

Abstract. Search-based non-gradient training techniques are

used to train an MLP-like neural network with quantized
parameters. The network training is quite fast and the final
network function is converted to crisp or fuzzy logical rules using
a simple analysis of its weights. Various modifications of the
method are presented, each generating a specific form of rules.
Depending on the desired information one of the methods can be
chosen. Feature selection and data discretization are
automatically performed.

Index Terms— quantized weights, neural networks, rule
extraction, search algorithms

I. INTRODUCTION

good strategy in data mining is to extract simplest crisp
logical rules first. They provide hyperrectangular decision
borders in the feature space. This approximation may not

be sufficient if complex decision borders are required, but it
works quite well if the problem has an inherent logical
structure. For many datasets crisp logical rules proved to be
highly accurate, they are easy to understand by experts in a
given domain, and they may expose problems with the data
itself [1].

A general approach to classification and extraction of
logical rules is proposed in this paper. The acronym of this
approach, SMLP, may be interpreted either as "search-based
MLP" or “simplified MLP”. The advantages of MLP neural
networks are combined with rule based systems, allowing for
extraction of simple logical rules. Instead of the gradient-based
methods that run into problems for discontinuous, step-like
transfer functions, the training algorithm is based on search
methods. It leads to simplified network structures, with few
connections between hidden and output layer. Various SMLP
structures, trainings, and rule extraction algorithms are
considered. Several sets of rules of similar accuracy may be
generated, offering different advantages to domain experts.
The search-based training methods have also been successfully

tested with fully connected MLP networks [2], but this aspect
is not discussed in this paper.

II. SMLP NETWORK

The simplest version of SMLP networks is based on a 3-
layer MLP architecture. Neurons implement sigmoidal or step
output functions with scalar product activation. The network
requires discrete input data. If the data is continuous, it must
be discretized prior to the training, or at the run-time by an
additional network layer.

FC1

FD1.value1

FD1.value2

Class 0

Class 1

Nl[0,0]

Nu[0,0]

Nl[0,1]

Nu[0,1]

N[0,0]

N[0,1]

N[0,2]

N[0,3]

N[1,0]

N[1,2]

N[1,1]

N[1,3]

N[2,0]

N[2,1]

No[0,0]

No[0,1]

Ni[0]

Fig. 1. SMLP Network Diagram, with some pre-processing L-units
shown for FC1 feature

A separate input neuron for each discretized feature value
is used. Thus the number of all input neurons equals the sum

Search-based Training for Logical Rule
Extraction by Multilayer Perceptron

 Włodzisław Duch Mirosław Kordos
 School of Computer Engineering Institute of Computer Science
 Nanyang Technological University The Silesian University of Technology
 N4, Nanyang Avenue, Singapore 639798 Akademicka 16, 44-100 Gliwice, Poland
 and Department of Computer Methods
 Nicholas Copernicus University
 Grudziądzka 5, 87-100 Toruń, Poland
 www.phys.uni.torun.pl/~duch

A

of all distinct values for all features. The input values are 1 if
the feature has the value represented by this neuron and 0
otherwise.

One hidden neuron per class is created at the beginning.
The second hidden neuron per class is added, if the results
with only one neuron are not satisfactionary, and then the
whole network is re-trained or only the added neuron is
trained. If the results are still unsatisfactory then the next
hidden neuron is added. The number of hidden neurons per
class should equal the number of data simplexes. The hidden
layer performs M-of-N operation, which in most cases can be
reduced to AND operation.

There is one output neuron per class that combines the
partial rules given by hidden neurons for a given class (OR
operation). The biases and weights of output neurons are
constant (bias = ±0.5 each weight = ±1).

The network diagram is shown in Fig.1. Each value of a
discrete feature (FD1.value1, FD2.value2) is given to a
different input neuron. Continuous features (FC1) are
discretized by logical units (L-units), as described in [1] and
signals from L-units are given to the input neurons.

Only weights and biases of the hidden neurons are
optimized. The weights can take integer values (only –1, 0, 1 if
the transfer functions are step). The biases can take an integer
−0.5 values (−0.5, 0.5, 1.5, 2.5,…., number_of_features+0.5).

