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Abstract. Many indices for evaluation of features have been considered. Applied
to single features they allow for filtering irrelevant attributes. Algorithms for se-
lection of subsets of features also remove redundant features. Hashing techniques
enable efficient application of feature relevance indices to selection of feature
subsets. A number of such methods have been applied to artificial and real-world
data. Strong influence of continuous feature discretization and very good perfor-
mance of separability-based discretization has been noted.

1 Introduction

Attention is the basic mechanism that the brain is using to select relevant informa-
tion for further processing. Without initial selection of information the brain would be
overflooded with information and could not function. In many applications of computa-
tional intelligence methods the situation is similar: large number of features irrelevant
to a given task is provided, making the analysis of data very difficult. Many algorithms
for filtering information have been devised in the past, either ranking the relative im-
portance of features, or selecting subsets of features [1, 2]. Information theory is most
often use as a basis for such methods, but feature relevance indices based on correla-
tion, purity of classes or consistency are also used. Unfortunately relative advantages
and weaknesses of these methods are not know.

Feature ranking methods evaluate the relevance of each feature independently, thus
leaving potentially redundant features. Feature selection methods search for best sub-
sets of features, offering larger dimensionality reduction. Exhaustive search with per-
formance evaluation on all possible subsets of features provides the golden standard.
Although for larger number of features n it is not realistic (the number of all subsets
is 2n), sometimes it may be performed using only the subset of high-ranking features.
Finding useful subsets of features is equivalent to assigning binary weights to inputs,
so feature and subset selection is a special case of feature transformation. Some classi-
fication and approximation methods may benefit from using feature relevance indices
as scaling factors. Splitting criteria in decision trees rank features and may be used to
define feature relevance indices.

We will consider here only general feature selection methods, independent of any
specific properties of classification methods, such as using regularization techniques
to trained neural networks [3]) or pruning in decision trees [4]. This paper attempts



to elucidate the following questions: is there any significant difference between per-
formance of feature relevance indices; how to convert the feature ranking (filtering)
methods into feature selection methods; is greedy search sufficient for finding opti-
mal subsets (comparing to selection based on evaluation of all possible subsets); how
strongly different methods of discretization influence ranking and selection. To answer
some of these questions a number of feature relevance indices have been programmed,
and hashing techniques were implemented to use them for feature selection, evaluating
whole subsets of features and thus including interaction of features. Artificial data has
been created using 4 Gaussians (one per class) in 8 dimensions, with the last four fea-
tures being noisy copies of the first four. Results are also compared on real data with
the "golden standard", or selection made by evaluation of all subsets.

Feature relevance indices used to estimate the importance of a given feature are
presented in the next section. Several feature ranking and feature selection methods
based on information theory and other approaches are presented in the third section. In
the fourth section empirical tests are made on artificial data for which correct ranking
of features is known. Calculations of classification accuracy on the well known hy-
pothyroid dataset are presented in section five. The paper is finished with a number of
conclusions.

2 Feature relevance indices

In the simplest case we have two classes K = 2 and n binary features Xi = 0,1, i =
1 . . .n. Ranking of these features is always done independently. For feature Xi the joint
probability p(Cj,Xi) is a 2 by 2 matrix that carries full information that may be derived
from this feature. The “informed majority classifier" (i.e. knowing the Xi value) makes
in this case optimal decisions: if p(C0,Xi = 0) > p(C1,Xi = 0) then class C0 should be
chosen for Xi = 0, giving a fraction of p(C0,Xi = 0) correct and p(C1,Xi = 0) erroneous
predictions. The same procedure is used for all other Xi values (for binary feature only
Xi = 1), leading to the following accuracy of informed majority classifier:

IMC(X) = ∑
i

max
j

(p(Cj,X = xi)) (1)

with x0 = 0 and x1 = 1. To account for the effects of class distribution the expected
accuracy of the uninformed majority classifier (i.e. the base rate =maxi p(Ci)) should
be subtracted from this index but since this is a constant for a given dataset it will not
change the ranking. Since no more information is available two features with the same
accuracy IMC(Xa) = IMC(Xb) should be ranked as equal.

This reasoning may be extended to a multiclass cases and multivalued discrete fea-
tures, and since continuous features are usually discretized it may cover all cases. In
particular, IMC(Xi) may be used for local feature ranking for each vector X subject to
classification. In this case there is no global ranking or selection of features, and no
problem with averaging the importance of features over all data.

