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Abstract.

Logical rules are not the only way to understand the structure of
data. Prototype-based rules evaluate similarity to a small set of
prototypes using optimized similarity measures. Such rules include
crisp and fuzzy logic rules as special cases and are natural way of
categorization from psychological point of view. An elimination
procedure selecting good prototypes from a training set has been
described. Illustrative applications on several datasets show that
a few prototypes may indeed explain the data structure.

Introduction.

Knowledge discovery using neural and other computational
intelligence methods is a fast-growing field [1], essential for
the data mining applications. The field has concentrated
on discovering logical description of the data. Some form
of explanation of the data structure, or even better, theory-
building, is always desired. Knowledge discovery became
almost synonymous with extraction of logical rules from
data. Sets of rules, if sufficiently simple and accurate, pro-
vide a very powerful explanation of the data. Crisp logical
rules are the simplest and therefore most desirable for initial
analysis. Fuzzy rules are natural extension of the crisp rules,
increasing their expressive power. Finding the simplest log-
ical description of data is not an easy task. It is worthwhile
to look first for crisp rules and if they are insufficient for
fuzzy rules. Recently we have developed several methods
of logical rule extraction and analyzed many datasets, pro-
viding in most cases the simplest logical descriptions found
so far [2]. However, extraction of logical rules is not the
only, and sometimes not the best, way to understand the
data.

What constitutes a satisfactory explanation differs from
field to field and should be a matter of cognitive psychol-
ogy studies. Understanding or explanation of the data may
be achieved either by visualization, logical rule induction

or by case-based reasoning. Visualization, called also an
exploratory data analysis, is often used in medicine and in
many fields of science. For example, weather maps result-
ing from computer simulations allow to understand mete-
orological data for large areas of the world in much better
ways than any logical rules. Medical images allow to see
changes in the parameters describing the body tissue, but
these images have to be interpreted. It is doubtful that hu-
mans use prepositional logic in this process. Interpretations
of images, learning the structure of irregular languages, un-
derstanding decisions of lawyers in the British legal system
requires case-based rather than rule-based reasoning.

Even if logical rules may seem appropriate the complexity
of the set of rules extracted from the data may be high and
real understanding of the data using logical rules may not be
possible. Fuzzy rules rarely offer significantly less complex
description since the decision borders they offer are also
relatively simple. Rules referring to prototypes may be a
useful alternative in many cases. Selecting the best person
for a job requires identification of a “supermen” that may
serve as a prototype of a successful candidate. In artificial
intelligence case-based reasoning has prominent place and
it is well understood that rule-based system are not always
the best solution.

Although a lot of effort has been devoted to understanding
fuzzy rules prototype-based rules seem to be a new con-
cept. In computational intelligence thek-nearest neighbor
method uses a reference set of known cases but these cases
are too numerous to be useful as a set of rules. In the
next section we shall introduce such rules, consider their
different form and relation to fuzzy logic rules. In the third
section some methods for generating prototype-based rules
are described, and the fourth section shows that such rules
can provide useful explanation of data in cases when logical
rules seem to fail. A short discussion concludes this paper.



Types of rules

Logical rules of several types have been introduced in fuzzy
logic [3]. One way to introduce them is by defining predi-
cate functionsPi(O j) for objectsO j that are evaluated. In
crisp logic these predicate functions may simply check if
the object has some property, for example if an attribute has
some valueA = ak or if the value belongs to some inter-
val. In fuzzy logic predicates are replaced by membership
functions, determining the degree to which an objectO j

has propertyPi. Such membership functions may automat-
ically be created by an iterative procedure in which rules
are derived with some initial membership functions, the
accuracy of rules is maximized by changing the parameters
of the membership functions and the process repeated until
convergence. This is done using special “linguistic units”
(L-units) in an MLP (multilayer perceptron) network [4]
or with an analysis of the nodes created by the Feature
Space Mapping (FSM), a constructive neurofuzzy system
[5] based on separable transfer functions.

