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Grudziądzka 5, 87-100 Torún, Poland.
E-mails: {duch,kagru}@phys.uni.torun.pl

Abstract. Ensembles of independent classifiers are usually more accurate and show smaller
variance than individual classifiers. Methods of selection of Similarity Based Models (SBM)
that should be included in an ensemble are discussed. Standardk-NN, weightedk-NN, en-
sembles of weighted models and ensembles of averaged weighted models are considered.
Ensembles of competent models are introduced. Results of numerical experiments on bench-
mark and real-world datasets are presented.

1 Introduction.

A framework for Similarity-Based Methods (SBM) covers all methods based on
computing similarity between the new case and cases in the training library [1]. The
SBM framework is very rich, it includes such well-known methods as thek–Nearest
Neighbor (k-NN) algorithm and it’s extensions, originating mainly from machine
learning and pattern recognition fields, as well as neural methods such as the popu-
lar multilayer perceptron networks (MLP) and networks based on radial–basis func-
tions (RBF). Methods of the SBM type are based on specific parameterization of the
p(Ci|X;M) posterior classification probability, where the modelM involves various
procedures, parameters and optimization methods. Instead of focusing on improv-
ing a single method a search for the best method belonging to the SBM framework
should select optimal combination of parameters and procedures for a given prob-
lem.

Similarity Based Learner (SBL) is a software system developed in our labo-
ratory that systematically implements methods belonging to the SBM framework
[2]. Methods implemented so far provide many similarity functions with different
parameters, include several methods of feature selection, methods that weight at-
tributes (based on minimization of the cost function or based on searching in the
quantized weight space), methods of selection of interesting prototypes in batch and
on-line versions, and methods implementing partial-memory of the evolving sys-
tem. Currently our research focuses on implementation of network-type realizations
of various SBM methods, weighting influence of reference vectors and speeding up
the calculations.

A single model that may be developed by combining methods and adding pa-
rameters within the SBM framework may be improved further by combining or
mixing many models. Mixture of models may not only improve the accuracy but
also decrease variance of the model, stabilizing and improving its generalization



[3]. Except for SBL several other programs have been developed in our laboratory.
All these programs are at present being integrated into a data-mining software that
should allow to create ensembles of quite different methods.

In the next section methods for model combination are briefly discussed and an
algorithm for selection of subsets of models that are included in an ensemble de-
scribed. In the third section modifications of these algorithms suitable for similarity
based learning are discussed. Results comparing stand-alone methods to ensembles
of similarity based methods are presented for a few benchmark and real-world dat-
sets. Finally some conclusions and plans for further work are given.

2 Ensembles of SBM Models

A few definitions are needed first.An algorithm, or a method, is a certain well-
defined computational procedure. For example standardk-NN, a variant of thek-NN
with optimization of weights scaling individual input features performed by search
in the weight space, and by minimization of the cost function, are three distinct
methods. Methods may have the same or different input and output parameters.A
model is an instance of a method with specific values of parameters. For exam-
ple thek–NN for k = 1 andk = 3 are two distinct models derived from the same
method.Combination, or an ensemble of models, includes a procedure of selec-
tion of a set of models and a decision procedure to compute the final classification
probability. Each of the models contributing to the combination should be trained
on cases drawn from the same training set. Ensembles may involve models obtained
from the same method (in this case adaptive parameters are optimized independently
in every model) or from several different methods. Bagged models [3] are created
by optimizing models of the same type on different subsets of the training set. Fi-
nally a task or a scheme is a sequence of one or more models which are added in
succession to the ensemble.

In this paper two types of the base classifiers are used: the standardk-NN models
and weightedk-NN models. Weightedk-NN uses distance functions:

D(X,Y)α =
n

∑
i=1

si|Xi −Yi|α (1)

parameterized by theα exponent (for Euclidean distancesα = 2 is taken) and by the
scaling factorssi that weight the importance of each attribute. These scaling factors
are determined by minimization of the number of errors the classifier makes [4].
A multisimplex method or an adaptive simulated annealing minimization [5,6] has
been used for this purpose. To reduce the number of numerical experiments only
α = 1 or 2 is considered here and only the results obtained with the simplex method
are reported. Since classification results do not change if all attributes are rescaled
by the same factor onlyn−1 attributes should be scaled. Fixing the most important
attribute should lead to optimized values of the scaling factorss i ≤ 1.



2.1 Combining models.

Individual models are frequently unstable [3], i.e. quite different models are created
as a result of repeated training (if learning algorithms are stochastic) or if the training
set is slightly perturbed. The mixture of models allows to approximate complicated
probability distributions quite accurately.

