
Heterogeneous adaptive systems.
Włodzisław Duch and Krzysztof Gra̧bczewski

Department of Informatics, Nicholas Copernicus University,
Grudzia̧dzka 5, 87-100 Toruń, Poland; www.phys.uni.torun.pl/kmk

Abstract - Most adaptive systems are homogenous, i.e. they
are built from processing elements of the same type. MLP neu-
ral networks and decision trees use nodes that partition the input
space by hyperplanes. Other types of neural networks use nodes
that provide spherical or ellipsoidal decision borders. This may
not be the best inductive bias for a given data, frequently requir-
ing large number of processing elements even in cases when sim-
ple solutions exist. In heterogeneous adaptive systems (HAS) dif-
ferent types of decision borders are used at each stage, enabling
discovery of a most appropriate bias for the data. Neural, deci-
sion tree and similarity-based systems of this sort are described
here. Results from a novel heterogeneous decision tree algorithm
are presented as an example of this approach.

I. Introduction

There is no free lunch, no single method that will achieve
the best results in all cases [1]. This is due to a different in-
ductive bias that various types of data may require. Humans
seem to avoid this problem by focusing on different features
for different objects in the categorization process. A single
cortical column in the brain provides many types of micro-
circuits that respond in a qualitatively different way to the
incoming signals [2]. Other cortical columns may combine
these responses in a perceptron-like fashion to enable com-
plex discriminations. At the level of higher cognition brains
do not recognize all objects in the same feature space. Even
within the same sensory modality several complex features
are selected, allowing to distinguish one class of objects from
another.

In contrast to human categorization most pattern recogni-
tion systems implicitly assume that classification is done using
the same features in all regions of the input space. Memory-
based techniques use single distance (or similarity) function
to distinguish all objects, statistical or neural methods pro-
vide hyperplanes (multilayer perceptrons) or Gaussian func-
tions (Radial Basis Function networks) for discrimination, but
rarely both. Decision trees are usually univariate, employing a
decision rule for the threshold value of a single feature, parti-
tioning the input space into hyperrectangles. Multivariate de-
cision trees provide several hyperplanes at high computational
cost. Support Vector Machines use one kernel globally opti-
mized for a given dataset [3]. All these systems may be called
“homogenous” since they search for a solution providing the

same type of elements, the same type of decision borders in
the whole feature space. Committees of the homogenous sys-
tems are frequently used to improve and stabilize results [4].
Combining systems of different types in a committee is a step
towards heterogeneous systems that use different types of de-
cision borders, but the model becomes quite complex and is
difficult to understand.

Although many adaptive homogenous systems are univer-
sal approximators [1] and may model all kinds of data ac-
curately they will not discover simple class structures. For
example, if a feature space is divided into two classes by a
hyperplane plus a sphere with a center placed on this hyper-
plane most of the computational intelligence (CI) systems will
model densities or classification probabilities using a large
number of processing elements. Simple descriptions are de-
sirable for two reasons. First, to understand the data, discover
class structure or type of sources that generate signals. Sec-
ond, because the Ockham razor principle gives simpler sys-
tems a better chance for good generalization. In this paper
we shall consider heterogeneous adaptive systems (HAS), i.e.
systems that use processing elements of qualitatively different
types. Such systems include: neural networks that use dif-
ferent types of transfer functions, selecting them from a pool
of different functions or optimizing flexible transfer functions
to discover the most appropriate bias in different regions of
the feature space; similarity-based methods that use different
similarity function associated with each reference vector; de-
cision trees that use several types of tests, providing quali-
tatively different decision borders. Heterogeneous elements
may also be created within homogenous systems by various
transformations of the input data.