A set of predicate functions applied to the objectO gives
a feature vectorX = {P1(O), ..PN(O)}. Crisp logical rules
(C-rules) based on intervals of the feature values are most
comprehensible but they suffer from several drawbacks: 1)
only one class is identified as the correct one even when
data distributions strongly overlap; 2) reliable crisp rules
may not cover all feature space, leaving some vectors un-
classified; 3) optimization of the number of errors made by
the crisp rule classifiers is difficult because the cost func-
tion is discontinues. Crisp rules may be quite misleading,
being unstable against small perturbations of input values.
A small change in the value of a single feature may lead
to a complete change of the predicted class. Interpretation
without exploration of alternative diagnoses may in such
cases be rather dangerous.

Fuzzy rules (F-rules) do not have these drawbacks but they
are not so comprehensible as the crisp rules and they are
more complex, involving parameters determining positions
and shapes of the membership functions. Fuzzy rules esti-
mate probabilities of different classes but there is a tradeoff
between the fuzziness and the degree of precision. If the
membership functions are too broad all classes have similar
probability. In the opposite case perturbation of the input
vector may significantly change classification probabilities,
even if the size of the perturbation is within the range of
accuracy of the measured input values.

Although various systems differ in their approach to logical
rule discovery, their ultimate capability depends on the de-
cision borders they may provide for classification. A very
general form of prepositional classification rule is:

IF X ∈ K(i) THEN Class(X) = Ci (1)

whereCi =Class(K(i)), the same as for all vectors in this
cluster. In fuzzy logic the operator “belongs to” may have
various definitions.

Shapes of clusters used to define such general rules are arbi-
trary. Techniques for visualization of multidimensional data
may provide interactive maps allowing for understanding of
the data [6]. If visualization is not used simplifying assump-
tions regarding the shapes of clusters should be made. How
to obtain the smallest number of comprehensible rules, i.e.
what is the most appropriate bias?

There is no general answer to such question. For problems
with inherent logical structure hyperrectangular decision
borders in the feature subspaces are sufficient. Conjunctive
rules of the type:

IF
(
X1 ∈ X1∧X2 ∈ X2∧ ...XN ∈ XN

)
THEN Class= C (2)

cover the feature space separating regions from different
classes. IfXi are sets of symbolic values, discrete numerical
values, or intervals of continuous features, crisp logic rules
are obtained. Such rules are generated by many inductive
logic covering approaches, decision trees, rough sets [7]
and neural rule extraction methods. Hyperrectangular ap-
proximation may lead to a large number of rules if complex
decision borders are required.

Fuzzy rules with typical triangular or Gaussian membership
functions provide decision borders of different shape than
those of crisp rules, but still many rules may be required to
partition the feature space properly. The crisp form of log-
ical rules is obtained when rectangular membership func-
tions are used. Rectangles allow to define logical linguistic
variables for each feature by intervals or sets of nominal
values.

M-of-N rules (M out of N antecedents should be true) are
sometimes very useful, for example, in medicine “if 2 out
of 5 symptoms are present” could be a rather common rule
condition. Such rules are natural for threshold logic, but
difficult to replace by prepositional rules. Association rules
[8] discover simple relations in databases. General form of
such rules is:

IF L(X1,X2, ...Xm) THAN Xn (p%)

i.e. if some (logical) functionL(·) (usually a conjunction)
of featuresXi, i = 1..m is true featureXn appears inp per-
cent of cases. These rules have the form of prepositional
logic although they do not associate conditions with fixed
classes but rather take another attribute value as a conclu-
sion. Fuzzy form of such rules may easily be defined re-
placing the attribute values with their membership functions
and the logical function with its fuzzy generalization.
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Figure 1: Contours of constant distance forα= 1/2, 1, 2 and
7 (outer contour) exponents of Minkovsky’s distance
functions.

