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Abstract. Feature selection is an essential component in all data mining applications. Rank-
ing of futures was made by several inexpensive methods based on information theory. Accu-
racy of neural, similarity based and decision tree classifiers calculated with reduced number
of features. Comparison with computationally more expensive feature elimination methods
was made.

1 Introduction

Recent data mining applications in bioinformatics, chemistry and commercial do-
mains are very challenging. In case of bioinformatics a very large (∼ 10 4 − 105))
number of features are associated with activity of genes (up to 30.000 in humans and
even more in some plants), while properties of proteins may be described by more
than 100.000 features. All these features may be important for some problems, but
for a given task only a small subset of these features is relevant. In commercial ap-
plications the situation is similar. Therefore computationally inexpensive methods
of filtering features are urgently needed.

Methods of feature selection may be divided into three broad categories. Meth-
ods that require evaluation of each potentially useful subset of features by a clas-
sifier, called “wrapper methods” [5]. This name is also used for a large class of
methods for parameter adaptation. Wrapper methods treat computational intelli-
gence (CI) algorithms as black boxes with some parameters to be determined on
the basis of test runs. Finding subsets of features is equivalent to assigning binary
weights to inputs. The problem is NP-complete since the number of all subsets 2 N

grows exponentially with the number of features N. Second group of feature selec-
tion methods is based on specific properties of CI methods. Neural networks allow
to compute gradients in respect to internal parameters, allowing for feature selec-
tion methods based on regularization techniques that may be more efficient than the
blind wrapper approach. The third group of methods is based on evaluation of indi-
vidual features in respect to the task performed, or filtering features that potentially
carry useful information, independently from the final CI method used.

Correlation coefficients and other methods for evaluation of the usefulness of
features are usually variants of information-theoretical approaches. Computational



complexity of this approach may be much lower than in the case of wrapper ap-
proach, depending on the degree to which interaction among features is taken into
account. Several filter methods based on information theory are compared here with
k-nearest neighbor (kNN) wrapper method. Two question we attempt to answer are:
are filters competitive to computationally more demanding wrapper methods, and
are all filters equally good for all methods? CI systems that have been selected in-
clude neural network, decision tree and kNN method. First a few information theory
filters are described and then results of experimental simulations presented.

2 Filters and wrappers

The simplest wrapper approach based on successive elimination (or addition) of
features, leaving those features that lead to highest accuracy, is quite effective [1].
It is equivalent to the best-first search, requiring N(N − 1)/2 evaluations using CI
algorithm on the training set. Obvious variants of the simplest approach include
evaluation of results by crossvalidation, and using beam search to avoid local min-
ima.

Ranking methods based on information theory filters evaluate single features,
neglecting possible interactions. Setiono [4] has used the concept of normalized
information gains G

′
i for feature fi. These information gains can be calculated in the

following way. First, information contained in the whole training set is:

I(S) = −
K

∑
j=1

p(Cj) log2 p(Cj) (1)

where p(Cj)= n j/n is the fraction of samples X from class C j , j = 1..K. Continuous
features are discretized to compute information associated with a single feature. Let
nik be the number of samples for which features f i takes a value inside the interval
rk ( fi) and nik j be the number of such samples X for which X ∈ C j. Information
contained in the subset Sik of samples with fi in the interval rk ( fi) is:

I (Sik) = −
K

∑
j=1

pik j log2 pik j; pik j = nik j/nik (2)

Summing (or integrating) I (Sik) over all M intervals information Ei contained in
all subsets of feature fi is computed; this information may also be computed directly

Ei =
M

∑
k=1

pikI (Sik) ; Ii = −
M

∑
k=1

pik log2 pik; pik =
nik

n
(3)

Information gain and normalized information gain is

Gi = I (S)−Ei; G
′
i = Gi/Ii (4)

A feature is more important if its normalized information gain is larger. This
method, referred to as “info gain” or IG, treats all features as independent.



Another method, based on mutual information, includes possible interactions
between features has been proposed by Battiti [2] and is called BA in the rest of the
paper. Let p(rk ( f )) = p( f ∈ rk ( f )) be the probability of finding samples with fea-
ture f in the interval rk ( f ). Mutual information between two features f ,s is defined
as:

I( f ,s) =
N

∑
k=1

N

∑
j=1

p(rk( f )∧ r j(s)) · log2
p(rk( f )∧ r j(s))

·p(r j (s)) p(rk ( f ))
(5)

The mutual information between feature f and the set of classes is:

I(C, f ) =
K

∑
i=1

M

∑
k=1

p(Ci ∧ rk ( f )) · log2
p(Ci ∧ rk ( f ))

p(Ci) · p(rk ( f ))
(6)

where r1 ( f ) ,r2 ( f ) , . . . ,rN ( f ) is a partition of the range of f values into equal in-
tervals and p(Ci ∧ rk( f )) is the probability that vector X from class Ci has feature
f in the interval rk. The sum runs over all these intervals and all the classes. The
recommended number of intervals is usually between 16 and 32 [2]. M = 24 was
used in our experiments, but results may differ significantly for small numbers of
intervals. The algorithm for finding the best subset of k features goes as follows:

1. Set F to the whole set of N features and set S to an empty set.
2. Compute the mutual information I(C, f ) for every feature f ∈ F and the set of

classes C = {C1, . . .CK}.
3. Find the feature f that maximizes I(C, f ). Move f from the set F to the set in

S, S = S∩ f ,F = F − f .
4. Repeat the following until set S will have k features:

(a) Compute the mutual information F( f ,s) between features f ∈ F and s ∈ S.
(b) Choose g as the feature that maximizes I(C, f )−β ∑s∈S I( f ,s), where β is

a parameter in the interval [0.5,1] (as recommended in [2]).
(c) Move g from F to S.