II. Heterogeneous adaptive systems.

Many computational intelligence systems used for classifi-
cation and approximation are constructed from simple build-
ing blocks or processing elements (PE). Three examples of
homogenous systems, i.e. systems using one type of PE only,
include: feedforward neural networks (NN), with the same
type of transfer function realized by each node; decision trees
(DT), with the same type of test performed at each node to
split the data; similarity-based methods (SBM) with global
metric function used with reference vectors. Each process-
ing element contributes a discriminating function with spe-

cific decision region. The final decision regions are created
by selection or a (non)linear combination of results from in-
dividual nodes. In homogenous systems discriminating func-
tions (or basis functions) are always of the same type: hy-
perplanes in decision trees, perceptron networks and SVMs,
hyperellipsoids in SBM systems or in Radial Basis Function
(RBF) networks based on Gaussian functions, etc. Combina-
tions of simple decision regions create new, complex decision
borders of arbitrary shapes, but it may require large number of
parameters to achieve desired approximation accuracy. Com-
plex data models do not allow to understand the structure of
the data [5] and discovering inductive bias behind the process
that created the data.

Although homogeous systems may have universal approx-
imation properties, they may not be the most appropriate for
a given data even if many types of nodes are tried. In [6] we
have estimated the minimal number of parameters that a feed-
forward neural network needs to separate a single hyperspher-
ical data region in N dimensions. For Gaussian functions it is
of the order of O(N), while for sigmoidal functions (hyper-
planes) it is at least O(N2). On the other hand separation of
the area between the origin of the coordinate system and the
(1,1, ...1) plane from the area outside requires a single hyper-
plane, while any classifier based on Gaussian functions will
use O(N2) parameters offering rather poor approximation (a
single rotated large Gaussian is sufficient). Both data distribu-
tions are rather difficult for univariate decision trees or SBM
systems. Combination of these two cases, with the separating
hyperplane and the center of Gaussian function placed in its
center 1/N(1,1, ...1), is difficult for all homogenous classi-
fiers. To find the simplest solution a heterogeneous classifier,
using processing elements that provide different discriminat-
ing functions, is needed.

III. Heterogeneous neural networks

A survey of many functions [6] and a systematic taxonomy
of these functions [7] has been presented recently. Networks
based on rational functions, various spline functions, tensor
products, circular units, conical, ellipsoidal, Lorentzian func-
tions and many others were described in the literature (see
references in [6]). Support Vector Machines [3] are used with
different kernel functions. Both neural networks and SVMs
are wide margin classifiers. At least part of the SVM suc-
cess is due to the selection of the best kernel for a given
data, although for simple benchmark problems the differences
between results obtained with different kernels (or different
transfer functions) may be small.

All these systems are homogenous, using one type of ker-
nel or transfer function in a given architecture. Three basic
ways to create heterogeneous adaptive systems of the neural
network type (HAS-NN) exist.

• Construct neural network adding new basis functions se-

lected from a pool of candidate functions .
• Start with large network that uses different transfer func-

tions and prune it.
• Use highly flexible transfer functions containing internal

parameters that are optimized, evolving different transfer
functions as a result of training.

A constructive method that selects the most promising
functions from a pool of candidates in RBF-like architecture
and adds it to the growing network has been introduced in
[8]–[10]. Each candidate node using different transfer func-
tion should be trained and the most useful candidate is added
to the network. In effect several networks are created, trained
in parallel and evaluated. The Optimal Transfer Function
(OTF) network [8] is based on the incremental network (In-
cNet) network architecture [11]. It uses pruning techniques
and statistical criteria to determine which neurons should be
selected. For the XOR problem classical two-neuron solutions
were discovered using localized, Gaussian-type functions as
well as non-local, sigmoidal functions. With more complex
conical transfer functions [6] it has also discovered a single
neuron solution to the XOR problem; in this case Gaussian
output function was combined with inner product activation
function. The OTF network has also found optimal solutions
to the hyperplane plus sphere problem.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 1. Hyperplane plus sphere data in two dimensions.

A heterogeneous version of the Feature Space Mapping
[12], a neurofuzzy ontogenic network that selects the type
of a separable localized transfer function for the next node
from a pool of several types of functions, has been applied to
the same artificial problems. This network has found an in-
teresting solution to the hyperplane-sphere problem, selecting
one rectangular function and one Gaussian function. Variance
was rather large and in 5-dimensional cases quite often Gaus-
sian functions were selected, although the simplest solution
has also appeared. This network applied to Wisconsin Breast
Cancer data [13] created a very simple solution, with 2 rect-

angular nodes only [9].
In the second approach starting from a network that already

contains several types of transfer functions pruning or regu-
larization techniques are used to reduce the final number of
functions [8]. Initially the network is too complex but at the
end only the functions that are best suited to solve the problem
are left. Many combinations of functions may create solutions
of similar complexity, therefore large variance of the results,
especially for small data, may be expected.