An alternative way to explain the data is to use a set of
prototype-based rules (P-rules):

IF P = argminP′ D(X,P′) THAN Class(X) = Class(P),

whereD(X,P) is a dissimilarity function (usually a distance
function). These rules are more general than prepositional
rules. In particular the following distance function:

D(X,P) = max
i

Wi|Xi −Pi| (3)

has rectangular contours of constant values. If the mini-
mal distance rule is used to find the nearest prototype the
decisions borders will have polyhedral shapes. Introducing
thresholdsdP rules of the form:
IF D(X,P) ≤ dP THEN C,
are equivalent to conjunctive crisp rules
IF X1 ∈ [P1−dP1/W1,P1−dP1/W1] ∧...∧ [Pk−dPk/Wk,Pk−
dPk/Wk] THEN C

In contrast to pattern recognition methods such as thek-
nearest neighbor method (k-NN), methods that use many
reference vectors, the goal here is to find a small number of
prototypes and a simple similarity functions that can give
understanding of the problem. Similarity function based on
Minkovsky’s distance is very useful:

D(X,P)α =
N

∑
i=1

Wi|Xi −Pi|α (4)

For large exponentsα contours of constant distance become
rectangular (Fig. 1).

Detailed relations of similarity functions to membership
functions and the S and T-norms in fuzzy logic remain to be
investigated. We shall only note that any T-norm, for exam-
ple a product or a minimum of the membership functions
µ(Xi − Pi) centered atPi (triangular, Gaussian and other

membership functions have additional parameters besides
the center), may always be used as a similarity function.

S(X,P) =
N

∏
i=1

µ(Xi −Pi) (5)

Similarity functionS may be related to a distance function
D by S = 1/(1+ D2). A product of Gaussian membership
function gives a multivariate Gaussian exp(−||X − P||2)
centered atP with ellipsoidal contours of constant values
||X−P|| =const, i.e. it is equivalent to similarity function
obtained from Euclidean distance function. Products of
triangular functions give hyperbolic contours. Thus fuzzy
rules may be replaced by P-rules with appropriate similar-
ity functions. The reverse does not hold; for example the
Manhattan distance function:

D(X,P) =
N

∑
i=1

|Xi −Pi| (6)

does not seem to be equivalent to any combination of mem-
bership functions and T-norms. Many other distance mea-
sures are useful [9], for example Camberra:

DCa(X,Y)
N

∑
i=1

|Xi −Yi|
|Xi +Yi|

(7)

More general form of rules is obtained if more than one pro-
totype is used in the rule condition: IF amongk most similar
prototypesPi classC is the most common thanC(X) = C.
Such classification rules allow for complex decision borders
but may seem more difficult to understand and may require
more prototypes (at leastk) per class. In approximation
problemsk-prototype rules will be more useful.

Oblique distribution of data may require linear combination,
or non-linear transformation, of input features [9]. The
meaning of rules build with such features may be difficult
to comprehend. Convex, polyhedral shapes obtained from a
union of halfspaces defined by hyperplanes also do not lead
to comprehensible rules.

Methods
Prototype-based rules may be created in many ways. Pro-
totypes are useful in forming rules that help to understand
the data if: there is a small number of prototypes, only the
essential features are used and the most effective distance
function is selected. Positions of prototypes should be op-
timized only if it makes sense, i.e. if interpretation of the
P-rules is not lost. Feature selection corresponds to binary
weights in the distance function, while discrete or contin-
uos weights may help to increase accuracy, modeling the



process of attention paid to different features during object
recognition. Different rules may be used different features
and even different similarity measures. Neural similarity-
based methods [10] or the Learning Vector Quantization
(LVQ) method [11] may be used to generate required pro-
totypes. The LVQ algorithm is constructive and should be
extended to include feature selection and selection of the
distance function.

