
Competent Undemocratic Committees.

Włodzisław Duch, Łukasz Itert, and Karol Grudziński

Department of Informatics, Nicholas Copernicus University,
Grudziądzka 5, 87-100 Toruń, Poland. http://www.phys.uni.torun.pl/kmk

Abstract. Committees of models are frequently employed to improve accuracy and decrease
the variance of individual models. Each model has an equal right to vote (democratic proce-
dure), despite obvious differences in model competence in different regions of the feature
space. Adding competence factors to different models before calculation of the committee
decision (undemocratic procedure) improves the quality of the committee. A method for cre-
ation of a committee of competent models is described and empirical tests presented.

1 Introduction

Combining information from different classifiers is an important and quite popular
subject in machine learning. Whole conferences and special issues of journals are
devoted to this subject (see references in [1]), know as ensemble learning, mixture
of experts, voting classification algorithms, or committees of models [2]. Ortega,
Koppel and Argamon [1] point out that there are problems, such as predicting the
glucose levels of diabetic patients, that a large number of different learning algo-
rithms have been applied.

Mixture of models may not only improve the accuracy of a single model, but also
may decrease the variance, stabilizing and improving generalization of the whole
system [3]. Two sources contribute to the variability of models created for use in a
committee: different samples taken from the same data, for example in crossvalida-
tion training or in such methods as boosting, bagging or arcing [2,3] and different
bias of models due to the change of their complexity, such as the number of neurons
or other parameters. Recently we have developed a framework for similarity based
methods (SBM) [4] and used some methods that belong to this framework to create
voting committees [5], obtaining significant improvements of results and decrease
of variance of committee errors.

Typical voting techniques follow the democratic majority decision, linear com-
bination or selecting the most confident models. In the mixture of experts neural
architecture Jacobs [6] has introduced a gating network to select the most compe-
tent model. Very recently Ortega et al [1] used similar idea, a “referee meta-model”
deciding which model should contribute to the final decision. These undemocratic
procedures exploit the fact that different models may have different areas of com-
petence. The idea of competent voting was also mentioned in [7] but has not been
developed further. Global selection of competent models has recently been intro-
duced [8]. Instead of training a meta-model each area of the input space in which a
given model makes a number of errors is identified and a penalty factor is used to
decrease the influence of this model during the voting.

In the next section methods for model combination are briefly discussed and
algorithms for creating committees of competent models are described. In the third
section results of a numerical experiment are presented. Finally some conclusions
and plans for further work are given.

2 Combining models.

Individual models are frequently unstable [3], i.e. quite different models are cre-
ated as a result of repeated training (if learning algorithms are stochastic) or if the
training set is slightly perturbed [9]. The mixture of models allows to approximate
complicated probability distributions quite accurately. With l = 1..m models pro-
viding estimation of probabilities P(Ci|X;Ml) for i = 1..K classes, one can use the
majority voting, average results of all models, select one model that has highest con-
fidence (i.e. gives the largest probability), set a threshold to select a subset of models
with highest confidence and use majority voting for these models.

An empirical comparison of voting algorithms, including bagging and boosting,
has been published by Bauer and Kohavi [10]. Tests were made using decision trees
and naive Bayes method. The bagging algorithm uses classifiers trained on boot-
strap samples, created by randomly drawing a fixed number of training data vectors
from the pool which always contains all training vectors (i.e. drawing does not re-
move them from the pool). Results are aggregated by voting. AdaBoost (Adaptive
Boosting) creates a sequence of training sets and determines weights of the training
instances, with higher weights for those that are incorrectly classified. The arcing
method uses a simplified procedure for weighting of the training vectors. Bauer and
Kohavi [10] provided an interesting decomposition of bias and variance compo-
nents of errors for these algorithms. Renormalized product of different predictors
has been advocated recently by Hinton [11] in context of unsupervised probability
density estimation.

A linear meta-model

p(Ci|X;M) =
m

∑
l=1

Wi,lP(Ci|X;Ml) (1)

provides additional mK linear parameters for model combination, determined using
the standard Least Mean Squares (LMS) procedure.

3 Committees of Competent Models (CCM)

So far all models selected to the ensemble were allowed to vote on the final re-
sult. Krogh and Vedelsby [12] showed that ensemble generalization error is small
if highly accurate classifiers disagreeing with each other are used. Contrary to this
idea Xin Yao has used averaging of results with negative correlation between indi-
vidual models to diversify their pool [13]. Each model does not need to be accurate
for all data, but should account well for a different (overlapping) subset of data.

The Similarity Based Models [4] use reference vectors (selected from a training
set) and it is relatively easy to determine the areas of the input space where a given
model is competent (makes a few errors) and where it fails. Vectors that cannot
be correctly classified show up as errors that all model make, but some vectors
that are erroneously classified by one model may be correctly handled by another.
This information may be used in several ways. A simple algorithm that includes
information on the competence of different models is presented below.