In the third approach neural transfer functions are taken
from families of functions parameterized for greatest flexibil-
ity. For example, an extension of the conic activation function
is defined by:

AC(X;W,R,B,α,β) = αI(X−R;W)+ βD(X;R,B) (1)

where I(X;W) = ∑N
j=0WjXj is the weighted activation func-

tion and D(X;R,B) is a distance function. Used with the sig-
moidal output function this function changes smoothly from
a localized Gaussian (with independent biases) to a soft hy-
perplane type. Several other functions of such type have been
presented in [6], [7], but so far they have not been tried in
practice. Sebald and Chellapilla [14] have used evolutionary
programming techniques to train a network with 3 types of
transfer functions, obtaining rapid convergence.

IV. Heterogeneous similarity-based methods

In the similarity-based methods (SBM) [15] a set of ref-
erence vectors and a procedure to estimate similarity are de-
fined. In homogenous SBM models similarity or dissimilar-
ity of objects is estimated using a global distance function
D(X,Y). The number of reference (prototype) vectors R that
should be included in calculation of p(Ci|X;M) may be fixed
(as in the k-nearest neighbor method), or a specific weight
function may be imposed around X, for example a Gaussian
function.

Heterogeneous SBM models use local functions optimized
differently in different regions of space. A set of local sim-
ilarity functions DR(X,R) should be defined, associated for
example with the reference vectors. For example, using
Minkovski’s Lα distance with the scaling factors defined as:

DR(X,R;s)β =
N

∑
j

s j
R|Xj −Rj|α; s j

R ≥ 0 (2)

and optimizing the scaling factors s j
R, allows each proto-

type R to “pay attention” to different features of the input
around different prototypes. In the most common version of
the similarity-based methods, such as the k-nearest-neighbor
method or LVQ method, decision borders are piecewise lin-
ear. Here generalized Minkowski’s metric involves two pa-
rameters, exponents α and β, and the scaling factors s j. This
enables feature selection and provides very flexible shapes of

decision borders. If all contributions si|Ai−Bi| for some input
feature i are small the feature may be eliminated.

Although all functions in RBF networks are usually of the
same type, they are attached to local centers. Optimization of
individual dispersions corresponds to the scaling factors s j

R in
the distance functions. In case of RBF networks with Gaus-
sian functions similarity functions are related to the squared
Euclidean distance functions (X−R)T Σ−1(X−R) via expo-
nential transformation exp(−DR(X,R)), while probabilities
p(Ci|X;M) are calculated taking linear combination of sim-
ilarities. The heterogeneous SBM models are more general,
allowing different local similarity functions to be attached to
different nodes. Various methods may also be used to com-
bine contributions from each node to calculations of probabil-
ities. This is a generalization of the class-dependent distance
functions sometimes used in the k-NN method [16]. Except
for typical distance functions and correlation based functions
data-dependent distances may be used, such as the Modified
Value Difference Metric (MVDM) [17].

Adapting the similarity function to minimize in-class dis-
tance variance and maximize between-class variance, a non-
linear version of Fishers discrimination analysis is obtained.
Optimal parameterization DX(X,R) may be learned for train-
ing an MLP neural network to provide small DX(X,R) output
values for input vectors (X,R) that are of the same class, and
larger values otherwise. Another way is to replace the differ-
ence |Xi−Ri| by a function d(Xi,Ri) evaluating contributions
to the distance in 2.

Ideas discussed above provide a rich framework for con-
struction of hetereogenous similarity-based systems. Selec-
tion of the prototype vectors, creation of the codebook vec-
tors using Learning Vector Quantization techniqes [18] or
instance-based learning algorithms [19] are relatively inex-
pensive procedures that may be combined with optimization
of local distance functions.

