o2,o3) values. The
opposite corners of the hexagon have inverted bits, ō j = 1−o j.
Points corresponding to vectors that are weakly exciting o 1

output approach the center along the (a,0,0) line, while points
in the overlapping region of class two and three approach the
center along the (a,1,1) line.

III. CASE STUDY: WINE DATA

Chemical analysis of wines grown in the same region in
Italy, but derived from three different cultivars, should be
sufficient to recognize the source of the wine. The analysis
determined 13 quantities, including alcohol content, hue, color
intensity, and content 9 chemical compounds. The data is
stored in UC Irvine repository of machine learning problems
[5], where more details about it may be found. The number
of data samples from Classes 1, 2, and 3 is 59, 71 and
48, respectively, so the data is rather small. It is possible to
separate the classes perfectly using an MLP network with just
2 hidden neurons. The 3 classes are designated by +, o and x
markers.

The NETLAB neural network package [6] written in Matlab
has been used in the experiments described below. All MLP
networks are trained with the scaled conjugate gradient pro-
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Fig. 3. Convergence of a network with 3 hidden neurons: top row - two
solutions (27 and 107 errors) after 5 iterations, bottom row - two solutions (5
and 71 errors) after 10 iterations.

cedure, with a single hidden layer network. These networks
are used to map 13-dimensional vectors into 3-dimensions
and then project the result to 2-dimensions using the method
introduced in the previous section. Using scatterograms of
the training data created this way the following issues are
addressed:

1) The dynamics of the neural learning.
2) Under and over-fitting effects.
3) Regularization effects.
4) Differences between networks of the same accuracy.

A. The dynamics of the neural learning

Three hidden neurons have been used in numerical ex-
periments here. Since the network is initialized with small
values of weights and biases after the first training epoch all
output values are concentrated around 0.5. The first series of
pictures (Fig. 3) shows the network performance after 5 and
10 iterations. Since each time the network is trained different
solution is obtained two extreme cases were selected from
20 trials, the best network (lowest number of errors, on the
left) and the worst network (largest number of errors, on the
right). The vectors that are still not correctly handled are easily
identified. In the lower left corner (0,0) most of the + class
vectors are clustered. In the lower left part of figure 3 they
are already well separated from other classes, although the
hyperplane separating the o class vectors (clustered in the
(0,1) corner) is still too close to the + class vectors. This is
clear because 4 of these vectors have images close to the (0,1)
corner. Further training should shift decision border for the o
class vectors further away from the + class vectors.

The stochastic training algorithm changes network param-
eters along quite different trajectories in the parameter space,
creating during learning very different networks, as is evident
from the left and right subfigures of Fig. 3. After some ini-
tializations convergence is very fast, with emerging separation
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Fig. 4. Two converged solutions with zero errors after 30 iterations.

of vectors from different classes (left subfigures of Fig. 3.
Sometimes the network gets stuck in a local minimum and
inspection of the corresponding image will help to understand
the problem. The lower right subfigure of Fig. 3 shows that
vectors from the x class are well separated, but vectors from
the two other classes have images close to the center of
the triangle, extending into the lower part of the hexagon
in Fig. 2. Evidently in the feature space data vectors from
these two classes are covered by the sigmoidal functions
with values close to 1. Instead of waiting for the learning
algorithm to correct that problem (since gradients of saturated
sigmoidal functions are small this would be slow), a few
simple remedies may be applied: re-initializing the network,
decreasing all network parameters to make the sigmoidal
functions less saturated, or perturbing the weights by adding
random numbers. Fig. 3 suggests another possibility: present
as input only those vectors that correspond to images near the
middle of (a,a,0) line (Fig. 2), since the network response
is then closer to 0.5 than to 0 or 1, therefore gradients are
relatively large and learning may proceed faster, until the
scatterogram becomes more like that on the left side of Fig.
3.

The final solutions may look similar, although the network
weights significantly differ. The size of the network weights is
reflected in concentration of vector images around the corners;
at the end of training (Fig. 4) all images of training vectors
cluster almost exactly in polygon’s corners, indicating that the
binary target values for the classes have been achieved. The
number of errors is not a good indicator of the quality of
solutions: both networks that were used to create Fig. 4 plots
made no errors on the training data, but test results for the
second network are significantly worse, since new data vectors
close to the isolated + and o class vectors lead to several errors.

B. Under and over-fitting effects

Large number of errors may result from problems with
convergence – for the Wine data some networks collapse
images of all vectors into one cluster, evidently becoming
trapped in a local minimum corresponding to a majority
classifier. In such a case repeating the network training several
times will lead to a better solution. The problem may also be
due to the underfitting of the data, in which case repeating
the calculation will not help. In classification problems this
underfitting manifests itself with the inability of the network
to create appropriate decision borders. Images of the training
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Fig. 5. Two converged solutions with too simple network.
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Fig. 6. Left plot – mapping by an MLP network that is too complex; right
side – the same mapping applied to more vectors, created by adding small
variance noise to the training vectors.

vectors in the scatterograms will not be clustered around the
polygon vertices. In Fig. 5 images created by two networks
with one hidden neuron are shown, one corresponding to a
quite good solution with 6 errors only, and the other to a rather
poor solution with 59 errors. In both cases images from one
class appear in the triangle corner, while images from the two
other classes appear somewhere in the middle of the triangle,
showing the inability of the network to find a proper solution.