At the beginning of the training all hidden neurons weights
have the value of zero and biases of 0.5, so no data is assigned
to any class. The value of 1 is added or subtracted from a
single weight and bias. If the MSE error decreases then the
change is kept, otherwise it is rejected. Then the value of 1 is
added or subtracted from the next weight and again the error is
calculated, until the change of all weights and biases in the
hidden layer is examined. In some cases changing only one
parameter at a time may not be sufficient for the algorithm to
converge. Then modifying two or more parameters at a time
can be used, though it is more time consuming.

The error can be calculated on the whole training set or, to
speed up the operation, on a randomly chosen (different each
time the error is calculated) subset of the training set. The
signal of each output neuron should be 1 if the vector belongs
to the class represented by this neuron, and 0 otherwise. We
consider a vector to be classified correctly if the signal of the
output neuron assigned to its class is higher than any other
output neuron signal.

III. RULE EXTRACTION AND FEATURE DISCRETIZATION

In general the hidden neurons give M-of-N rules (if M

assumptions out of N are satisfied then the condition is true). If
the sum of all inputs of a hidden neuron exceeds its bias a
logical rule in the hidden layer is generated. In practice, after
the training, biases often take the value equal to the sum of the
incoming weights minus 0.5. Thus all N assumptions must be
satisfied and M-of-N operations are reduced to AND
operations. The output layer performs OR operation,
combining rule conditions into final rules. This gives very
plain and comprehensive rules. If a presence of a given value

contributes to a given class, the hidden neuron weight will be
positive. If the absence - then negative. If the value is
irrelevant to this class then the weight is zero.

There are two objectives while discretizing continuous
data: to have a few discrete values, to obtain a simple networks
and simple rules, and to have enough discrete values for
accurate rules and a reliable classification. Two discretization
models are presented.

A. Prior to Training Discretization Based on Histogram
Analysis

Initially each continuous feature space is divided into n
equal width or equal frequency intervals (n = 10 is sufficient in
most cases). Then each interval is assigned to the class to
which the majority of its vectors belongs. Then adjacent
intervals assigned to the same class are joined. If points from
different classes overlap in many segments then that feature
does not provide us with any information and is eliminated.
This simplifies the rules significantly and does not influence
classification accuracy.

This is the simplest and the quickest discretization method.
It is tried as first and only if the results are inadequate it is
followed by L-unit based discretization. More advanced
discretization techniques may also be used, but so far have not
been attempted [3].

C. Run-time L-unit Based Discretization
This discretization has been used in MLP2LN networks

[1]. It is performed using a combination of three neurons,
called L-unit, with frozen weights but adaptable biases. Since
discretization and learning are done in the same network,
results depend on the whole training set, not just on the single
feature being discretized.

The initial interval boundaries obtained from some prior-
to-training discretizations may be tuned using search
techniques. An interval cut-off point in the most significant
feature is shifted and the training is performed. If the error
decreases then the shift was in a proper direction, otherwise in
the wrong direction. The procedure may be repeated with each
interval boundary point for all features. Features that are
useless for discrimination of a given class are automatically
removed.

IV. TRAINING METHODS AND THEIR INFLUENCE ON THE
RULES

First the training algorithm changes one weight at a time.
If this does not work - then two weights are changed at a time.
Changing more than three parameters is rather costly. We have
also tested and successfully applied update of many parameters
using genetic algorithms, which becomes more effective if
changing many parameters at a time is required, but we do not
report this here. However, for the real-world data sets
changing two parameters at a time is usually sufficient.

In changing n parameters at a time, the order in which the
weights are examined plays a role. It is an undesirable effect,

because the extracted rules depend on the training process in
an unforeseen way. This problem is solved using feature
selection based on the information included either in the
single feature, or in the single feature value. The algorithm
assesses the amount of information contained within a single
feature (or a singe value), or jointly in two or more features
(or values not necessarily within the same feature).

Searching first through values of a single feature is
advantageous because it usually leads to the simplest and
most comprehensive rules. Since this approach is not
universal (e.g. it does not solve the XOR problem) also search
through the feature values of vectors from one class can be
performed. These searches usually produce more
comprehensive rules then searching simultaneously
throughout all feature values. Best First Search (BFS) or
Beam Search (BES) search strategy may be used in all cases.