V. Input transformations

The hidden layer of a neural network maps the inputs into
an image space trying to simplify the task of the percep-
tron output node, for example by creating linearly separable
data clusters. Instead of the hidden layer transfer functions
that contain some adaptive parameters one could use arbitrary
multivariate functions to transform inputs, trying to achieve
similar result. In the functional link (FL) networks of Pao
[20] combination of various functions, such as polynomial,
periodic, sigmoidal and Gaussian functions is used. These
networks were never popular and little is known about their
properties. The use of products of pairs xix j or of higher order
products is not very practical for high-dimensional inputs be-
cause the number of such products grows rapidly. Functional
link networks use such products and other functions, and than
pass the results as inputs to an MLP. These pre-processing

functions should be regarded rather as filter functions than
transfer functions. Adding standard neurons connected to pre-
processed inputs is equivalent to using processing elements
that are heterogeneous.

Pre-processing may be done independently of the network
by basis functions Φ(X) (acting on the whole input vector X
or on a few features only) if they do not involve adaptive pa-
rameters. The network usually performs a weighted combina-
tion of enhanced inputs. However, filter functions that have
adaptive parameters should be a part of the network. To avoid
excessive number of inputs one could form a candidate input
node and evaluate its information content using some feature-
evaluation techniques before adding new dimension to the in-
put space.

Except for adding filtered inputs to the existing inputs
one may renormalize all input vectors, for example using
Minkovsky’s metric. Such input renormalization has dramatic
influence on network decision borders [21]. Adding a new

feature based on sum of squares Φ(X) =
√
||X||2max −∑i X

2
i

creates circular contours of constant value Φ(X)=const
and renormalizes all enhanced vectors to ||(X,Φ(X))|| =
||X||max. If renormalization using Minkovsky’s metric is de-
sired then Φ(X)α = ||X||αmax−∑i |Xi|α, where ||X|| is now the
Minkovsky’s norm. Adding one extra input normalized in a
different way for each hidden node will change the decision
borders realized by this node, making the whole network het-
erogeneous. So far such systems have not yet been imple-
mented in practice.

VI. Heterogeneous decision trees

Heterogeneous decision trees may be created in several
ways. A rather obvious, although computationally expensive
way, is to place a whole new classifier, such as a neural net-
work, in new node, creating a neural decision tree [22]. Al-
though decision regions may be of different type in fact neu-
ral trees are still composed of a combination of simple per-
ceptrons with half-spaces as decision regions and thus are not
able to discover the simplest description of the data. The same
concerns Fisher and kernel-based decision trees [23].

The simplest approach to create heterogeneous decision
trees is to provide new tests at each node. Decision trees select
the best feature and its threshold value, differing in functions
that are used to evaluate the amount of information gained by
splitting the node [1]. The test for continuous or ordered val-
ues are usually of the same form:

Xi < θk or ∑
i

WiXi < θk (3)

for univariate and multivariate trees, respectively. θ k is the
selected threshold value for the node k. Decision regions are
in this case half-spaces, either perpendicular to the axis or of
arbitrary orientation. Replacing thresholds by intervals Xi ∈

[θk,θk] does not change the type of decision borders. Adding
a distance-based test with the Minkovsky’s Lα norm:

||X−R||α = ∑
i

(|Xi −Ri|α)1/α < θR (4)

where R is the reference vector, provides new type of decision
regions. In particular for L2 (Euclidean distance) spherical de-
cision regions are obtained, while for L1 (Manhattan distance)
decision regions are romboidal, and for L∞ cuboidal. In the
last case decision rules performed by the tree nodes are equiv-
alent to standard crisp logic rules.

A general way to provide a new set of features is to intro-
duce Φ(X;R) functions, measuring similarity of X to some
reference objects R using one of the selected distance func-
tions. A decision tree using such features selects the best
one, in effect using quite different decision regions for par-
titioning the input space. In particular adding L2 norm with
R = 1/N(1,1, ...1) allows to discover the simplest tree solv-
ing the problem with half-plane and Gaussian distributions.
There is a tradeoff between the complexity of the tests one
can consider in a finite time and the complexity of the final
decision tree.