Small values stress the importance of high mutual information between the fea-
ture and set of classes; large values stress more the mutual information with the
features already included in the set S.

Pruning decision trees allows to rank features, with the most important features
near the root of the tree, and the least important pruned first. In particular the Sep-
arability Split Value (SSV) criterion [7] selects features that give the largest gain in
separability test, hence it may be used for feature ranking.

3 Numerical experiments

Two datasets were used in numerical experiments: hepatobiliary disorders and hy-
pothyroid problems (these datasets are described in [6]). Feature ranking was deter-
mined on the training set using the IG (4), BA for 6 β values (6) and SSV algorithms.



Using these rankings the kNN [1], the IncNet neural network [3], the Feature Space
Mapping (FSM) neurofuzzy system [8], and the K* classification method [9] were
used to calculate accuracy on the test set, adding consecutively the most important
features in a given ranking to the pool of features used. Since results for different β
values do not differ significantly accuracy curves have been ploted only for β = 0.5.

The hepatobiliary disorders dataset contains 4 classes, 9 continuous and one
binary feature. 373 cases were used for training and feature selection, 163 cases as
the test data. This dataset is noisy, has strongly overlapping classes and is rather
difficult to classify [6]. The kNN ranking (Table 3) has been done by dropping
features [1] on standardized data with k=1, and Minkowski distance function with
exp = 0.6, optimized for all features. Some differences in ranking are found, but
feature 3 and 4 are in all rankings among the most important while features 8 and 9
are the least significant.

Method Most – Least Important
IG 3 1 8 4 6 7 5 2 9
SSV best-first 3 7 4 5 1 2 6 8 9
BA β = 0.5−0.6 4 3 7 1 5 2 9 8 6
BA β = 0.7 4 3 7 1 2 9 5 8 6
BA β = 0.8−1.0 4 3 1 7 2 9 5 8 6

SBL Ranking 1 4 6 7 5 8 9 2 3

Table 1. Results of feature ranking on the heapatobiliary disorders data; see description in
text.
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Fig. 1. Left figure: feature selection using normalized information gains; right figure: SBL
ranking, Minkowski exp = 0.6, k = 1.

The same approach was used for the hypothyroid dataset (see description in
[6]). A total of 3772 cases are used for training (results from one year) and 3428
cases for testing (results from the next year). There are 3 classes but one dominates,
with almost 93% of cases. The IG and the SSV with best first search, both compu-



tationally the least expensive methods, have correctly identified the most important
features. Interaction of features included in BA has missed important features 18-
20, treating them as least important. This has degraded results of all classification
methods completely (Fig. 2).

Method Most – Least Important
Info gain 17 21 19 18 3 7 13 10 8 15 6 16 5 4 20 12 1 2 11 9 14
SSV best-first 17 21 3 19 18 8 1 20 12 13 15 16 14 11 10 9 7 6 5 3 2
Info interacting β = 0.5 21 17 13 7 15 12 9 5 8 4 6 16 10 14 2 11 3 18 1 20 19
Info interacting β = 0.7−0.8 21 17 13 15 5 12 9 14 8 4 6 16 7 10 2 11 3 18 1 20 19
Info interacting β = 1.0 21 17 15 13 5 12 9 14 4 8 6 16 7 10 2 11 3 1 20 18 19

SBL Ranking 17 3 19 8 21 20 18 10 15 13 7 16 9 4 11 5 12 14 6 1 2

Table 2. Results of feature ranking on the hypothyroid dataset; see description in text.
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Fig. 2. Hypothyroid data set. Left figure: normalized information gains; right figure: SBL
ranking, Canberra, k = 4.

4 Conclusions

Several conclusions may be drawn from our study (many results could not be pre-
sented in the limited space of this article). Accuracy obtained on wrapper ranking
has not been higher than accuracy that may be achieved with filters; in Table 2 fea-
tures 21 has been placed at the end by the wrapper approach, leading to a serious
degradation of performance. Inexpensive filter methods based on information theory
may reduce the feature space quite effectively, selecting most important features,
but they have several problems. Results may strongly depend on discretization of
continuous features and calculation of probabilities. Methods that treat each feature
separately are computationally most efficient, but sometimes leave redundant fea-
tures. Methods that take feature interaction into account are slower, but in principle



should allow to select smaller subsets of important features. Unfortunately (see Fig.
2) such methods may rank low important features since their mutual information
with those already selected is high. In multiclass problems, especially with classes
that have small percentage of the total number of vectors, feature selection for dis-
crimination of a single class against the rest may give quite different results.

Decision trees allow for independent feature ranking as well as hierarchical
ranking including interactions with previous features. This type of methods seem
to be competitive with filters based on information theory. After analysis of IG and
BA failures we have proposed a new feature selection method that includes feature
interaction using a consistency index (in preparation).

Evaluation of the quality of a classifier using overall accuracy only is not suffi-
cient. Much more information is derived from the Receiver Operating Curves [9].
It may also be easier to aggregate (for example by linear combination) several fea-
tures rather than select them. This is the next step, going beyond feature selection
methods. Dependence on the choice of the number of intervals for calculation of
information may partially be removed if Gaussian overlapping windows are used
instead of intervals.

Acknowledgments: Support by the Polish Committee for Scientific Research, grant
8 T11C 006 19, is gratefully acknowledged.

References
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