The accuracy of the majority classifier is one way of measuring how “pure" are the
bins to which X = x feature value falls to (cf. [10] fro more on purity or consistency-
based indices). Other feature relevance indices estimate how concentrated the whole



distribution is. The Gini impurity index used in CART decision trees [5] sums the
squares of the class probability distribution for a tree node. Summing squares of all
joint probabilities P(C,X)2 = ∑i,x p(Ci,X = x)2 (where x is a set of values or intervals)
gives a measure of probability concentration. For Nx values (or intervals) of X variable
P(C,X)2 ∈ [1/KNx,1] and should be useful for feature ranking.

Association between classes and feature values may also be measured using χ2 val-
ues, as in the CHAID decision tree algorithm [6]. Information theory indices are most
frequently used for feature evaluation. Information contained in the joint distribution of
classes and features, summed over all classes, gives an estimation of the importance of
the feature:

I(C,X) = −
K

∑
i=1

∫
p(Ci,X = x) lg2 p(Ci,X = x)dx (2)

≈−∑
x

p(X = x)
K

∑
i=1

p(Ci,X = x) lg2 p(Ci,X = x)

where p(Ci,X = x), i = 1 . . .K is the joint probability of finding the feature value X = x
for vectors X that belong to some class Ck (for discretized continuous features X = x
means that the value of feature X is in the interval x), and p(X = x) is the probability
of finding vectors with feature value X = x, or within the interval X ∈ x. Low values of
I(C,X) indicate that vectors from single class dominate in some intervals, making the
feature more valuable for prediction. Joint information may also be calculated for each
discrete value of X or each interval, and weighted by p(X = x) is probability:

WI (C,X) = −∑
x

p(X = x)I (C,X = x) (3)

To find out how much information is gained by considering feature X information
contained in the p(X = x) probability distribution and in the p(C) class distribution
should be taken into account. The resulting combination MI(C,X) = I(C) + I(X)−
I(C,X), called “mutual information" or “information gain", is computed using the for-
mula:

MI(C,X) = −I(C,X)−
K

∑
i=1

p(Ci) lg2 p(Ci)

−∑
x

p(X = x) lg2 p(X = x) (4)

Mutual information is equal to the Kullback-Leibler divergence between the joint and
the product probability distribution, i.e. MI(C,X) = DKL(p(C,X)|p(C)p(X)). A feature
is more important if its mutual information is larger.

Various modifications of the information gain have been considered in the liter-
ature on decision trees (cf. [4]), such as the gain ratio IGR(C,X) = MI(C,X)/I(X),
or the Mantaras distance 1−MI(C,X)/I(C,X) (cf. [7]). Another ratio IGn(C,X) =
MI(C,X)/I(C), called also “an asymmetric dependency coefficient", is advocated in
[8], but it does not change the ranking since I(C) is a constant for a given database.



Correlation between distributions of classes and feature values is also measured by the
entropy distance DI(C,X) = 2I(C,X)− I(C)− I(X), or by the symmetrical uncertainty
coefficient U(C,X) = 1−DI(C,X)/(I(C)+ I(X)) ∈ [0,1].

As noted in [5] the splitting criteria do not seem to have much influence on the qual-
ity of decision trees. The same phenomenon may be observed in feature selection: that
actual choice of feature relevancy index has little influence on feature ranking. There
is another, perhaps more important issue here, related to the accuracy of calculation of
feature relevancy indices. Features with continuous values are discretized to estimate
p(X = x) and p(C,X = x) probabilities. Alternatively, the data may be fitted to a com-
bination of some continuous one-dimensional kernel functions, for example Gaussian
functions, and integration may be used instead of summation. Effects of discretization
are investigated in the next section.

3 Artificial data: ranking and discretization

To test various ranking and selection methods, and to test accuracy of discretization
methods, we have created several sets of artificial data. 4 Gaussian functions with unit
dispersions, each one representing a separate class, have been placed in 4-dimensional
space. The first Gaussian has center at (0,0,0,0), the second is at a(1,1/2,1/3,1/4), the
third at 2a(1,1/2,1/3,1/4) and the fourth at 3a(1,1/2,1/3,1/4), so in higher dimen-
sions the overlap is high. For a = 2 the overlap in the first dimension is already strong,
but it is clear that feature ranking should go from X1 to X4. To test the ability of differ-
ent algorithms for dealing with redundant information additional 4 features have been
created by taking Xi+4 = 2Xi +ε, where ε is uniform noise with unit variance. Ideal fea-
ture ranking should give the following order: X1 � X5 � X2 � X6 � X3 � X7 � X4 � X8,
while ideal feature selection should recognize linear dependences and select new mem-
bers in the following order: X1 � X2 � . . . � X8. In addition the number of generated
points per Gaussian was varied from 50 to 4000 to check statistical effects of smaller
number of samples. 1000 points appeared to be sufficient to remove all artifacts due to
the statistical sampling.

