
  

  
Abstract—An application of numerical gradient (NG) to training 
of MLP networks is presented. Several versions of the algorithm 
and the influence of various parameters on the training process 
are discussed. Optimization of network parameters based on 
global search with numerical gradient is presented. Examples of 
two-dimensional projection of the error surface are shown and 
the influence of various numerical gradient parameters on the 
error surface is presented. The speed and accuracy of this method 
is compared with the search-based MLP training algorithm. 
 

Index Terms—Neural Networks, Numerical Gradient 
 
 

I. INTRODUCTION 

 
umerical Gradient (NG) in its basic form is a local gradi-
ent-based search method. In contradiction to training al-
gorithms, which use analytical gradient [1], it does not 

require the knowledge of transfer functions and connection 
structures among neurons. Moreover transfer functions do not 
have to be differentiable. Another advantage of NG is the pos-
sibility of an easy visualization of the error surface and exam-
ining the influence of various parameters on it. 

A good initialization of network parameters followed by a 
gradient optimization may be the quickest method to find an 
optimal neural network solution [2]. Good initialization can be 
achieved by a global version of NG, exploring parameter 
changes that lead to better, but sometimes also to worse solu-
tions, using 'educated guesses' to find better start for the local 
search than multistart with random weight values. 

Three variants of local training algorithms are described in 
the next section, using discrete, continuous and mixed NG. A 
version of NG that performs global search first, and then local 
search around the most promising points, is described in the 
third section. Influence of the training parameters on the error 
surface is considered in the fourth section, followed by the 
comparison with search-based training.  

 
 

II. TRAINING ALGORITHM 
The weights and biases of the hidden and output layer neu-

rons should be optimized. The supervised learning starts with 
random initial weights. The initial weights cannot be all equal 
(e.g. all zero), because all weights of hidden neuron will than 
take the same value. The error function (e.g. MSE) is calcu-
lated either on the whole training set, or on a randomly chosen 
part of it.  

The training algorithm consists of two stages: finding the 
gradient direction and finding the minimal error along this 
direction. Instead of analytical formulas used in the back-
propagation gradient-based methods, all network parameters 
are perturbed to find the gradient direction.  
 

A.  Finding the Gradient Direction 
To find the gradient direction for each network parameter w 

a constant value ∆w is added to it and an error E[w+∆w] cal-
culated. If it decreases, then the component of the gradient 
direction V[w] is calculated as:  

 
V[w] = η [(E[w]−E[w+∆w]) / E[w]]n 

 
The same value ∆w is subtracted from the weight w and E[w-
∆w] calculated. If it decreases more then it decreased previ-
ously, then the gradient component should be: 

 
V[w] = − η [(E[w]−E[w-∆w]) / E[w]]n 

 
If changing the weight does not change the error than V[w] = 
0. The values V[w] are proportional to the error decrease as a 
result of the perturbation with ∆w. The proportions are ad-
justed by the exponent n (n > 0). Usually n = 1 gives the best 
results, but in some cases larger exponents may be beneficent. 
 

B.    Finding the Minimum along the Gradient Direction 
Making one step ∆w along the gradient direction V moves 

from the starting point D = ∆w||V|| units, where  
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Since the starting point of the next iteration is in the minimum 
of the previous iteration, D is also the distance between two 
successive starting points. The bigger ||V|| is the faster an error 
changes when moving along the gradient direction (the error 
surface is steeper). Some examples of the influence of ∆w on 
the training and the error surface are given later.  

In the Discrete NG the update is made on one unit ∆w in the 
direction of V. The minimum region is found only roughly, but 
quickly. If ∆w is not too big, the method is quite efficient. If 
∆w is very big, then it can be used as a global search. ∆w can 
also decrease, changing slowly from global to local search.  

In the Continuous and Mixed NG better approximations are 
used to find the minimum more precisely (e.g. parabolic ap-
proximation). Sample plots of the error surface along the gra-
dient direction are presented in section 4. 

In our experiments the number of training cycles was linearly 
related to the precision of finding the minimum along the gra-
dient direction. For example, increasing the accuracy of find-
ing the minimum by 10% decreases the number of cycles 
needed to train the network also by 10%. 
 

    C.    Three versions of NG. 

Discrete NG. At the beginning ∆w = 1/slope. After calculat-
ing all V[w] each weight is changed by ∆w·V[w], moving to 
the next iteration. The minimum along the gradient direction is 
not searched for. This is repeated until the error decreases. 
Then ∆w = ∆w/2 is taken, and the process continues.  

