
Transformation Distances, Strings and Identification
of DNA Promoters.

Maciej Marczak1, Włodzisław Duch2, Karol Grudzínski2, and Antoine Naud2

1 Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
2 Department of Informatics, Nicholas Copernicus University, Grudzi ˛adzka 5, 87-100

Toruń, Poland. www.phys.uni.torun.pl/kmk

Abstract. Computational intelligence methods usually work in vector spaces and are not
able to deal with objects that have complex structures. Methods based on similarity may be
applied in structural domains. Similarity may be defined by minimal cost needed to transform
one object into another. The costs of the substitution operations that such transformation is
composed from may be treated as adaptive parameters. For strings this leads to a generaliza-
tion of edit (Levenshtein) distance. This distance is computed using dynamic programming
method and applied to the problem of identifying DNA gene promoter sequences.

1 Introduction

Neural networks and other computational intelligence (CI) methods assume very
simple vector space paradigm for representation of knowledge. Artificial intelli-
gence (AI) deals with symbolic representation of knowledge that usually cannot
be represented in such way. In effect AI and CI became widely separated, with AI
community focusing on modeling of complex knowledge and inductive symbolic
machine learning approaches, and CI community focusing on pattern recognition
problems. Both approaches are insufficient in many situations and a new learning
paradigm is needed [1]. Complex systems, such as commercial organizations, chem-
ical molecules or molecular biology objects (DNA sequences, genes, proteins) can-
not be easily accommodated in AI or CI knowledge representation frameworks.

A general framework for processing of structural data, based on recurrent neu-
ral networks and hidden Markov models, has been introduced [2], but it is rather
difficult to implement and use. The two most common knowledge representation
schemes in AI are based on the state or the problem description [3]. The goal is also
a state or a simple problem that has known solution. A set of operators is defined,
transforming the initial object (state, problem), into the final object (goal). Each op-
erator has some costs associated with its use. Solutions are represented by paths in
the search graph. The best solution has lowest costs of transforming the initial object
into the final object.

This seems to be a very good model for CI methods applied to complex objects.
It is used in this paper for DNA sequences, but the method is quite general and may
be applied to arbitrary complex objects, as long as transformation operators and as-
sociated costs may be defined. Evaluation of similarities between objects should be
done efficiently, therefore we have developed a method based on dynamic program-
ming [4]. Members of the same class (cluster) should have high internal similarity,

while those from different classes (clusters) should differ significantly. This may be
achieved by adapting costs of operations that are performed on objects. Experimen-
tal results for the identification of promoter sites in DNA strings are given in the
third section. A short discussion closes this paper.

2 Transformation distances

Comparison of two objects is done using similarity or equivalently distance mea-
sures. A set of operators should be given, with associated costs of using each oper-
ator. In case of strings such operators are substitutions of single letters or substrings
by other substrings, including an empty substring (representing deletion). In case
of numerical values shift operators may change one value into another at the cost
proportional to the numerical difference between the values. The set of operators
should be complete, i.e. for every pair of objects a transformation that changes one
of the objects into another should exist.

A transformationT is defined by a finite sequence of operatorsT = ∏i Ω̂i.
TransformationT Oi always creates a single objectO j , but for every pair of objects
Oi andO j many transformations connecting these objects (i.e. changing one object
into the other) may exist. The cost of the transformationW (T) is a sum of the
costs of all the operationsW (T) = ∑iW (Ω̂i). These costs will be called below the
operation (or substitution) weights.

The edit distance of two stringsS1 andS2 , is defined as the minimum num-
ber of single-letter insertions, deletions and substitutions required to transformS 1

into S2. Each of these operations has its own weight. Efficient sequential and par-
allel algorithms for computing the edit distance between two strings exist, based
on the idea of dynamic programming. A distanceD(O i,O j) between a pair of ob-
jectsOi,O j is equal to the minimum weight of all transformations connecting these
objects. At first sight calculation of such distances may look like an NP-complete
problem. One of us has proved [4] that it is equivalent to the generalization of the
edit distance (Levenshtein distance). An efficient algorithm based on dynamic pro-
gramming was found to calculate these distances, with the complexity of the order
of O(|Oi|× |O j|), where|Oi| is the length of the objectOi, i.e. it distance from an
empty object.

A String Transformation System (STS) is a triple(O,S,W), where:
O – a set of objects, which are finite sequences of features
S – a set of elementary substitutions, which are finite pairs of sequences of features
W – a normalized weight function, assigning to all substitutions weights.