First naive discretization of the attributes was used, partitioning each into 4, 8, 16,
24, 32 parts with equal width (results for equal number of samples in each bin are
very similar). A number of feature ranking algorithms based on different relevance in-
dices has been compared, including the weighted joint information WI(C,X), mutual
information (information gain) MI(C,X), information gain ratio IGR(C,X), transin-
formation matrix with Mahalanobis distance GD(C,X) [11], methods based on purity
indices, and some correlation measures.

Ideal ranking was found by MI(C;X), IGR(C;X), WI(C,X), and GD(C,X) feature
relevance indices. The IMC(X) index gave correct ordering in all cases except for par-
titioning into 8 parts, where features X2 and X6 reversed (6 is the noisy version of 2).
A few new indices were checked on this data and rejected since some errors have been
made. Selection for Gaussian distributions is rather easy using any evaluation measure,
and this example has been used as a test of our programs.

Feature ranking algorithms may be used for feature selection if multidimensional
partitions, instead of one-dimensional intervals, are used to calculate feature relevancy



indices. A subset of m features F = {Xi}, i = 1 . . .m defines m-dimensional subspace
and all probabilities are now calculates summing over cuboids obtained as Cartesian
products of one-dimensional intervals. The difficulty is that partitioning each feature
into k bins km multidimensional partitions are created. The number of data vectors is
usually much smaller than the number of m-dimensional bins, therefore hashing tech-
niques may be used to evaluate all indices for subsets of features F . Greedy search
algorithm has been used, adding always only a single feature that leads to the largest
increase of the relevance index of the expanded set.

Feature selection on the 4 Gaussian data in 8 dimensions has proved to be a more
challenging task. The order of first four features X1 to X4 is much more important than
the order of the last four that do not contribute new information, and therefore may be
added in random order. Discretization seems to be much more important now; partitions
into 4 and 32 parts always led to errors, and partition into 24 parts gave the most accurate
result. Information gain ratio IGR(C;F ) gave correct ordering for 8, 16, and 24 bin
partitions, finding noisy versions of X3 and X4 more important than original versions for
32 bins. The IMC(F ) index works well for 24 bins, replacing correct features with their
noisy versions for other discretizations. Performance of Battiti’s algorithm based on
pairwise feature interactions (MI(C;Xi)−βMI(Xi;Xj), with β = 0.5) was very similar
to IMC(F ).

SSV univariate decision tree applied to this data selected X1,X2,X6,X3 and X7 as the
top-most features, removing all others. Univariate trees are biased against slanted data
distributions, and therefore may not provide the best feature selections for this case.
Since the relevancy indices computed with different discretization differ on more than a
factor of two from each other and results seem to depend strongly on discretization, the
use of new discretization scheme based on the Separability Split Value (SSV) criterion
[13] has been investigated. In our previous study [12] very good results were obtained
for feature ranking using SSV discretization. Results are presented only for the real data
case.

4 Experiments on real data

The well-know hypothyroid dataset has been used for these experiments, containing
results from real medical screening tests for hypothyroid problems [14]. The class dis-
tribution is about 93% normal, 5% of primary hypothyroid and 2% of compensated
hypothyroid type. The data offers a good mixture of nominal (15) and numerical (6)
features. A total of 3772 cases are given for training (results from one year) and 3428
cases for testing (results from the next year). Comparison with results of other classi-
fiers has been provided elsewhere [3], the data is used here only for evaluation of feature
selection.

First, the information gain ratio IGR(C,X) index has been computed for all features
using various naive discretizations, such as the equi-width partitioning into 4 to 32 bins.
This index (and all others) grows with the number of bins, showing the importance of
local correlations, but still for the most important feature it has never reached 0.4 (Fig.
1). Using the SSV separability criterion to discretize features into the same number of
bins, mutual information values that were twice as large have been obtained, with high



information content even for 4 or 6 bins. In general this increase leads to much more
reliable results, therefore only this discretization has been used further.