 
Continuous NG. In this case the gradient (or derivative) 

definition is used: 
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Since ∆w  0, a small value of ∆w = 0.001/slope is taken and 
is constant during the training. After finding the gradient direc-
tion the minimum along this direction is searched for. From 
this minimum the algorithm is repeated.  
 

Mixed NG. In the first iteration ∆w=0.1/slope. In all next it-
erations ∆w is half of the distance D from the previous itera-
tion starting point to the previous iteration minimum. This is a 
modification of continuous NG made to speed up the training. 
 

III. LOCAL AND GLOBAL SEARCH 
 

Gradient methods perform local search. We have expanded 
NG search method to allow also for a global search. First the 
weight space is searched through using a discrete NG with a 
large step ∆w and a large step along the gradient line (large 
||V||). The erratic error behavior during such search is shown in 
Fig. 1, using small (106 samples) medical data sets (acute ap-
pendicitis data, [4]).  

In the next step a local NG search with small ∆w is used 
around the most promising points, to localize precisely the 
minimum along the gradient direction.  

 
 

 
Fig. 1. An example of the MSE error changes during the first 
40 training cycles of the global search (appendicitis data)  
 

 

 
Fig. 2. MSE error changes in deterministic simulated anneal-
ing search (appendicitis data)  
 

Another possibility is to decrease ∆w and ||V|| gradually. 
This methods starts from a global search, and gradually tran-
sits to a local search. It resembles simulated annealing [3], but 
is fully deterministic. No random numbers are used except for 
generating initial weights. An example of error changes during 
this search is shown in Fig. 2 for the appendicitis data [4]. 
Convergence is much smoother comparing with Fig. 1, and a 
solution with lower MSE has been found than using the previ-
ous method of local search with random start.  

 



  

IV.  TRAINING PARAMETERS AND ERROR SURFACE 
 
 The convergence speed depends on four factors: distribution 
of the initial weights, ∆w and on the type of NG method and 
additional modifications of the method.  
 

 
Fig. 3. ∆w < optimal ∆w in continuous or mixed NG; errors 
along the gradient direction for 6 training cycles. Horizontal 
axis (h): distance in the gradient direction from the starting 
point (h=0) for each training cycle. Vertical axis (E): relative 
MSE (MSE=1 when the training starts) (breast cancer data)  

 

 
Fig. 4. Global search with big ∆w, initialization in broad 
range. If global search is not required then local search with 
optimal ∆w usually finds the solution quicker. The error sur-
face with global search is much more irregular (breast cancer 
data) 
 

While using local discrete NG, for small ∆w (about 0.1 for 
breast cancer data, [4], another small two-class medical data, 
with 286 samples) smooth error surface is obtained, but the 
convergence on the training set is slow. For larger ∆w a more 
irregular error surface is found with a tendency to have multi-
ple local minima along the gradient direction. If many local 

minima exist along the line then simple one-dimensional 
minimization methods based on parabolic approximation may 
not be sufficient. With too big ∆w (more then 1.5 for breast 
cancer data) the training is no longer convergent. There exists 
an optimal ∆w (about 0.4 for breast cancer data), but finding it 
may require some trials. In a continuous or mixed NG the 
shape of an error surface is very similar for 0.001< ∆w <opti-
mal ∆w. The calculated gradient direction depends on ∆w. The 
training is quicker if ∆w = optimal ∆w, as used in the mixed 
NG or is close to optimal ∆w but smaller. The error in h=0 
(starting point) for each curve is the same as the minimum of 
the previous curve. This is shown in Fig. 3. The curves in Fig. 
3 are similar to those discrete NG with optimal ∆w (not shown 
here, because of limited space), and a well-chosen ∆w in a 
discrete NG can replace finding the minimum along the gradi-
ent direction. The mixed NG tries to find ∆w close to the op-
timal value. 
 

V. METHOD IMPROVEMENTS 
 

We have tested and successfully applied several methods to 
speed up the training.  

1.  Dividing the training set into several randomly chosen    
parts and performing training on a different part in each cycle. 
This can speed up the training several times for small and tens 
of times for large datasets. 

2.  Using the following form of momentum: 
∆w=(1+momentum)*V[w]+momentum*previousV[w] 

The optimal momentum can range from 0.5 for small to 0.1 for 
large datasets. Using momentum can stabilize and speed up the 
training a few times. 
 