1. Optimize parameters for all models Ml , l = 1 . . .m on the training set using a
cross-validation procedure.

2. For each model l = 1 . . .m
(a) for all training vectors Ri generate predicted classes Cl(Ri);
(b) if Cl(Ri) �=C(Ri), i.e. model Ml makes an error for vector Ri, determine the

area of incompetence of the model, finding the distance d i, j to the nearest
vector that Ml has correctly classified;

(c) set parameters of the incompetence factor F(||X−R i||;Ml) in such a way
that its value decreases significantly for ||X−Ri|| ≥ di, j/2.

3. The incompetence function for the model F(X;M l) is a product of factors F(||X−
Ri||;Ml) for all training vectors that have been incorrectly handled.

The incompetence function F(X;Ml) ≈ 1 in all areas where the model has
worked well and F(X;Ml) ≈ 0 near the training vectors where errors were made.
A number of functions may be used for that purpose: a Gaussian function F(||X−
Ri||;Ml) = 1−G(||X−Ri||a;σi), where a≥ 1 coefficient is used to flatten the func-
tion, a simpler F(||X−Ri||;Ml) = 1/(1+ ||X−Ri||−a) function or a sum of two
logistic functions σ(−||X−Ri||− di, j/2)+ σ(||X−Ri||− di, j/2). Since a number
of factors enters the incompetence function of the model each factor should quickly
reach 1 outside the incompetence area. This is achieved either by using large a val-
ues, high slopes of sigmoids or defining a cut-off values where a value 1 is taken.

Such committee of competent models may be used in several ways. In the vot-
ing phase nearest neighbor reference vectors should be determined and only those
classifiers that are competent should be included in the voting procedure. If no com-
petent models are found the vector given for classification is probably an outlier
and should be left as ‘rejected’ or ‘impossible to classify’. Sometimes it helps if all
such vectors are removed from the training set, but this is achieved automatically by
competent classifiers.

Even simpler way of creating competent committee is introduced if linear com-
binations are used instead of majority voting. For class Ci coefficients of linear com-
bination are determined from the least-mean square solution of:

p(Ci|X;M) =
m

∑
l=1

∑
m

Wi,lF(X;Ml)P(Ci|X;Ml) (2)

The incompetence factors simply modify probabilities F(X;Ml)P(Ci|X;Ml) that are
used to set linear equations for all training vectors X, therefore the solution is done
in the same way as before. After renormalization p(Ci|X;M)/∑ j P(Cj|X;M) give

final probability of classification. In contrast to AdaBoost and similar procedures
[2] explicit information about competence, or quality of classifier performance in
different feature space areas, is used here.

4 Numerical experiments

Numerical experiments were made on Telugu vowel data [14] containing intensities
of 3 formants, for 6 vowels. The classes overlap strongly and 871 samples are given
in the dataset. The results of different tests are collected in Table 1. Other methods
discussed in ref. [14] gave worse results.

Table 1. Comparison of results on Telugu vowel data. 2xCV means 2-fold stratified crossval-
idation test.

System Accuracy Remarks

CUC committee 88.2± 0.6% 2xCV (our calculation)

kNN 86.1± 0.6% k=3, Euclidean, 2xCV (our calculation)

MLP 84.6 % 2xCV, 10 neurons [14]

Fuzzy MLP 84.2 % 2xCV, 10 neurons [14]

Bayes Classifier 79.2 % 2xCV, [14]

Fuzzy Kohonen 73.5 % 2xCV, [14]

Since our calculations with the nearest neighbor classifier gave quite promising
results we have divided the dataset randomly into two parts and trained a committee
of kNN models on each part, treating the other part as test data. The committee
included the following models: M1 with k=10, Euclidean, M2 with k=13, Manhatan,
M3 with k=5, Euclidean and M4 with k=5 and Manhatan.

Table 2. Accuracy of 4 models for each class, in %.

Class M1 M2 M3 M4

C1 50.0 45.8 65.3 62.5
C2 88.8 91.0 87.6 89.9
C3 84.3 84.3 84.9 84.7
C4 85.4 84.8 90.1 88.1
C5 91.3 88.4 90.3 90.1
C6 90.6 92.8 90.1 90.4
Average 85.1 84.6 86.1 86.0

Accuracy of each model is given in Table 2. Although the overall accuracy may
be similar these models significantly differ in the accuracy for different classes. If

one could select the best model for a given class, for example model 3 for class 1,
accuracy would grow to 87.9%, but of course the class cannot be selected, it should
be predicted. 86 vectors were assigned to their classes incorrectly by all 4 models,
giving a chance to account correctly for the remaining 785 vectors, or 90.1 % of all
vectors.