With l = 1..K models providing estimation of probabilitiesP(Ci|X;Ml) an ad-
ditive combination

p(Ci|X;M) =
K

∑
l=1

WlP(Ci|X;Ml) (2)

provides additionalK linear parameters for model combination, determined using
the standard Least Mean Squares (LMS) procedure. Majority voting is quite fre-
quently used as a decision rule to combine results of multiple models. An empirical
comparison of voting algorithms, including bagging and boosting, has been pub-
lished by Bauer and Kohavi [7]. Tests were made using decision trees and naive
Bayes method. The bagging algorithm uses classifiers trained on bootstrap samples,
created by randomly drawing a fixed number of training data vectors from the pool
which always contains all training vectors (i.e. drawing does not remove them from
the pool). Results are aggregated by voting. AdaBoost (Adaptive Boosting) creates
a sequence of training sets and determines weights of the training instances, with
higher weights for those that are incorrectly classified. The arcing method uses a
simplified procedure for weighting of the training vectors. Bauer and Kohavi [7]
provided an interesting decomposition of bias and variance components of errors
for these algorithms.

Renormalized product of different predictors has been advocated recently by
Hinton [8] in context of unsupervised probability density estimation. Each individ-
ual model may have rather high variance but the product leads to a sharper proba-
bility distribution. Feature weighting or feature selection for different models may
constrain different dimensions of the feature space and the product distribution will
constrain all features. Each model may specialize in different aspect of the problem
and thus instead of trying to generate and make an ensemble of the best models one
should diversify them. Unfortunately the best diversification strongly depends on
the type of problem analyzed. Renormalized product

p(Ci|X;M) = ∏K
l=1 P(Ci|X;Ml)

∑C
i=1∏K

l=1 P(Ci|X;Ml)
(3)

may be optimized over all parameters of individual models by minimizing the log
likelihood on the training data. Hinton’s contrastive divergence approach requires
minimization of the Kullback-Leibler (K-L) divergence between the data distribu-
tion and the Gibbs sampling equilibrium distribution minus the K-L divergence be-
tween the “one-step reconstruction" of Gibbs sampling and its equilibrium distribu-
tion. Computationally this procedure is very demanding. The product formula may
be used for model aggregation without optimization if minimal probability is set to
a small, non-zero value.

A novel approach to combination of models is presented below.



2.2 Ensembles of Competent Models (ECM)

So far all models selected to the ensemble were allowed to vote on the final result.
Krogh and Vedelsby [9] showed that ensemble generalization error is small if highly
accurate classifiers disagreeing with each other are used. The SBM models use pro-
totypes and it is relatively easy to determine the areas of the input space in which a
given model is highly competent (makes a few errors) and in which it fails. A simple
algorithm that includes some information on the competence of different models is
presented below.

Parameters of a given modelMl , l = 1. . .K are optimized on a train set using
leave-one-out or cross-validation procedure. Then for each reference caseR i used
in one of the SBM models – the case belonging to the true classC(R i) – a list of
predicted classesCj(Ri) for all j = 1. . .m models is made. A competence vector
K j(Ri) = δ(C(Ri),Cj(Ri)) for the area aroundRi is created. In the decision phase
nearest neighbor reference vectors are determined and only those classifiers that
have been competent for all vectors are included in the voting procedure. If no com-
petent models are found the vector given for classification is probably an outlier and
should be left as ‘rejected’ or ‘impossible to classify’.

A more sophisticated way of creating competent ensembles may be introduced if
linear combinations are used instead of majority voting. Coefficients of linear com-
bination should depend on the distance between the vectorX and those reference
vectorsRl,k of the feature space where modelMl is competent.

P(Ci|X;M) =
K

∑
l=1

∑
m

WlD(X,Rl,m)P(Ci|X;Ml) (4)

should be a good choice, whereD(X,R l,m) functions estimate the competence of
modelMl around the reference vectorsR l,m. After renormalizationp(Ci|X;M) =
P(Ci|X;M)/∑ j P(Cj|X;M) gives final probability of classification. Since the prob-
lem is linear inWl least mean squares optimization is sufficient to find the best
parameters in this case. In contrast to AdaBoost and similar procedures explicit in-
formation about competence, or quality of classifier performance in different feature
space areas, is used here.