SSV is a general criterion that can be applied to many dif-
ferent problems. The best split value is the one that separates
the largest number of pairs of objects from different classes.
The split value (or cut-off point) is defined differently for tests
returning continuous and discrete values. In the case of con-
tinuous tests the split value is a real number, in other cases it
is a subset of the set of alternative values of the feature. In all
cases we can define left side (LS) and right side (RS) of a split
value s of feature f for given dataset D:

LS(s,T,D) =
{ {X ∈ D : T (X) < s} if T (X) is cont.

{X ∈ D : T (X) �∈ s} otherwise

RS(s,T,D) = D−LS(s,T,D)
(5)

where T (X) is the test applied to the data vector X; in partic-
ular the test may select a single feature value that is compared
with the threshold s. The separability of a split value s is de-
fined as:

SSV(s) = 2∗ ∑
c∈C

|LS(s,T,D)∩Dc| ∗ |RS(s,T,D)∩ (D−Dc)|

− ∑
c∈C

min(|LS(s,T,D)∩Dc|, |RS(s,T,D)∩Dc|) (6)

where C is the set of classes and Dc is the set of data vectors
from D which belong to class c.

The best split value separates the maximal number of pairs
of vectors from different classes, and among all the split val-
ues which satisfy this condition, the best one separates the
smallest number of pairs of vectors belonging to the same

class. For every dataset containing vectors which belong to
at least two different classes, for each feature which has at
least two different values, there exists a split value of maxi-
mal separability.

Some test may include a linear combination of inputs,
trying to determine best separating hyperplane; in this case
Linear Discriminant Analysis (LDA) or Fisher Discriminant
Analysis (FDA) methods [1] may be used to find best com-
binations, leading to LDA and FDA trees. Simple tests may
also be based on distances ||X−R|| < θR from the data vec-
tors X to reference points R in the feature space, providing
non-linear decision borders, depending on the type of the dis-
tance function. The heterogeneous SSV (h-SSV) algorithm
has 3 main steps:

• calculate the value of the test T (X) for all the data vectors
in the dataset;

• sort the data vectors according to the values of test func-
tion;

• analyze each candidate split value and choose the one
with the highest SSV value.

The computational complexity of this algorithm is equal to
the complexity of sorting (i.e. nlog(n), because new feature
calculation and analysis of candidate splits require only nk
and n operations, if the new feature is the distance to a refer-
ence point (n is the number of data vectors in the dataset and
k is the number of features describing the data). In the case
of distance-based tests there are some possibilities of “natu-
ral” restrictions on selections of reference vectors for the best
test. The training data vectors are good candidates for ref-
erence vectors R that will be used in calculation of the test
TR(X) = D(X,R). The value of the test TR(X) may be re-
garded as a new feature characterizing vector X. To speed up
evaluation of such tests one may pre-select a small number of
reference vectors covering large regions of the feature space
(i.e. vectors relatively far from each other). After finding the
best candidate mode detailed search may be done in its neigh-
borhood.

Another simplification is to search for candidates among
the training data vectors that belong to the current tree node
that is being expanded. This leads to more comprehensive
split decisions, selecting a neighborhood of the reference vec-
tor as one of the subsets, and the rest of the space as the other
subset. The reference vector is than treated as a prototype, giv-
ing an understandable logical rule based on similarity to this
prototype. The best reference vector does not need to be one
of the data vectors. A better reference can be found through
a minimization process. To avoid higher computational costs
only selection has been used in initial implementation of the
h-SSV algorithm.

Because different distance measures give very different de-
cision borders such enhancement in decision tree methods

leads to heterogeneous systems that have the chance to dis-
cover simple class structures. To avoid complex tests and
minimize overall complexity of the decision tree model some
penalty of using complex tests may be added to the SSV cri-
terion. The simplest tests are based on cutoff for single fea-
tures; linear combinations should be used only if the gain in
accuracy justifies additional parameters, and novel distance
functions are even more complex, requiring determination of
the reference vector and the parameters of the distance func-
tion. The best model selection approach for the heterogeneous
trees is an open question. Below a few preliminary results are
presented to show the potential of this approach.