The Table 3 contains results obtained from 4 types of committees, created by
majority voting, selecting the model with highest confidence, linear combination
(1) and a linear combination with competence factors (2). Results obtained with
committees are usually better than results of a single model, with majority voting is
the worst, the highest confidence and linear combination on the same level (slightly
better) and a significant improvement for the linear combination of competent mod-
els.

Table 3. Results from committees created in 4 ways: by majority voting, highest confidence,
linear combination and a linear combination with competence factors.

Class Majority Confidence Combination + Competence
C1 54.2 58.3 62.5 65.3
C2 88.8 88.8 88.8 89.9
C3 84.3 84.9 84.3 84.9
C4 86.8 88.1 88.1 88.1
C5 92.3 92.8 92.3 93.8
C6 90.6 92.2 91.7 93.3
Average 85.9 87.0 87.0 88.2

5 Conclusions

Although more empirical tests are needed, assigning incompetence factors in vari-
ous voting procedures, including linear combination of models, is an attractive idea
that may significantly improve analysis of difficult problems. Since there is no need
to create a single model that handles all data correctly learning may become modu-
lar, with each model specializing in different subproblems. A constructive approach
to committee growth may be used: after creating initial committee by combining
competent models created so far new models should be searched that classify cor-
rectly just those vectors, that the committee has still problems with.

Ideas presented here may be developed in a number of directions. So far we
have tried to aggregate only a few models generated with different parameters. The
same procedure may be applied to models generated using adaptive boosting or sim-
ilar algorithms [2]. An interesting possibility is to train a neural network, providing
input vectors and predicting competent models. A combination of classifiers gives
Receiver Operator Characteristic (ROC) curves that cover a convex combination of
all individual ROC curves, allowing to reach better operating points, i.e. detection

rates for a given false alarm rate [17]. Models that end up with small effective co-
efficients for all training data may be pruned. Diversification of models by adding
explicit negative correlation is also worth considering [13]. A lot of other options
remains to be investigated.

Acknowledgments: Support by the Polish Committee for Scientific Research, grant
8 T11C 006 19, is gratefully acknowledged.

References

1. Ortega J, Koppel M, Argamon S. (2001) Arbitrating Among Competing Classifiers Using
Learned Referees. Knowledge and Information Systems 3, 470-490

2. Bauer E, Kohavi R. (1999) An empirical comparison of voting classification algorithms:
bagging, boosting and variants. Machine learning 36, 105-142

3. Breiman, L. (1998): Bias-Variance, regularization, instability and stabilization. In:
Bishop, C. (Ed.) Neural Networks and Machine Learning. Springer, Berlin, Heidelberg,
New York

4. Duch W. (2000) Similarity based methods: a general framework for classification, ap-
proximation and association, Control and Cybernetics 29, 937-968

5. Duch W, Grudziński K. (2001) Ensembles of Similarity-Based Models. Inteligent In-
formation Systems 2001, Advances in Soft Computing, Physica Verlag (Springer), pp.
75-85

6. Jacobs R. A. (1997) Bias/Variance Analyses of Mixtures-of-Experts Architectures. Neu-
ral Computation 9, 369-383

7. Duch W, Adamczak R, Diercksen G.H.F. (2000) Classification, Association and Pattern
Completion using Neural Similarity Based Methods. Applied Mathematics and Com-
puter Science 10, 101-120

8. Giacinto G, Roli F. Dynamic Classifier Selection Based on Multiple Classifier Behaviour.
Pattern Recognition, 34 (2001) 179-181

9. Avnimelech R, Intrator N. (1999) Boosted Mixture of Experts: An Ensemble Learning
Scheme. Neural Computation 11, 483-497

10. Bauer E, Kohavi R. (1999) An empirical comparison of voting classification algorithms:
Bagging, Boosting and variants. Machine Learning 36, 105-139

11. Hinton, G. (2000): Training products of experts by minimizing contrastive divergence.
Gatsby Computational Neuroscience Unit Technical Report 2000-004

12. Krogh A, Vedelsby J. (1995) Neural Network Ensembles, Cross Validation, and Active
Learning. Advances in Neural Information Processing Systems, MIT Press, 7, 231–238.

13. Yao, X., Liu, Y. (1997): A New Evolutionary System for Evolving Artificial Neural Net-
works. IEEE Transaction on Neural Networks 8, 694–713

14. Pal, S.K. and Mitra S. (1999) Neuro-Fuzzy Pattern Recognition. J. Wiley, New York
15. Duch W, Adamczak R, Grabczewski K, A new methodology of extraction, optimization

and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks
12 (2001) 277-306

16. D. Michie, D.J. Spiegelhalter and C.C. Taylor, “Machine learning, neural and statistical
classification". Elis Horwood, London 1994

17. Swets J.A. (1988) Measuring the accuracy of diagnostic systems. Science 240, 1285-93