2.3 Selection of k-NN models.

In the case of the standardk-NN, the classifier is used with different values ofk on
a training partition using leave-one-out algorithm and applied to the test partition.
The predicted class is computed on the majority basis. To increase the classification
accuracy one may first optimizek,(k1 ≤ k ≤ k2) and selectm ≤ k2− k1 best classi-
fiers for an ensemble model. In the case of weightedk-NN eitherk is optimized first
and then best models created optimizing all weights, or best models are selected
after optimization for a number ofk values (a more accurate, but costly procedure).

Selecting a subset of best models that should be included in an ensemble is not
an easy task since the number of possibilities grows combinatorially and obviously
not all subsets may be checked. A variant of the best-first search (BFS) algorithm



has been used for this selection. We have already used the BFS technique for the
optimization of weights and for selection of the best attributes [10,11]. BFS algo-
rithm can be used for majority voting of models derived from weighted-NN method
based on minimization, or based on standardk-NN with differentk, or for selection
of an optimal sequence of any models.

The evaluation functionC(Ml) returns the classification accuracy on a validation
set; this accuracy refers to a single model or to an ensemble of models selected so
far. LetN denote the initial number of models from which selection is made andK
the number of models that should be selected. The selection algorithm proceeds as
follows:

1. Initialize:

(a) Create a pool ofN models,M = {Ml}, l = 1. . .N.
(b) Create an empty set for selected modelsF = /0.
(c) Evaluate all models on the validation set, arrange them in a decreasing order

C(Mi) ≥C(Mj) for i > j.
(d) Select the best model from theM pool and move it to theF pool.

2. Repeat forL = 2. . .K:

(a) Forl = 1. . .N −L modelsMl remaining in the poolM evaluate ensemble
C(F ∩Ml) using majority voting.

(b) Select theMl model with highest performance and move it to theF pool.

At each stepN − L sequences consisting ofL models are evaluated. IfK =
N all models are incorporated into a sequence and this algorithm does not differ
from the standard ‘majority voting’ procedure. Frequently the gain in performance
may not justify additional complexity of adding a new model to the final pool and
new models will be created and evaluated. This algorithm finds a pool of models
corresponding to the highest classification accuracy on validation partition. In case
of k-NN calculations may be done on the training partition in the leave-one-out
mode instead of the validation partition.

Although the selection algorithm described above is more computationally ex-
pensive than the standard ‘majority voter’ it has a better chance to work better if
a smaller subset of models is selected from a larger pool. Since the SBM scheme
allows to add many parameters and procedures new models may also be created
on demand if adding models created so far does not improve results. The model
optimization (here minimization of thek-NN weights) is performedN times at the
initialization stage on validation data. Re-optimization of models in the pool may
be desirable but it would increase the computational costs significantly, therefore all
model parameters are fixed after the initialization step.

2.4 Stablization of the weighted models

Maximization of the performanceC(M) using the simplex or simulated annealing
methods may give quite different sets{si} of the attribute weighting parameters



leading to similar accuracy. In effect the variance of results obtained with weighted
k-NN methods may be rather high. The stability of standardk-NN model [3] is lost.

Perhaps the simplest way to decrease the variance is based on averaging the
weights for a fewk-NN models created on the same data. Weightss i scaling the
components of distance function are obtained by maximization of the number of
correct answers using the simplex or multisimplex methods [5]. These methods are
stochastic, finding different sets of suboptimal parameters. In principle we could use
simulated annealing or search for the best simplex solution obtained from multiple
runs, reducing the variance to zero. In such case we would use bootstrap methods
to generate different models for the ensemble. Since our goal in these numerical
experiments is to investigate the influence of averaging and compare it to majority
voted ensembles we have not used yet the sampling techniques to introduce more
variability into our models. We have also not used yet the ensembles of competent
methods.

Numerical experiments described in the next section include results of 4 meth-
ods: single weightedk-NN models (designatedWM), models obtained by averaging
weights for several WM models (designatedA-WM), ensembles of weighted mod-
els (E-WM), and ensembles of weighted models with averaged weights (AE-WM).
Performance of these methods depends on the number of models included in the
ensemble and the number of models used for weight averaging.

3 Numerical experiments

To test some of the ideas presented above we have made a series of calculations
using the well-known benchmark datasets taken from UCI repository [12] and real-
world medical datasets. The WM symbol designates the single simplex minimiza-
tion routine model. The A5-WM symbol designates a model that has been obtained
from 5 weightedk-NN models (WM) independently optimized (differences come
only from the stochastic properties of the simplex optimization procedure). The fi-
nal weights are obtained by averaging over all 5 models. An ensemble of 5 weighted
models is called E5-WM, and an ensemble of 10 weighted models, each obtained by
averaging weights over 5 models, is called A5E10-WM. In all cases simplexes have
been initialized randomly with weights ranging from 0 to 10 except for the iono-
sphere calculations where weights have been taken from the (0,1) range. A single
weight corresponding to a highly-ranked feature is fixed at 1 to establish an absolute
scale for distances.