Normalization means that the sum of weights for all elementary substitutions
is equal to one. This condition may be replaced by fixing the value of one, fre-
quently used substitution. String Transformation Systems may be treated as a special
case of the general Transformation Systems described in [1,5]. Sets of substitutions,
each with its own weight, create multi-letter substitutions, e.g.(abdc,cg), (a,atccg),
(daac, /0), where/0 is a null string. In this case the edit distances are computed using
the dynamic programming [6].

3 Classification of complex objects

The ability to calculate distances or similarities between complex objects allows to
use the powerful similarity-based approaches for calculation of classification prob-
abilities [7]. Consider a two-class problem with a set ofC+ training cases from the
first class andC− training cases from the second class. For all objects belonging
to these sets the distance matrixDW (Oi,O j) is computed. This matrix depends on
the set of weights{Wi} assigned to the elementary substitutionsΩ i. Classification
probabilitiesp(Ci|X;W) depend on the distances, therefore they also depend on the
choice of substitutes and their weights. In supervised learning these weights are
optimized using the error function:

E(W) = ∑
X

∑
i

(p(Ci|X;W)−Pi(X))2 (1)

wherePi(X) is the true probability of assigning the vectorX to the classCi, known
for the training set vectors. This error function should be minimized in respect to pa-
rametersW and all other parameters and procedures used to calculate thep(C i|X;W)
probability [7]. In an ideal case distances between all objects in theC+ class should
be zero, and the same for the distances insideC− class. A set of weights and sub-
stitutions that achieve this explains the class structure, but for real life data this
situation will rarely be possible.

The disadvantage of error function minimization is the need to recalculate all
lowest-cost distances. Below a computationally less expensive approach is followed.
Objects will be represented in vector spaces reflecting their structural relations.
Some minimal transformations connect only one pair of objects, while some may
connect many. Among all transformations with minimal cost for every pair of ob-
jectsOi andO j those that connect the largest subset are called Primary Transforma-
tions (PTs). They represent the most probable hypothesis or the most useful trans-
formations.

For every objectO two vectors defining its relations with all objects from its
own class and from all other classes are created:

V+(O) =
[
v+

1 , ...,v+
n

]
,V−(O) =

[
v−1 , ...,v−n

]
, (2)

wherev+
i (similarly v−i) is the number ofSi substitutes (i = 1. . .n) in the primary

transformations that connect this object with all others in theC+ set. These vectors
provide structural representation of object relations. This representation depends on
the choice of the elementary substitution setS and the choice of weightsW . For
the string objects a simple set of letter substitutions (identity substitutionss ↔ s
plus symbol removal/additions ↔ θ substitutions) and constant weights lead to
quite good results. Thus forn symbols objects are represented by two vectors in
the 3n-dimensional space. In this space the difference of the two vectorsX(O) =
V+(O)−V−(O) may be used with the linear discriminiation to define a separating
hyperplaneWR:

Oi ∈C+ ⇔ X(Oi) ·WR > 0; Oi ∈C− ⇔ X(Oi) ·WR < 0 (3)

for all Oi objects in the training set. Once theX(O) vectors are defined any method
of classification may be used, in particular linear discrimination or a Support Vector
Machine approach. Of course there is no guarantee that this representation will lead
to a separable problem.

4 Experiments with promoters

A site on a DNA string to which RNA polymerase will bind and initiate transcrip-
tion is called a promoter. These sites contain signals that are used to regulate gene
expression.Escherichia coli is a well-known bacterium with 4.6 million bases in
its genome. A small number (106) of short DNA subsequences (57 nucleotides)
have been identified, exactly half of them containing the promoter signals. The task
is to distinguish between these sequences. The data contains strings of the type ...
tttatatttttcgcttgtcaggccg ... The data is available from the UCI repository [8].

Since 4 letters, a, c, t, g are present in the string a naive way to change them
into numerical values is to replace them by 1, 2, 3 ,4. In the STS approach struc-
tural representation of strings described above is defined in 12-dimensional space (4
symbols, 3 transformations: identity ands ↔ θ. For example, the value of the first
feature for objectO is equal to the number ofa ↔ a substitutions in the primary
transformation connecting this object to all others from theC+ class. Classification
procedures applied directly to promoter data work in 57-dimensional space.

STS results were compared with the results of the nearest neighbor methods with
various distance functions and optimization ofk, the number of neighbors taken
into account during classification. Using the leave-one-out method with k=1 and
Euclidean distance (the most common k-NN variant) gives only 70.8% correct an-
swers. Optimization ofk indicates best solution fork = 18,19, increasing accuracy
to 84.0%. Other distance function improve results significantly, with the best re-
sults obtained using probabilistic, data dependent Value Difference Metric [7] that
was computed separately for the 105 training vectors in each partition of the leave-
one-out procedure, and applied to the one test vector. Optimizingk allows to reach
91.5% of accuracy with this method.