VII. Some results

Artificial data that are difficult for decision trees and other
computational intelligence systems have been used first. The
plane shown in Fig. 1 has been rotated by 45 degrees and
no tests using linear combinations were allowed. 2000 data
points have been generated. As a result the SSV decision tree
gave:

• 44 rules, 99.7% accuracy without distance-based tests;
• 21 rules, 99.8% accuracy, with distance-based tests se-

lecting only reference vectors from the node vectors;
• 15 rules, 99.85% accuracy with distance-based tests se-

lecting from all vectors.

For the Iris dataset [13] searching for distance-based tests
has been done with Euclidean distance only, and all training
data vectors as candidates for reference vectors. A set of rules
with 96.7% accuracy (5 errors overall) has been created:

• if petal length < 2.45 then class 1
• if petal length > 2.45 and ||X−R15|| < 4.02 then class 2
• if petal length > 2.45 and ||X−R15|| > 4.02 then class 3

Here ||X − R15|| is the Euclidean distance to the vector
R15. The restriction to search reference points among the data
falling into the tree node gives the same set of rules that can
be found without distance based premises (96% accuracy, 6
errors):

• if petal length < 2.45 then class 1
• if petal length > 2.45 and petal width < 1.65 then class 2
• if petal length > 2.45 and petal width > 1.65 then class 3

For the Wisconsin breast cancer dataset (699 cases, 9 fea-
tures, 2 classes, [13]) the following decision rule has been
found:

if ||X−R303|| > 20.27 then benign else malignant

This rule makes 18 classification errors (97.4% accuracy).
It seems to be the simplest rule discovered for this dataset so
far. In a cross validation process multiple sets of rules with
very similar or equal accuracy can be found. For instance:

if ||X−R279|| > 19.57 then benign else malignant
if ||X−R612|| > 20.10 then benign else malignant

VIII. Discussion

Heterogeneous Adaptive Systems have several advantages
over other types of adaptive systems. First, they may dis-
cover simplest structures generating the data. Imagine two
sources of signals with different distributions imposed on the
background signal, sampled by multidimensional measure-
ments. Homogenous classifiers have no chance to discover
the structure of such data while HAS should have no prob-
lem if appropriate transfer functions, similarity functions or
tests functions are provided. This enables simple interpreta-
tion of the data structure. The quality of simple HAS solution
should be higher than quality provided by more complex sys-
tems. HAS methods provide an interesting alternative to ker-
nel based methods and support vector machines. Neurofuzzy
systems with nodes based on different membership function
and T or S-norms also belong to this category.

There is an obvious tradeoff between the flexibility of rep-
resentation by a single element and the number of elements
needed to accurately model all data. The goal is to optimize
overall complexity of the system. On the other hand sys-
tems that are very general, based on higher-order logic knowl-
edge representation formalism, are very inefficient. Several
training methods have been described here but finding opti-
mal training method for each heterogeneous system requires
further investigation and empirical comparison. Our imple-
mentation of HAS decision tree, although still containing only
very few options, has already found the simplest rule for the
Wisconsin Breast Cancer data.

Finding the best HAS model is related to a more general
idea of searching in the model space for the best model appro-
priate for a given data, recently introduced within the frame-
work of the similarity based methods [24]. Both approaches
have similar goals, although different biases. HAS finds het-
erogeneous models of a given type, such as neural networks,
while our version of the search in the model space creates dif-
ferent models within a common similarity-based framework.
A meta-learning approach could search in a space of all mod-
els, including HAS models, for most appropriate model ac-
counting for the data, but it remains to be seen whether effec-
tive searching/learning algorithms for such general approach
exist.

Acknowledgments

Support by the Polish Committee for Scientific Research,
grant 8T11C 006 19, is gratefully acknowledged.

References
[1] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd Ed, John

Wiley & Sons, New York 2001

[2] W. Maass, T. Natschläger and H. Markram, “Real-time computing with-
out stable states: A new framework for neural computation based on
perturbations” (preprint, Technische Universität Gratz, 2001)

[3] N. Christianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and other Kernel-Based Learning Methods. Cambridge Uni-
versity Press 2000.

