
Constructive density estimation network based
on several different separable transfer functions.

Włodzisław Duch and Rafał Adamczak
Department of Computer Methods, Nicholas Copernicus University,

Grudzia̧dzka 5, 87-100 Torún, Poland.
http://www.phys.uni.torun.pl/kmk

Geerd H.F. Diercksen
Max-Planck Institute of Astrophysics, 85740-Garching, Germany

Abstract. Networks estimating probability density are usually based on radial
basis function of the same type. Feature Space Mapping constructive network
based on separable functions, optimizing type of the function that is added, is
described. Small networks of such type may discover accurate representations of
data. Numerical experiments on artificial and real datasets are reported.

1 Introduction

Neural networks based on sigmoidal, radial and many other types of transfer func-
tions, are universal approximators [1]. Unfortunately there is no guarantee that such
networks will find a good solution. Approximation of complex decision borders by
a neural network requires flexibility that is usually provided only by networks with
sufficiently large number of parameters. Despite regularization techniques which help
to avoid overparameterization training of such networks may be difficult and prone to
the local minima problems. It is commonly believed that learning and architectures
are the most important issues in neural computing. One relatively unexplored way
to improve the performance of neural networks in complex problems is to optimize
transfer functions performed by artificial neurons. The situation is analogous to the
“nature” versus “nurture” debate: although MLP networks may in principle learn all
kinds of data the inner ability of a network to learn quickly requires flexible “brain
modules”, or transfer functions that are appropriate for the problem to be solved.

It is easy to constructN-dimensional training data that can be handled correctly
by a single hyperplane (suitable for MLPs with complexityO(N)) or by a spherical,
localized functions (suitable for RBF networks with Gaussian functions andO(N)
complexity). Inappropriate model applied to such data will need at leastO(N 2) pa-
rameters, making the training process harder. Rates of convergence and complexity
of models necessary to approximate or classify data depends strongly on the type of
transfer functions used. A survey of transfer functions suitable for neural networks

The authors acknowledge POL-040-98 grant for German-Polish collaboration. W.D. is also grateful
for support by the Polish Committee for Scientific Research, grant 8 T11C 006 19.

has been presented in [6], and a taxonomy of such functions in [7]. Constructive algo-
rithms that add one transfer function at a time are very attractive but so far have been
restricted to functions of the same type. Models that select or optimize the type of
function that is added have not been used so far.

Feature Space Mapping (FSM) neural model [2] is based on multidimensional sep-
arable transfer functions. Such choice of transfer functions has some advantages over
the radial basis functions [1]. A separable transfer functionf (X) = ∏N

i=1 fi(Xi) may
be interpreted as a conjunction of fuzzy membership functionsf i(Xi). Viewed from
various perspectives FSM is a neurofuzzy system, a probability density estimation
network modelingp(X |Ci), localized transfer functions enable a memory-based inter-
pretation (generalization of the training data to form reference prototype vectors), and
the unsupervised training leads to a self-organizing system that models distribution of
data using prototypes. The main idea is simple: components of the input vectorsX i

and the output vectorsYi define features, and probability distributions in the feature
spaces define fuzzy prototypes or memorized “objects”. These objects are described
by the joint probability density of the input/output data vectorsp(X ,Y |M) using a net-
work M based on some transfer functions. Although this model may be presented in
probabilistic framework as a density network it was originally inspired by cognitive
model of mind as an approximation to real neurodynamics – high activity of the spik-
ing neurons may be described by the probability density function in the feature space
[3]. The importance of density estimation as the basis for neural systems has recently
been stressed by many authors (cf. [1]).

FSM model has been implemented as a constructive network using several types of
transfer functions: Gaussians, triangular, trapezoidal, rectangular or soft trapezoidal
functions (products of pairsσ(Xi − b)−σ(Xi + b) of sigmoidal functions). The net-
work has been tested on a number of classification problems and has been used for ex-
traction of fuzzy and crisp logical rules. It may also be used as an associative memory,
predicting the values of a part ofX vector from any other part. In previous papers gen-
eral philosophy, the training algorithm, parameterization of rotated bicentral transfer
functions and initialization of neural networks parameters has been described[2, 4, 5].
The FSM model has been extended here to allow for different transfer functions that
are added during the process of network growth. After a brief description of the FSM
network recent developments are described and issues connected with optimization
of transfer functions are discussed. Results of computer experiments are presented in
section 3 which is followed by conclusions.

2 FSM model

FSM model as used for classification is described very briefly here. Since training
of the MLP networks or other networks with fixed architecture is tedious a robust
constructive algorithm is used to build the FSM network. In the simplest case a sin-
gle hidden layer structure is used. Initial architecture is created using clusterization
techniques [5] and optimized during learning process. A set of training examples
D = {Xk,Y k} is used to create a networkM(X ,Y ;P), whereP are adaptive param-
eters of the network that gives outputs approximating the landscape of joint proba-

bility density p(X ,Y |D). TheM(X ,Y ;P) should be neither equal to, or proportional
to, this density; all that is required is that the maxima of conditional probabilities
Yp(X) = maxY p(Y |X ,D) andXp(Y) = maxX p(X |Y,D) agree with the correspond-
ing maxima ofM(X ,Y ;P) obtained by calculation ofYM(X) = maxY M(X ,Y ;P) and
XM(Y) = maxX M(X ,Y ;P). This task is simpler than the full estimation of joint or
conditional probabilities.