In this paper only the simplest approach to create P-rules
is presented. It is based on the prototype selection in the
nearest neighbor method, preceded by an optimization of
distance function and selection of relevant features. Train-
ing vectors should be sequentially eliminated from the pro-
totype set until the classification accuracy drops below the
assumed target accuracy∆. Sets of prototype-based rules
with increasing accuracy/complexity may be generated tak-
ing different values of∆. The algorithm starts with the train-
ing setT and creates the setR containing good prototypes
in the following way:

1. Initialization:

(a) Set the prototype set to the entire training set,
R =T = {Ri}, i = 1..N.

(b) Perform the leave-one-out test with the nearest
neighbor method onT to find the∆1 accuracy.

(c) Set the target accuracy∆ to∆1 and set the lowest
accuracy∆m that should be considered.

(d) Define theδ parameter determining steps in
which the target accuracy∆ is lowered, for ex-
ampleδ = 0.05.

2. Main loop: until∆ < ∆m do

(a) Fori = 1 toN

(b) Select one vectorRi from R and set the tempo-
rary prototype set toR ’=R −Ri.

(c) Using the leave-one-out test and the current pro-
totype setR ’ calculate the prediction accuracy
Ac on the whole training setT .

(d) If Ac ≥ ∆ setR =R ’.

3. Closing the loop:

(a) SetAe(∆) = Ac to record the current accuracy.

(b) Set R (∆)=R to remember current prototype
vectors.

(c) Change∆ ← ∆−δ.

4. Select the set of prototypes obtained for the highest
Ae(∆).

Since∆ is set to the leave-one-out accuracy∆1 on the entire
training setT this algorithm should not degrade the results
of the nearest neighbor classifier – in the worst case it will
leave all training vectors as prototypes. The threshold value
∆ is lowered in several stepsδ, allowing for some degrada-
tion of the performance as a penalty for reduction of the pro-
totype set. Displaying the functionAe(∆) allows to select
the optimal value of∆, depending on the acceptable tradeoff
between simplicity/accuracy. The final prototype set should
be significantly smaller than the original training set with no
or with the minimal degradation of the prediction accuracy.

The∆ parameter controls the final number of P-rules. Since
the accuracy is decreased in small stepsδ important pro-
totypes that may significantly decrease the accuracy are
not removed from the prototype set. If theδ steps are
not sufficiently small instead of using cumulative accuracy
estimation for the whole selection procedure an additional
parameter specifying the allowed threshold ofAc decrease
due to the removal of a single prototype may be specified.
The selection procedure is repeated for several values of∆
to find a good compromise between classification accuracy
and the number of prototype vectors.

If the goal is to maximize performance, estimation of the
predicted accuracyAe(∆) should combine resultsAt(∆) ob-
tained for the rejected vectors, i.e those in theT –R set, and
resultsAr(∆) for the prototype vectorsR . AccuracyAr(∆)
for the prototype vectors may only be estimated using the
leave-one-out test. The goal of the prototype selection algo-
rithm is to obtain a small number of non-redundant proto-
type cases. However, if allNr prototypes are non-redundant
the accuracyAr(∆) may be quite low. Thus for sufficiently
small ∆ that corresponds to a small number of prototypes,
At(∆) estimation should be used, while for∆≈∆1 theAr(∆)
estimation is also important.

The off-line procedure requires an access to all vectors in
the training setT in the batch mode. The on-line version of
the selection method has also been developed [13].

Computational experiments

Logical rules for a number of datasets were extracted re-
cently [2]. For comparison we have analyzed some of these
dataset here.

Iris flowers data, taken from the UCI repository [14], has
been used in many previous studies. It contains 3 classes
(Iris Setosa, Virginica and Versicolor flowers), 4 attributes
(sepal and petal widths and length), 50 cases per class. The
Iris dataset is shown in Fig. 2 in two dimensions,x3 and
x4, that come from feature selection as the most important.
In Fig. 3 the reference set obtained by taking the value of
∆ = 0.96 from the leave-one-out test on the entire data and
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Figure 2: Original 150 Iris data vectors displayed using the last
two features.
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Figure 3: 6 prototype vectors for the Iris data, Euclidean distance.

running the prototype selection algorithm with Euclidean
distance functions is displayed. Only 6 prototype vectors
remained. A single Iris Setosa prototype is sufficient to
perfectly account for this class, 2 prototypes are used for the
class virginica, and 3 for the class versicolor. Testing the
system on the remaining 144 vectors 5 errors were found,
giving accuracy of 97.7%.