On the other hand networks may be too complex, overfitting
the data. Training of the MLP network with 30 hidden neurons
has been done on 2/3 of the randomly selected data, and results
are displayed for all data. Although no errors have been made
on the training partition, images of several test vectors appear
near the center of the triangle, corresponding to vectors that
the network does not recognize (all network outputs are quite
small), indicating that the network does not generalize well.
This is confirmed by adding noise to original data – in Fig. 6
small x, o and + are images of original data vectors, slightly
perturbed with Gaussian distributed random vectors of unit
variance multiplied by 0.02. The lines between the center and
the triangle vertices show that some perturbed vectors are in
regions of the feature space where all sigmoidal functions of
the MLP network have small values.

C. Regularization effects

After convergence images of the training vectors may col-
lapse into a single point, showing that the network is over-
confident, and the images of vectors that are classified wrongly
will be mapped into wrong vertices of the polygon. MLP
networks behave in this way when weights become very large,
creating almost step-like functions that correspond to sharp
decision borders. Such decision borders may be brittle, and
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Fig. 7. Effects of regularization: top row - no regularization, second row
α = 0.05, third row α = 1.0, and fourth row α = 5.0. Figures on the right
side are with 5% of Gaussian noise.

will lead to poor generalization of the network. Perturbing
training vectors by adding some noise will show this effect
clearly in scatterograms – lines connecting vertices with the
polygon’s center will appear, as in the right plot in Fig. 6, and
the top right plot in Fig. 7. In fact adding noise to the input
data is equivalent to a regularization procedure [3], making the
solutions more robust and increasing classification margins.

Wide margin solutions are manifested by images of the
training vectors concentrated near polygon vertices, but not
collapsed into a single point. The network is not overconfident,
i.e. the errors are closer to the center of the polygon or close
to the midpoints of lines connecting polygon’s vertices. This is
shown in Fig. 7 for network with 3 hidden units that was able
to perfectly separate the training data. Without regularization
images of the training vectors generated by the network
collapse into three vertices of the triangle, while images of
some perturbed vectors (5% Gaussian noise) lie on the line
joining vertices with centers, indicating that these vectors are
in the region where no sigmoidal function has a large value
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Fig. 8. Two networks, each making only one error on the training data;
the first (top row) has higher chance to mix classes x and o more often, the
second (bottom row) to mix classes + and o more often.

(Fig. 7, top row). Gaussian regularization prior added to the
MLP error function scaled by a small α = 0.05 hyperparameter
partially removes this effect, making the corners more blurred
and removing images of the perturbed vectors from the center,
although the images of the training vectors are still very
close to the triangle vertices. Increasing the regularization
hyperparameter to α = 1.0 and α = 5.0 makes the network
much less confident and shows more realistic predictions,
because some samples of wines from the + class happen to
be rather similar to samples from o class, and those from the
o class are similar to samples from the x class. With very
large regularization hyperparameter the network will start to
make some errors, but even for α = 5.0 images of almost all
perturbed vectors are concentrated around correct corners of
the triangle. Thus visualization may be useful to select the
best network with proper regularization.

D. Differences between networks of the same accuracy

Two networks with similar MSE, making the same number
of errors and having identical confusion matrices, may still
significantly differ in some areas of the feature space. In the
Wine example, vectors from + and o classes may be quite close
to the decision surface, or vectors from x and o class may be
close to the decision surface. Although in both cases same
errors have been made so far, one network may be preferred
over the other if the costs of mixing different classes are
not equivalent. This is demonstrated in Fig. 8 by adding low
variance noise (2%) to perturb original data.

Different gradient optimization procedures will also con-
verge to different networks. These differences are visible even
better if RBF network is used instead of an MLP. With 6
Gaussian functions RBF network also finds a solution with a
single error. The images of the training vectors after mapping
through the RBF network are much less localized, while the
perturbed vectors are much closer to the unperturbed vectors
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Fig. 9. Top row: RBF network solution with 6 Gaussian functions; right
figure – same RBF network on slightly perturbed (2%) input vectors. Bottom
row: comparison of RBF with MLP solutions for inputs perturbed by a strong
noise (15%) .