Strong correlations between features makes this dataset rather difficult to study.
Subsets of features have been generated, analyzing the training set using the mutual in-
formation (or normalized information gain [8]), Battiti’s information gain with pairwise
feature interaction [9], and using other indices presented here for evaluation of selected
subsets. Selection of feature subsets has also been provided by SSV decision tree using
both best first search and the beam search mode to create the tree [13]. Features that
are at the top of the tree are considered to be most important, and SSV performs its
own discretization. An additional feature selection has been made with the k nearest
neighbor (kNN) method as a wrapper, consecutively dropping the least important fea-
ture to determine smaller feature subset, until a single feature is left. This is of course
computationally very expensive.

A number of classifiers implemented in the GhostMiner software, developed in our
laboratory4, have been applied to the hypothyroid data, starting from a single feature
and adding more in the order indicated by different methods. Here only the Support
Vector Machine (SVM) results are reported (as implemented by N. Jankowski, in prepa-
ration), but other results lead to similar conclusions. The best discretization should lead
to the feature selection methods that achieve higher accuracy with smaller number of
features, but the final results depend also on the relevancy index used, and on the search
procedure for subset selection.
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Fig. 1. Values of mutual information for the hypothyroid data. Left figure: with equiwidth parti-
tioning; right figure: with SSV partitioning.

kNN wrapper approach created very good feature subsets, finding 3 to 5 element
subsets that led to the highest accuracy. Please note that there is no discretization in-
volved in this calculation. Overall results from kNN selection were slightly worse only
for 6-element feature subset, where SSV found a better subset of features {17, 21, 3, 19,
18, 8}. Mutual information (and other indices of relevance, not shown here) with SSV
discretization was not able to find 3 and 4-element subsets. kNN results suggest that in-
stead of adding features perhaps dropping them would be a better approach. This can be

4 http://www.fqspl.com.pl/ghostminer/



Method Most Important – Least Important
kNN 17 3 8 19 21 5 15 7 13 20 12 4 6 9 10 18 16 14 11 1 2
BA β = 0.5−06 17 21 15 13 7 9 5 12 8 6 4 16 14 10 11 2 3 1 18 20 19
IGR 17 21 19 18 3 7 13 10 8 15 6 16 5 20 4 1 12 2 11 9 14
SSV BFS 17 21 3 19 18 8 1 20 12 13 15 16 14 11 10 9 7 6 5 4 2
SSV beam 17 8 21 3 19 7 9 11 10 12 14 15 16 18 20 13 6 5 4 2 1

Table 1. Results of feature selection for the hypothyroid dataset; mutual information has been
calculated using SSV discretization.
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Fig. 2. Accuracy of SVM calculations for hypothyroid data, results obtained on subsets of features
created by five methods.

done with our implementation of selection algorithms and is now currently investigated.
Finally pairwise feature interaction included in the Battiti method leaves out important
features, even for small values of β, indicating that interaction among many features
should be taken into account, as it is done with other selection method presented here.

5 Conclusions

Over 20 feature ranking methods based on information theory, correlation and purity
indices have been implemented and using hashing techniques applied also to feature
selection with greedy search. Only a few results for artificial and real data have been
presented here due to the lack of space. Several conclusions may be drawn from this
and our more extensive studies:

– The actual feature evaluation index (information, purity or correlation) may not be
so important, therefore the least expensive indices (purity indices) should be used.

– Discretization is very important; naive equi-width or equi-distance discretization
may give unpredictable results; entropy-based discretization is better but more costly,
with the separability-based discretization offering less expensive.

– Selection requires calculation of multidimensional evaluation indices, done effec-
tively using hashing techniques.



– Continuous kernel-based approximations to calculation of feature relevance indices
are a useful, although little explored, alternative.

– Ranking is easy if global evaluation of feature relevance is sufficient, but different
sets of features may be important for separation of different classes, and some are
important in small regions only (cf. decision trees), therefore results on Gaussian
distributions may not reflect real life problems.

– Local selection and ranking is the most promising technique.

Many open questions remain: discretization method deserve more extensive com-
parison, fuzzy partitioning may be quite useful, ranking indices may be used for feature
weighting, not only selection, selection methods should be used to find combination of
features that contain more information.
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