In the 10-fold stratified cross-validation test repeated 10
times on the Iris dataset the classical nearest neighbor clas-
sifier gives 95.8% accuracy, with 0.3% variance. In the
same test P-rules give 95.3% accuracy (an insignificant de-
crease), with variance 1.7%. On average 6.7 prototypes
were found, that is only about 4% of the training set (in 10-
fold cross-validation the number of training cases is 135).

Please note (Fig. 3) that the position of the prototypes found
by the selection algorithm does not correspond to the most
typical objects from the database. They are placed closer to
the borders, helping to distinguish cases that are difficult to
classify. Thus the selection method works in quite different
way than clusterization algorithms.

We have also tried the artificial3 Monk data [15] fre-
quently used as a benchmark in machine learning. The
Monk problems have inherent logical structure that makes
this test appropriate for rule induction methods rather than

prototype-based approaches, but it is interesting to see how
well P-rules may work here. Thek-NN method gives good
results only if feature selection and/or feature weighting is
included [12]. In all cases there are 6 symbolic features, 2
classes and 432 cases in the test set, while the number of
training cases varies in each of the problems.

For k = 1 on Monk1 (124 training cases) standardk-NN
gives only 85.9% accuracy using Euclidean distance func-
tion. After selection procedure only 10 prototypes were left
(2.3% of the entire training set), but the accuracy dropped
to 70.6%. This is shown here only to illustrate the impor-
tance of the selection of similarity measure (more detailed
discussion is in [13]). The best results were obtained with
Camberra distance measure (Eq. 7). The feature selection
left 3 correct features (head shape, body shape, jacket color)
and the leave-one-out test set the∆ target value at 98%.
This leads to 15 prototypes giving only 2 errors on the
training part (109=124-15) and 94.4% accuracy on the test
set. The symbolic nature of data is an additional difficulty
here since in 36 cases distances to nearest neighbors from
two classes have identical values. In this case additional
neighbors may be recruited to make the prediction (24 are
correctly resolved in this way). Increasing the∆ to 99.5%
adds one prototype (for a total of 16) but makes no errors on
the training part and no errors on the test set! This compares
rather favorably with the 14 logical formulae obtained from
logical rule extraction for this data [2].

For Monk-3 problem (122 training cases) standardk-NN
with Euclidean distance gives 90.1% accuracy on the test set
while selection procedure gives 85.0% accuracy using only
11 prototypes (2.5% of the training set). Using the Cam-
berra distance and performing the feature selection only 2
features have been left. The leave-one-out result on the
training set is 93% and the selection procedure left 8 pro-
totypes only. The test set results were much better, with
97.2% correct predictions. Since this problem contains 6
mislabeled vectors in the training set to simulate the effects
of noise in the data this is a very good result.

The appendicitis data contains only 106 cases, with 8 at-
tributes (results of medical tests), and 2 classes: 88 cases
with acute appendicitis (80.2%) and 18 cases with other
problems (19.8%). Very simple classification rules have
been found by Weiss and Kapouleas [16] using their PVM
(Predictive Value Maximization) approach that makes ex-
haustive search testing all possible simple rules. The leave-
one-out accuracy of their rules is 89.6%, corresponding to
only 7 correctly classified additional vectors above the ma-
jority rate. So far no classifier was better than that. The
purpose of using this data is to check if a simple descrip-
tion of such small and noisy data is possible with similar
accuracy. Automatic determination of∆ from the leave-



one-out calculations gave rather low value of 82% and led
to 4 prototype vectors only. The leave-one-out result with
these 4 prototypes is 88.7%, or just one error more than in
case of the best logical rules [2]. This result was obtained
without any feature selection and optimization of similarity
function.