Table 1. Classification results for the promoters data with different distance functions.

Method Leave-one-out accuracy %No. of errors
ID3 [9] 82.1 19
Euclides, k=19 84,0 17
Manhatan, k=19 85,9 15
Canberra, k=33 87,7 13
STS, k=1 90,6 10
Value Difference Metric, k=7 91,5 9
MLP [9] 92.5 8
STS, k=9 94,3 6

Fig. 1. MDS representation of the original (Euclidean) DNA string distances (top-left) and 3
representations of the same data shown using transformation distances with different costs of
substitutions. Promoter instances are marked as+, remaining as−.

Turning to the STS approach, the simplest set of substitutions with equal costs
leads to the distance matrix that has been used in the kNN procedure, giving in
the leave-one-out test 90,6% accuracy for k=1. Several methods for adjusting costs
of substitutions were tried, resulting with results reaching 94.3% accuracy in the
kNN leave-one-out procedure (corresponding to about 6 errors). Similar results are
achieved with linear discrimination usingV + −V− matrix. Table 1 contains com-
parison of results obtained on this dataset. Towellet. al [9] report that adding do-
main knowledge and refining it with the neural network they obtained 4 errors only.
Knowledge-based support vector machine has been used on this data recently, mak-
ing 5 errors [10]. We have not used any additional information to improve the results.

Multidimensional scaling technique allows to visualize relations between data
objects [11]. In our case original space has 57 dimensions. Ideal transformation
distance should lead to two well separated small clusters. Clusterization is positively
correlated with the accuracy of classification. Several examples of the effects of
transformation distances with different substitution costs are shown in Fig.1. In all

cases configuration obtained from the principal component analysis was taken for
the start of the MDS procedure. Transformation distances improve the clusterization
of sequences taken from promoter and the non-promoter DNA quite clearly.

5 Conclusions

Although the research reported here is still in the preliminary stage it offers a rel-
atively easy extension of computational intelligence methods to complex domains
where problems cannot be easily represented in the vector space as a set of a fixed
number of features. Our preliminary results are very encouraging and it is obvious
that many methods may be used in connection with the transformation distances.
Full optimization of costs of all operations may become difficult, requiring global
optimization, therefore methods should be thought in which efficient gradient tech-
niques are applicable. Numerous extensions and applications of the approach de-
scribed here are planned in the near future.

Acknowledgments: Support by the Polish Committee for Scientific Research, grant
8 T11C 006 19, is gratefully acknowledged.

References

1. Goldfarb, L, Golubitsky O. (2001) What is a structural measurement process? Faculty of
Computer Science, U.N.B., Technical Report TR01-147

2. Frasconi P, Gori M, Sperduti A. (1998) A General Framework for Adaptive Processing
of Data Structures. IEEE Transactions on Neural Networks9, 768-786

3. Rich E, Knight K. (1991) Artificial Intelligence. 2nd ed, McGraw-HillInc, New York.
4. Marczak, M. (2001) Zastosowanie uogólnienia odległości Levenshteina w systemie

transformacji symbolicznych. Analiza Systemowa w Finansach i Zarz ˛adzaniu, Wybrane
problemy, Vol.3, IBS PAN Warszawa

5. Goldfarb, L. Nigam, S. (1994) The unified learning paradigm: A foundation for AI. In:
V.Honovar, L.Uhr, Eds. Artificial Intelligence and Neural Networks: Steps Toward Prin-
cipled Integration. Academic Press, Boston

6. Gusfield D. (1997) Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge Univ Press, Cambridge, UK

7. Duch, W. (2000) Similarity base methods: a general framework for classification, ap-
proximation and association. Control and Cybernetics29, 937-968

8. Blake, C.L, Merz, C.J. (1998). UCI Repository of machine learning databases
http://www.ics.uci.edu/ mlearn/MLRepository.html. Irvine, CA: University of Califor-
nia, Department of Information and Computer Science.

9. Towell, G, Shavlik, J, Noordewier, M. (1990) Refinement of Approximate Domain The-
ories by Knowledge-Based Artificial Neural Networks. In: Proc. 8th National Conf. on
Artificial Intelligence (AAAI-90), Boston, MA, p. 861-866

10. Fung, G, Mangsarian, O.L, Shavlik, J, (2001) Knowledge-BasedSupport VectorMa-
chineClassifiers. Data Mining Institute Technical Report 01-09, Univ. of Wisconsin,
2001

11. Naud A. (2001) Neural and statistical methods for the visualization of multidimensional
data. PhD Thesis, Dept. of Informatics, N. Copernicus University
http://www.phys.uni.torun.pl/kmk/publications.html