Weights of neurons that have already been trained may be
frozen, minimizing calculation time and leading frequently to
better results, since it corresponds to incremental learning,
decomposing the task into learning general rules and than
exception to these rules instead of trying to modify all rules to
fit the data.

With biases of output neurons set to +0.5 the rules are
positive - they express which conditions must be satisfied
when a vector belongs to a given class (example: class 0 if
petal-length < 3). If the biases are −0.5 then the rules are
negative - they express which conditions must not be satisfied
when a vector belongs to a given class (example: class 0 if
not 3 <petal-length < 4.9 and not petal-length > 4.9).

V. STEP VERSUS SIGMOIDAL TRANSFER FUNCTION

In most cases step transfer functions are used for logical

rule extraction. In comparison with sigmoidal functions they
produce simpler rules usually of the same, and sometimes even
higher accuracy. Step functions give only information
absolutely necessary to classify a vector. With step functions
when a vector is classified - the error already equals zero and
no additional incoming conditions can decrease it, so they do
not come into the final rule.

Sigmoidal functions give also information about other
feature values, specific to a given class but not required by the
classification process. With sigmoidal functions adding more
conditions to a rule may still decrease the MSE error, since the
output signal is less than 1 and always can be increased.
Moreover the number of additional conditions of the rule may
be regulated by the required output accuracy, assuming that
output values above some threshold are considered as 1.

On the Iris data trained with one feature only step transfer
functions give:
Class 0 if petal-length < 3
Rules obtained with sigmoidal transfer functions have two
conditions:
Class 0 if petal-length < 3 and not 3 < petal-length < 4.9

VI. WINDOW MECHANISM AND FUZZY RULES

The window function can be realized by three neural nodes
(perceptrons), as shown in Fig. 1. Neurons Nl and Nu have
step transfer functions, their output signal can take value –1 or
1. Ni has a linear transfer function. No has step transfer
function with possible outputs 0 and 1. The original
continuous signal is given to the Ni input. The discrete output
signal from No is passed to the corresponding input neuron of
an SMLP network. Weights and biases have the following
values: Nl.weight = 1, Nu.weight = 1, Nl.bias = lower limit of
the input signal, Nu.bias = upper limit of the input signal,

No.weight(Nl) = 1, No.weight(Nu) = −1, No.bias = 1.5.
No.signal = 1 only if Ni.bias < input signal < Nu.bias. If the
input signal should be bounded only from one side then
Nl.output or a Nu.output is given to the input layer neuron.

Fig. 2 shows a two-dimensional projection of the
Appendicitis data. Some areas can be assigned only to one
class. Other areas contain points that can be assigned to two
classes. Fuzzy rules can describe points in areas where crisp
rules overlap. The value of the membership function of such a
point can be proportional either to the probability density for a
given class in this area, or to the distance from that point to the
decision border.

VII. EXAMPLES OF RULES EXTRACTED FROM SOME
BENCHMARK DATA SETS

We include some examples of rules extracted from UCI
databases using the SMLP network using 10-fold
crossvalidation.

The rule set for Iris data (150 samples, 50 of class 0, 50 of
class 1 and 50 of class 2). Rules were obtained with one
hidden neuron per class, changing one parameter at a time,
with prior to training discretization based on histogram
analysis. Accuracy of the rules below is 96.0%

Class 0 if petal-length < 3.0
Class 1 if 3.0 < petal-length < 4.9 ∧ 0.9 < petal-width < 1.7
Class 2 if 4.9 < petal-length ∨ 1.7 < petal-width

Rule sets for Appendicitis data (small medical data set, 106
samples, 21 of class 0 and 85 of class 1) were also obtained
with 1 hidden neuron per class. Changing one or two
parameters at a time with prior to training discretization based
on histogram analysis followed by run-time L-unit based
discretization to adjust precisely interval cut-off points gave:

Rule 1: class 0 if mnea<6700 ∧ mbap<11 else class 1 (91.5%)
Rule 2: class 0 if hnea<5600 else class 1 (89.6%)
Rule 3: class 0 if mnea<6700 else class 1 (89.6%)
Rule 4: class 0 if (hnea<5600 ∧ mnea<6700)
 class 1 if (hnea>5600 ∧ mnea>6700)
 P(class 0) = P(class 1)=0.5 if (hnea<5600 xor
 mnea<6700) (89.2%)

Although the total accuracy of Rule 4 is in this case slightly
lower than that of Rule 2 and 3, it probably better describes the
properties of this set, providing more information about the
structure of data, as can be seen in Fig. 2.