First the ensemble selection method has been used with two artificial datasets,
Monk-1 and Monk-3 [13]. These problems are designed for rule-based symbolic
machine learning algorithms and the nearest neighbor algorithms usually do not
work well in such cases. 6 symbolic features are given as input, 432 cases for test-
ing. Previously we have obtained significant improvements for these datasets using
feature selection and weighting [11]; here we are interested in improvements and
stabilization of the weighted results due to the ensemble averaging. Calculations
were repeated 5-10 times to estimate expected variance of the results.



Table 1. Results for the Monk-1 problem

Method Accuracy %Variance %

k-NN 89.5 –
WM 94.7 ± 5.3
A5-WM 99.6 ± 0.8
A10-WM 99.7 ± 0.8
E5-WM 98.4 ± 2.2
E10-WM 99.7 ± 0.6
A5E5-WM 99.7 ± 0.4
A5E10-WM 99.98 ± 0.07

For the Monk-1 problem 124 cases are given for training. Euclidean distance
with k=1 was used; all calculations were repeated 10 times. Weightedk-NN does
improves the result but the variance is quite high; an ensemble of 5 weighted models
(E5-WM) still has quite high variance. Averaging combined with ensemble of 10
models achieves almost always 100% accuracy.

For Monk-3 problem 122 cases are given for training. Features 1 and 3 have
been turned off by the initial feature selection procedure, increasing accuracy from
87.3% with all 6 features to 98.6% with 4 features. Weighted models slightly de-
crease the average accuracy (this decrease shows rather poor performance of the
simplex optimization). Averaging over 5 models decreases the variance almost to
zero. Results do not improve further because in this case there is some noise in the
data andk-NN with feature selection achieves the optimal result.

Table 2. Results for the Monk-3 problem

Method Accuracy %Variance %

k-NN 98.6 –
WM 98.3 ± 0.6
A2-WM 98.5 ± 0.4
A5-WM 98.6 ± 0.0
A5E5-WM 98.6 ± 0.0

Thevowel dataset is composed of 528 training and 462 test vectors, each with
10 continuous attributes derived from speech samples. The task to identify one of
the 11 vowels is rather difficult and the standardk-NN with Euclidean function and
k = 1 obtains only 56.3% correct answers. The best single model withk = 9 has only
56.5% accuracy on the test set. An ensemble of 10k-NN models withk = 1. . .10
improves this result to 59.1%

The ionosphere data has 200 training and 150 test vectors, 2 classes and 34
continuous attributes. In this case significant improvement (4.6%) is obtained by
using Manhattan distance function and optimizingk. Averaging over 5 weighted



models did not improve results. Variance results for this dataset are missing because
we performed each test only once (this is due to the high computational cost of the
weighted method (34 parameters to optimize).

Poor result of the weighted model is probably due to the overfitting, since the
number of parameters (34) is rather high for such small dataset (200 vectors). One
of the reasons why averaging of weights may work is that it allows to avoid over-
fitting. Currently we have no validation test implemented in our software and the
test is performed with the best weights found after the convergence of the mini-
mization routine. Difficulty of finding good solutions in this large space may also
be important. The simplex method reached accuracy on the training set that is about
5% higher than the multisimplex method (usually finding better solutions) but gave
about 2% worse results on the test set.

Unfortunately differences on the training set were not reflected in improvements
on the test set and there was no reduction of error using ensembles of 5 or 10 mod-
els. Other experiments performed with this dataset also indicate that accuracy on
the training and the test set is not correlated. For comparison results of Shang and
Breiman [14] obtained with boosted CART decision tree (DB-CART) and the C4.5
results are also provided.

Table 3. Results for the ionosphere data

Method Accuracy %

DB-CART 91.3
1-NN, Euclidean 92.1
k-NN E10, Euclidean,k = 1. . .10 92.7
C4.5 94.9
3-NN, Manhattan, 96.7
WM, Manhattan,k=3 95.3
WM, Manhattan,k=3 (Multisimplex) 97.3
A5-WM, Manhattank=3 96.7
E5-WM,Manhattank=3 96.7
A5E10-WM,Manhattank=3 96.7