Hepatobiliary disorders data [17] contain medical records
of 536 patients obtained from a university affiliated Tokyo-
based hospital, with four types of hepatobiliary disorders.
The records include results of 9 biochemical tests and sex of
the patient. The same 163 cases as in [17] were used as the
test data. For this dataset a large number of crisp logic rules
is generated [2]: with 49 rules only about 63% accuracy on
the test set was achieved. Although fuzzy rules based on
Gaussian or triangular membership functions give higher
accuracy (about 75-76%) over 100 are necessary, making
the whole set rather incomprehensible. The∆ after leave-
one-out was set at 76%. The best similarity functions was
of the Camberra type. Feature selection procedure dropped
4 features and the result on the test set was 83.4%. Unfor-
tunately 57 prototypes were selected and P-rules achieved
only 64.2% accuracy on the test set. For this data rules
in any form do not seem to work, indicating that classes
strongly overlap. The best one can do in such cases is to
identify the cases that can be reliable classified and assign
the remaining cases to pairs of classes [18]. Although this
is possible with P-rules we have not tested it yet.

Our final test was on a real medical data, themelanoma
skin cancer, collected in the Outpatient Center of Der-
matology in Rzesz´ow, Poland [19] (reviewed in details in
[20]). Each of the cases belongs to one of the four types
of Melanoma: benign, blue, suspicious, or malignant. 13
features include evaluation of asymmetry, border, color and
diversity of the skin cancer spots. A linear combination of
these features, called a TDS index, has been added as the
last feature since it is commonly used in statistical eval-
uations. The data contains 250 cases, with almost equal
distribution of all four classes; additional 26 cases have been
provided for testing.

10-fold crossvalidation calculations were performed first
on the training set, selecting Manhattan distance function
and two features, TDS and C-Blue, as the most important.
Perfect accuracy is obtained on the test set (26 cases) and
the estimation of accuracy on the whole set was similar to
the accuracy 97.4±0.3% of our SSV decision tree [2]. The
prototype selection procedure left only 13 prototype vectors
(7 for the first class and 2 for every other class) still giving
100% accuracy on the test set and 6 errors on the training
set (237=250-13vectors), corresponding to 97.5% accuracy.
Reducing the number of prototypes further to 7 leads to a
significant decrease in the training set accuracy.

Conclusions

Rule-based classifiers are useful only if rules are reliable,
accurate, stable and sufficiently simple to be understood. A
new way to understand data using prototype-based rules has
been introduced here. It seems to be a useful addition to the
traditional ways of data explanation based on crisp or fuzzy
logical rules. They may be helpful in cases when logical
rules are too complex or difficult to obtain. A small number
of prototype-based rules with specific similarity functions
associated with each prototype may provide complex de-
cision borders that are hard to approximate using logical
systems.

Experiments in cognitive psychology show that human cat-
egorization is based on exemplars and prototypes, but not on
logical rules defining natural objects in some feature spaces
[21]. In the approach presented here similarity functions
are used to model the importance of different features in
evaluating similarity between the case given and prototypes
stored. Prototype-based rules provide an easy way to un-
derstand some data. Although similarity measures provide
great flexibility in creating various decision borders this
may turn to be a disadvantage if our primary goal is to
understand the data. Optimized similarity measures may not
agree with human intuition. In such cases larger number of
prototype examples with simpler similarity measures may
be a better solution.

A number of issues requires further investigation. Extension
of the simple methods introduced in this paper to adapt
prototypes using the learning quantization techniques [11]
may be very helpful for small data. Prototypes may also
be created by supervised clusterization techniques. An in-
teresting possibility is to use the prototype-based rules to
describe exceptions in the crisp or fuzzy logic systems.
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