Fig. 2. Appendicitis data with decision borders, projection
into two features

Rule sets for Ljubljana Breast Cancer data (medical data set:
286 samples, 202 of class 0, 84 of class 1) were obtained with
3 hidden neurons per class, changing 2 parameters at a time.
The original data set has already discrete values, dividing
continuous values into 9 bins for age, 13 bins for the number
of nodes involved and 3 for the degree of malignancy.

Class 0 if (involved nodes ∉ (0,2) ∧ degree malignant = 3
and tumor size = 45-49 ∧ age ∉ 10-19) ∨
(involved nodes = (9-11) ∧ age ∉ (40-49)) or (tumor size ∈
(35-39) ∧ age ∈ (30-39)) else Class 1

These rules have already overfitted the data, accounting for
accidental correlations rather then important factors. The best
methods reduce the error from 29.7% (default) by a few
percent. In this case a simpler solution is required [1], the rules
clearly expose a problem with the reliability of this data.

Table 1. 10-fold cross-validation results for Appendicitis and
Ljubljana Breast Cancer data

Method Accuracy (%)
for Appendicitis
data

Accuracy (%)
for Breast Cancer
data

SMLP 89.6 78.3
C-MLP2LN [4] 89.6 78.0
MLP +BP [4] 83.9 71.5
CART [5] 84.9 77.3
C4.5 [5] 84.9 76.9
Bayes Rule [2] 83.0 75.9
FSM [4] 84.9 71.6

AQ15 [6] - 73.5
Default 80.2 70.3

VIII. CONCLUSIONS
A neural network approach to classification and rule

extraction, called SMLP was proposed. The model combines
the advantages of MLP neural networks with the possibility of
extracting simple rules in a comprehensive way. The training
model is much simpler than gradient-based algorithms. Due to
the perceptron properties, the rules given by hidden neurons
are in the M-of-N form. Since the prepositional form of logical
rules is usually preferred, M-of-N rules are reduced to AND +
OR operations if possible.

As the experiments showed, the accuracy of results on the
popular benchmark data sets is comparable with the best
results obtained from other methods, while the network and
rules are simpler and the training process is quicker. It cannot
be said that the only criterion of the rule quality is the
classification accuracy either using crossvalidation or a
separate test set. Sometimes rules which are simpler, or which
reflect data structure better, may be preferred, although their
accuracy is lower. It is possible to obtain several sets of rules
by the modification of network parameters and training
process. A set of SMLP networks can be built to give users the
possibility of choosing rules that are most suitable for their
purpose.

Although many issues require further investigation this
search-based approach has some potential that seems to be
largely unexplored.

REFERENCES
[1] Duch W, Adamczak R, Grąbczewski K. (2001): A new methodology of

extraction, optimization and application of crisp and fuzzy logical rules,
IEEE Transactions on Neural Networks 12, 277-306

[2] Duch W, Adamczak R, Grąbczewski K. (1999): Searching for optimal
MLP. 4th Conf. on Neural Networks and their Applications, Zakopane,
Poland, pp. 65-70

[3] Hussain F, Liu H, Tan C.L, Dash M. (1999): Discretization: an enabling
technique. Technical Report TRC6/99, School of Computing, National
University of Singapore.

[4] Adamczak R. (2001): Application of neural networks to classificaiton of
experimental data, PhD Thesis (in Polish), Nicholaus Copernicus
University, Torun.

[5] Weiss S.M, Kapouleas I. (1990): An empirical comparition of pasttern
recognition, neural nets and machine learning classification methods, In:
J.W. Shavlik and T.G. Detterisch, Readings in Machine Learning,
Morgan Kauffmann Publ, CA.

[6] Michalski R.S, Mozitec I, Hong J, Lavrac N. (1986): The Multipurpose
Incremental Learning System AQ15 and its Testing Application to
Three Medical Domains. In: Proc 5th Intern. Conf. on AI, pp.1041-1045,
Philadelphia, PA: Morgan Kauffmann