Transfer functions: good transfer functionsφ(X;θ) should offer the most flexi-
ble densities (flexible shapes ofφ(X;θ) =const contours) with the smallest number of
adaptive parametersθ. A small network with a few flexible transfer functions is equiv-
alent to a large network with typical sigmoidal or Gaussian nodes. The FSM model is
based on separable transfer functions, with each one-dimensional component equiva-
lent to a membership function, specific for a given data cluster. For extraction of crisp
logical rules rectangular functions are used, for fuzzy logic rules trapezoidal, trian-
gular and Gaussian functions. Multidimensional Gaussian functions are also used in
their classical as well as asymmetric form:

G(X,R,σ) =
N

∏
i=1

[
(1−Θ(Xi−Ri))e−(Xi−Ri)2/σ2

i− +Θ(Xi−Ri)e−(Xi−Ri)2/σ2
i+

]
(1)

Gaussians are the only radial basis functions that are separable. RBF functions
are defined relatively to only one center||X−R||. Bicentral functions obtained by
subtraction of two sigmoidal functions are natural generalization of trapezoidal func-
tions to soft continuos shapes; they use two reference vectors [6]. It may also be of
advantage to consider classes of functions with non-linear parameters that strongly
influence their contours. Several classes of such functions may be defined: conical
functions combining weighted activation with distance function:

σ(X;W,R,α,β) = σ(α(X−R) ·W+β||X−R||) (2)

change their shape depending on the parametersα,β, becoming standard sig-
moidal functions forα = 1,β = 0,R = 0 and acquiring spherical shape forα = 0,β =
1. An additional degree of freedom is obtained if different norms are admited, for
example||X−R||γ = (∑i |Xi −Ri|γ)1/γ. Another family of functions is:

σ(X;W,α,β) = σ
(
(||W+ X||βα −||W−X||βα)

)
(3)

Forα = 2,β = 2 this function becomes a standard sigmoidal transfer function with
weighted activation.

Training algorithm: overall complexity, counted as the total number of adap-
tive parameters of the network, should be minimized. The algorithm used previously
to train the FSM network [2, 4] estimated probability density for all classes, requir-
ing explicit representation of convex and concave decision borders. The number of
functions required to represent an area outside of a sphere may be quite large. The
algorithm has been modified to allow for the ELSE class that has no explicit repre-
sentation. Due to the lack of space only significant changes comparing to the training
algorithm described in [4] are given here.

A single layer of hidden units with parameters determined by a clustering algo-
rithm [5] is created during initialization. Initial functions are selected to minimize
the number of their parameters. Intervals covered by each componentf i(Xi) of the
transfer function is expanded after several training epochs as much as possible with-
out increasing the classification error. As a result for irrelevant features the function
covers the whole data range and is deleted from the product. This method may be
used with local learning rules that do not require minimization of global error func-
tion, therefore it is well suited to on-line learning. After selection of the default class
that will not be explicitly represented, followed by initialization of the FSM architec-
ture and parameters, learning algorithm proceeds as follows:
1. ParametersP controlling smoothness and size of transfer functions are increased
until M(X;P) > 0.5 for all training vectorsX; in this way approximation to the prob-
ability densityp(X|D) is more smooth and nodes covering outliers are not created.
2. Start the learning epoch: first check if a new node is needed. If a new data vectorX
does not belong to the default class find the network nodeNm that is maximally active;
if the class ofNm node is different than the class ofX find the closest nodeN ′

m to the
maximally active node such thatN ′

m is of the same class asX.
3. If activation of theG(N ′

m) node is below a given threshold and at least 20 training
epoches have passes since the previous node was added a new node is needed. Create
K networks, each with a different type of additional nodes, retrain these networks to
and select the best, preferring simpler networks if similar accuracy is achieved by dif-
ferent models.
4. If N ′

m andNm belong to different classes check two conditions: is the new vector
X sufficiently far from the center of the nearest function? If yes, check ifG(N m) >
Minact , i.e. does the activity of the node exceed certain minimum? Minact is set to 0.2
at the beginning of the training and after some time, when learning slows down, it is
decreased by two. If both conditions are fulfilled create a new node.
5. If new node is not necessary update parameters of the existing nodes: if the node
with highest activation belongs to the same class asX increase the interval that the
nodes with non-zero activations belonging to this class cover and update the network
parameters: weights, positions of localized functions or of biases, and masses of neu-
rons (calculated by counting the number of times the node has been updated).
6. The second most excited node is also optimized if it belongs to a different class
than the most excited node [4]. Increasing the number of nodes leads to 100% clas-
sification accuracy on the training set, overfitting the data. The simplest way to avoid
it is to assume lower goal for accuracy and check the performance on a test dataset.
This requires several stops and checks while the network adapts itself more and more
closely to the data. If two nodes show almost equal activity and one of them belongs
to the wrong class it is selected as the winner to allow further adaptation.