The hepatobiliary disorders dataset has been obtained from the Tokyo Dental
and Medical University. It has 536 cases of which 163 are used as test cases, 9 fea-
tures (values of biochemical tests) and 4 classes. This data has been used previously
by Mitra, De and Pal [15] using a knowledge-based fuzzy MLP system with results
on the test set in the range from 33% to 66.3%, depending on the actual fuzzy model
used.

k-NN with Manhattan distance function reaches 77.9% accuracy for this dataset.
This is already much better than many other methods give [16]. For example MLP
neural network trained with RPROP gives accuracy that is below 70%. After ap-
plying feature selection 4 features were removed (features 2, 5, 6 and 9), increasing
accuracy to 80.4%. With ASA optimization the best weightedk-NN model achieved



Table 4. Results for the hepatobiliary disease data

Method Accuracy %Variance %

LDA 65.0 –
C 4.5 75.5 –
1-NN, Manhattan 77.9 –
WNN, Manhattan,k=1 80.0 ± 1.3
A5-WM 81.2 ± 1.4
E5-WM 80.3 ± 1.1
A5E5-WM 80.5 ± 0.3
A5E10-WM 80.6 ± 0.6

82.8% accuracy on the test set (83.4% on the training set). 5 averaged weightedk-
NN methods gave better accuracy than ensembles or averaged ensembles, probably
indicating that a better minimization should be used. These results are significantly
better than those of all other classifiers applied to this data, including IB2-IB4,
FOIL, LDA, DLVQ, C4.5, FSM and K* methods [16]. In particular poor results
of the linear discrimination analysis should be noted.

Table 5. Results for the appendicitis data, using 10-fold stratified crossvalidation

Method Accuracy %Variance %

1-NN, Euclidean85.8 ± 1.4
8-NN, Manhattan87.4 ± 0.4
A5E5-WM, k=8 86.2 ± 1.1
A5E10-WM,k=8 87.0 ± 1.1

Appendicitis data, obtained from S. Weiss contains only 106 cases [18]. Since
the data is too small to create separate test partition results given below were ob-
tained from the 10-fold stratified crossvalidation tests. Since parameters of classi-
fication models may differ for each partition one could first optimizek and than
perform weight optimization. We are aiming at a stable model for the whole data,
therefore we have averaged first over the number of neighbors and selected optimal
features (f2 and f4 features were removed). Using the value ofk which was optimal
for the largest number of partitions optimization of weights was performed for each
partition and majority voting applied to the ensemble results.

The results of averaging and creating ensembles relatively to the singlek=8
model have not been improved at all. They are already rather good: for comparison,
accuracy of the C4.5 and CART in the leave-one-out tests is only 84.9% [18].



4 Conclusions and further work

Ensembles of models offer in some cases significant improvements over single clas-
sifiers but in other cases the results on the test set may get worse. The decrease of
variance with the number of base classifiers may be slow. Averaging over model
parameters - in this paper over feature weights – may help to decrease variance
and sometimes gives better results than majority voting ensemble. Although so-
phisticated genetic-based models have been proposed to evolve the best subsets of
models that should be included in ensembles [17] it is doubtful whether the added
advantages justify the additional computational costs. Even the simplest majority
voting method of combiningk-NN models may significantly improve accuracy and
stabilize results decreasing the variance of the final model.

For several datasets (except for the data described here we have tried sonar and
hepatitis datasets from UCI [12]) the improvements have been insignificant. This
shows that an ensemble of models of similar types may sometimes fail to improve
the results. One reason for this may come from overfitting of the data (Ionosphere),
another from poor correlation of results on the training and test sets. Full optimiza-
tion of all model parameters in crossvalidation tests has not been done here (k was
selected first, independently of weights), and that could have contributed to poor
results on the appendicitis dataset. On the other hand results on the noisy hepatobil-
iary disorders data were significantly improved. For all data presented here results
of the similarity-based algorithms were much better than results of popular C4.5 and
CART decision trees.

Different types of procedures/parameters should be included in the search space
for the best classification model [1]. The results could be improved further by em-
ploying better global minimization routines such as the multisimplex [5] or ASA
(Adaptive Simulated Annealing) [6] but this leads to much higher computational
cost of weighted methods which are already very expensive.

A number of other improvements to the ensemble creation algorithm presented
here are planned. First, the majority voting scheme should be replaced by a linear
combination of models. Combining probabilities of classification for each modelM l

and using least square minimization procedure to determine coefficients of the com-
bination may have some advantages. Second, the competence of each model should
be included in the voting procedure, as described in the subsection on ensembles of
competent models. Third, models of different type should be used in one ensemble.
Fourth, boosting, bagging and other procedures [3,19] should help to create better
pool of base models. We are currently investigating all these issues.
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