 

 
Fig. 5. Comparison of MSE error and classification accuracy 
for the same dataset. Horizontal axis: calculation time. 
1,2 – error and accuracy for standard mixed NG 
3,4 – error and accuracy for improved mixed NG using mo-
mentum and dividing the training set into 10 randomly parts 
and choosing a different part each training cycle  



  

3.  Boundary vectors. Afret some initial cycles only vectors, 
which produce greater error and therefore are supposed to be 
situated closer to class boundaries are selected for further 
training. This method is especially useful for large, and not too 
noisy data, where only a small subset of vectors is selected for 
further training. In such a case the speed-up may be quite high. 

4. Freezing weights. Weights that change less than min_dW 
two or three consecutive cycles are considered to be either 
irrelevant or to have already reached their optimal values. 
These weights are not examined in the next cycles. If after the 
training they are equal to their random values before the train-
ing, then such weights are set to zero. The speed up is small 
for datasets with few features and may reach few times for 
datasets with many features, since in this case many of them 
can be irrelevant for classification. 

 

VI. EXPERIMENTAL RESULTS AND COMPARISON WITH SMLP 
ALGORITHM 

 
The search-based MLP training (SMLP) used in our previ-

ous paper [5] can also be applied to a typical MLP network. 
The search method changes one or two weights at a time by 
+∆w or –∆w. If the error decreases then new weight value is  
accepted and a step in its direction is immediately made. Each 
weight is changed by the same ∆w. Global search can be real-
ized by Beam Search or multistart techniques.  

In NG the step is made only once per training cycle, when 
all the changes of single weight are already calculated. Each 
weight is changed by a different value ∆w proportional to the 
error change in its direction. If we use the discrete version of 
NG and allow the algorithm to go to points with not only 
lower, but also higher error values then previously, then two 
version of a global search can be used: global and then local 
search starting from the most promising points, and determi-
nistic NG simulated annealing. 
 
Tab.1. Experimental results. The classification accuracy in 10-
fold crossvalidation (in brackets accuracy on training set) 

standard NG improved NG dataset  
(number  
of vectors) 

epochs 
needed accuracy epochs 

needed accuracy 

mushroom (8124) 24724 0.996 309 0.996
ionosphere (351) 8638 0.93(0.98) 203 0.91(0.92)
sonar (208) 14230 0.80(0.995) 554 0.80(0.99)
iris (150) 1990 0.96(0.98) 258 0.96(0.98)
breast (699) 425 0.97(0.98) 70 0.97(0.98)
 

By “epoch” we mean calculating an error once on all vec-
tors, by “training cycle” running the algorithm once. 

Our experiments on several data sets from UCI repository 
showed that for small databases the search method and NG 
require similar computational effort and produce similar re-
sults. For big and noisy datasets the search method is quicker 
and finds solutions with better accuracy on the training set, but 
the solutions found with NG have better generalization and 
therefore have higher accuracy on test sets. If the data is com-

plex and require global minimizations then NG global search 
method is often quicker than multistart or beam search with the 
search method. Both methods can use discrete values and do 
not require either the knowledge of connection structure or 
differentiable transfer functions.  

Table 1 contains some results for NG using 10-fold cross-
validation with mixed NG and double parabolic approximation 
for finding minimum along the gradient direction. The im-
proved NG uses the best combinations found of speed im-
provement methods. 
 

VII. CONCLUSIONS 
 

 Numerical calculation of gradients is especially suitable for 
hardware implementations. Weight perturbation method has 
been used by Koosh [6] in VLSI implementation of neural 
models to learn logical functions AND and XOR.  

In contrast to training algorithms, which use analytical gra-
dients, NG does not require the knowledge of transfer func-
tions and can be applied to optimization of any black-box pa-
rameters, as long as responses to perturbations of these pa-
rameters are calculated. This makes it a very universal ap-
proach with a possible wide range of applications. It is also 
very easy to implement. Its shortage, common to all gradient 
methods, is the possibility of finding only a local minimum. 
This can be overcome with the global versions of NG: global 
and then local NG search and deterministic NG simulated an-
nealing. Many variants of search methods remain to be ex-
plored, but the initial results reported here are promising. De-
tailed comparison with analytical gradient-based training 
methods will be done soon.  
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