(Fig. 9, top right) than for MLPs. Nonlinearities introduced
by the RBF network are significantly smaller than those of
the MLP network (especially with no regularization), therefore
the RBF solution is more robust. Perturbing original vectors
with noise with large variance will not elicit any unexpected
behavior from the RBF network (bottom row, Fig. 9). MLP
network with small regularization (α = 0.1) and the same
number of hidden units makes less errors, but places many
perturbed vectors close to vertices corresponding to wrong
classes (i.e. makes erros with high confidence). Images of
vectors mapped by MLP show only how close these vectors
are to the decision borders, while images obtained with RBF
mapping show also similarities between vectors in feature
spaces.

For easy problems, with well separated clusters, MLP with
regularization provides quite robust solutions. MLP with 5
hidden neurons and strong regularization (α = 1) creates
images of vectors from 5 classes, clustered in vertices of a
pentagon. The network mapping is quite robust, even after
adding noise with 100% variance the network behavior is quite
predictable, indicating that no strange kinks are hiding in its
black box. The “arms” extending from one of the vertices
to two other vertices simply indicate that the feature space
vectors corresponding to these images belong to clusters that
are relatively close together.

The Satimage data [5] originally contained images of six
types of soil from the Landsat satellite multi-spectral scanner.
The 3x3 neighborhoods of a central pixels from 4 different
spectra re provided as feature vector (36 dimensions). The last,
mixed soil class, has been removed to make small figures more
legible, leaving 5 classes only and 3397 training samples. An
MLP with 30 hidden nodes and 0.05 regularization coefficient
has been trained on this data, providing good separation of
most data points (left plot, Fig. 10). Most errors are due
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Fig. 10. Satimage data, first five classes, MLP with 30 hidden neurons and
0.05 regularization; right figure with additional 100 points for each class,
generated by adding noise to selected vectors.

to mixing of the class 3 and 4 vectors. How stable is this
solution? One point from each class has been selected, and 100
noise points generated by placing a Gaussian with 3% variance
added, providing additional 500 points for display (right plot,
Fig. 10). In some feature space areas reliability of classification
is very high, with all 100 noise points staying within the cluster
for triangles, circles and crosses. Many points generated near
the vectors from the squares and diamonds class are in the
region where none of the network outputs has strong value
(center of Fig. 10). Other additional vectors are on the line
between the corner representing wrong class, and the center,
indicating that only one (wrong) output has value significantly
greater than zero. Images of some vectors appear in the center
of a wrong cluster, showing that the network is still too
confident in its predictions, with sharp decision borders close
to the data points. Recognizing the existence of such regions
is obviously very important in safety critical applications.

IV. DISCUSSION AND CONCLUSIONS

Neural networks are used in various ways for data visual-
ization. The activity of two hidden neurons of MLP or RBF
networks may be displayed directly. Self-Organized-Maps and
other competitive learning algorithms, neural Principal and
Independent Component Analysis algorithms, autoassociative
feedforward networks and Neuroscale algorithms are all aimed
at using neural algorithms to reduce dimensionality of the
data or to display it (for a summary of such visualization
methods see [7]). The visualization method presented here
is rather different, since neural networks are not modified or
used to display multidimensional data directly, but rather a
projection method is introduced to elucidate the network func-
tion. The method is applicable to any black box classification
system that outputs some estimation of class memberships.
Although linear projection cannot show all details of the higher
dimensional data distribution (i.e. for more than 2 classes),
it contains a lot of useful information. For two classes the
images of data vectors appear in a square, with (1,0) and
(0,1) corners coresponding to uniquely classified cases, (0,0)
to unknown case (both outputs are close to zero), and (1,1) to
cases in the overlapping regions. Such detailed information is
unfortunately difficult to display in two dimensional plots for
more than two-classes.

Images of the training data vectors mapped by MLP and

RBF neural networks have been used here to show the
dynamics of learning, to compare different network solution,
inspecting the regions of the input space where potential
problems may arise, to evaluate effects of regularization, to
investigate stability of network classification under perturba-
tion of original vectors and to place new data in relation to
known data vectors, allowing for estimation of confidence
that one may have in classification of a given vector. The
best network solutions are not overconfident, but show large
clusters of points around vertices of the polygon, without
overlaps with clusters and with no vectors close to the center
of the projection.

This type of visualization may also be combined with
the Receiver Operator Characteristic (ROC) curves that show
detection rates for a given false alarm rate [2]. Samples with
images close to the polygon vertices correspond to the high
probability assigned by the classifier. Leaving just those data
vectors that are below the specified low detection rate will
leave only images close to the polygon vertices. Moving
to higher detection rates the number of errors observed is
roughly inversely proportional to the slope of ROC curve.
Scatterograms carry more information, showing what type
of errors are made and allowing for quick identification of
such data vectors. The common practice of selecting the
largest network output value as the class indicator leads to
optimal decision borders only for well separated images in
scatterograms; more accurate decision boundaries in the image
space may be selected.

A number of other options remains to be investigated,
including applications to visualization of dynamic data. There
is no reason why scatterogram images of the known data
should not always be displayed as a part of the neural network
output. Although such visualization may not open the black
box completely, at least it adds some color to elucidate its
function.
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