[4] L. Breiman, “Bias-Variance, regularization, instability and stabiliza-
tion”. In: C. Bishop, ed. Neural Networks and Machine Learning.
Springer 1998

[5] W. Duch, R. Adamczak and K. Gra̧bczewski, “Methodology of ex-
traction, optimization and application of crisp and fuzzy logical rules.”
IEEE Transactions on Neural Networks, Vol. 12, pp. 277-306, 2001

[6] W. Duch and N. Jankowski, “Survey of neural transfer functions”. Neu-
ral Computing Surveys, Vol. 2, pp. 163-213, 1999

[7] W. Duch and N. Jankowski, “Taxonomy of neural transfer functions”,
International Joint Conference on Neural Networks (IJCNN), Vol. 3, pp.
477-484, 2000

[8] N. Jankowski and W. Duch, “Optimal transfer function neural net-
works.” 9th European Symposium on Artificial Neural Networks
(ESANN), Brugge 2001. De-facto publications, pp. 101-106

[9] W. Duch, R. Adamczak and G.H.F. Diercksen, “Constructive den-
sity estimation network based on several different separable transfer
functions.” 9th European Symposium on Artificial Neural Networks
(ESANN), Brugge 2001. De-facto publications, pp. 107-112

[10] W. Duch and N. Jankowski, “Transfer functions: hidden possibilities for
better neural networks.” 9th European Symposium on Artificial Neural
Networks (ESANN), Brugge 2001. De-facto publications, pp. 81-94

[11] N. Jankowski and V. Kadirkamanathan, “Statistical Control of RBF-
like Networks for Classification, 7th Int. Conf. on Artificial Neural Net-
works (ICANN), Springer-Verlag, pp. 385-390, 1997

[12] W. Duch and GHF Diercksen, “Feature Space Mapping as a univer-
sal adaptive system”. Computer Physics Communications, Vol. 87, pp.
341-371, 1995

[13] C.J. Mertz, P.M. Murphy, UCI repository of machine learning
databases, http://www.ics.uci.edu/pub/machine-learning-data-bases.

[14] A Sebald and K. Chellapilla, “On Making Problems Evolutionarily
Friendly: Evolving the Most Convenient Representations.” 7th Int.
Conf. on Evolutionary Programming, EP98, Mar 25-27, 1998, Mission
Valley Marriott, San Diego, CA.

[15] W. Duch, “Similarity-Based Methods”. Control and Cybernetics 4, pp.
937-968, 2000

[16] B.V. Dasarathy, ed. Nearest neighbor norms: NN Pattern Classification
Techniques. Los Alamitos, California: IEEE Computer Society Press
1990

[17] D.L. Waltz, “Memory-based reasoning”. In: M. A. Arbib, ed, The
Handbook of Brain Theory and Neural Networks. MIT Press, pp. 568-
570, 1995

[18] T. Kohonen, Self-organizing maps. Berlin, Springer-Verlag 1995
[19] D.W. Aha, D. Kibler and M.K. Albert, “Instance-Based Learning Algo-

rithms.” Machine Learning, vol. 6, pp. 37-66, (1991)
[20] Y-H. Pao, Adaptive pattern recognition and neural networks. Addison-

Wesley, Readnig, MA 1989
[21] Duch W, Adamczak R, Diercksen GHF. Neural Networks in non-

Euclidean spaces. Neural Processing Letters 10 (1999) 201-210
[22] J. A. Sirat and J.-P. Nadal, “Neural Trees: a New Tool for Classifica-

tion”. Network, Vol. 1, pp. 423-438, 1990
[23] S. Mika, G. Rätsch, J. Weston, B. Schölkopf and K.-R. Müller. “Fisher

discriminant analysis with kernels”. In: Y.-H. Hu et al. , eds, IEEE
Neural Networks for Signal Processing IX, pp. 41–48, 1999.

[24] W. Duch and K. Grudziński, “Meta-learning: searching in the model
space”. Proc. of the Int. Conf. on Neural Information Processing
(ICONIP), Shanghai 2001, Vol. I, pp. 235-240