3 Numerical experiments

We have made several experiments with the FSM network adding neurons from a pool
of rectangular, triangular, trapezoidal, Gaussian and asymmetric Gaussian transfer
functions. Since the goal is to find a simplest description of the data the method should

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

Figure 1: 2D classification problem created by a circle and the plane dividing two
classes. Contours 0.2 0.4 0.6 0.8 of 5 Gaussians, 3 rectangles and a rectangle com-
bined with Gaussians are shown.

be tested first on artificial data. An interesting problem is defined by creating 2-class
distribution of samples, with the first class separated from the second by a hyperplane
with a spherical Gaussian placed at the border. In 2 dimensions this is a line with a
circle. Training was done on 1400 randomly generated points, 600 on each side of the
dividing hyperplane and 200 in the half-sphere. FSM network was set at 98% accuracy
and training repeated 5 times. Networks created had 5.8±1.3 Gaussian nodes, 2.6±0.5
non-symmetric Gaussian nodes and 4.2±0.8 rectangular nodes. A network with mixed
nodes found a solution with one rectangular node, extending through the whole data
range, and one Gaussian node, substantially reducing the complexity of the final model
(Fig. 1).

The number of Gaussian or rectangular nodes in 3 to 5-dimensional cases grows
quickly while the problem is still solvable by a single rectangular function providing a
hyperplane, plus one Gaussian function. The FSM training algorithm is usually able to
find the simplest solution but relatively large variance of results is obtained, indicating
that the problem of finding an optimal solution is rather difficult.

Tests on real data shows the ability of the FSM algorithm to find a small number
of appropriate functions. For example, the Wisconsin cancer dataset [8] contains 699
instances, with 458 benign (65.5%) and 241 (34.5%) malignant cases. Each instance
is described by the case number, 9 attributes with integer value in the range 1-10 (for
example, featuref2 is “clump thickness" andf8 is “bland chromatin") and a binary
class label. Performing 10-fold stratified crossvalidation with the target accuracy at
the 96% level only 2 nodes using rectangular functions are created, giving a very
simple description of the data in terms of logical rules. The actual accuracy achieved
in 3 trials was 95.6, 95.4 and 95.4%, which compares favorably with slightly more
accurate result of 96.5% that is obtained with 12 Gaussian functions, and with results
of Shang and Breiman [9] who used CART decision tree achieving 93.5%, improved
with boosting to 96.2%. Tests on several other datasets gave a reduction of the number
of nodes created by the FSM network.

4 Conclusions

Networks using different transfer function open new possibilities for solving difficult
classification problems and discovering simple representation of data, but also present
new theoretical challenges. Finding the model with optimal complexity may be quite
difficult although there are several algorithms based on information theory that may be
helpful (cf. [10]. Numerical experiments performed so far indicate that the construc-
tive algorithm used by FSM gives answers with a large variance, finding solutions of
similar accuracy using different combination of functions. For real datasets it is quite
probable that many such solutions exist.

So far the FSM network has been tested with a few types of transfer functions
in one network. One possibility that is worth exploring is to use families of transfer
functions (Eq. 2, 3) that are parameterized to provide flexible decision borders. A
single node is than able to provide a hyperplane or an ellipsoidal decision border.
Results obtained with such networks should be reported soon.

References

[1] C. Bishop, Neural networks for pattern recognition. Clarendon Press, Oxford,
1995.

[2] W. Duch, G.H.F. Diercksen, Feature Space Mapping as a universal adaptive sys-
tem, Computer Physics Communications 87, 341–371 (1995)

[3] W. Duch, From cognitive models to neurofuzzy systems – the mind space ap-
proach. Systems Analysis-Modelling-Simulation 24, 53–65 (1996)

[4] W. Duch, R. Adamczak, N. Jankowski, New developments in the Feature Space
Mapping model. 3rd Conf. on Neural Networks, Kule, Poland, pp. 65-70 (1997)

[5] W. Duch, R. Adamczak, N. Jankowski, Initialization of adaptive parameters in
density networks. 3-rd Conf. on Neural Networks, Kule, Poland, pp. 99-104
(1997)

[6] W. Duch and N. Jankowski, New neural transfer functions. Neural Computing
Surveys 2, 639-658 (1999)

[7] W. Duch and N. Jankowski, Taxonomy of neural transfer functions, Int. Joint
Conference on Neural Networks, Vol. 3, pp. 477-484 (2000)

[8] K. P. Bennett, O. L. Mangasarian, Robust linear programming discrimination
of two linearly inseparable sets. Optimization Methods and Software 1, 23-34
(1992)

[9] N. Shang, L. Breiman, Distribution based trees are more accurate. Int. Conf. on
Neural Information Processing, Hong Kong, Vol. 1, pp. 133-138 (1996)

[10] B. Ripley, Pattern Recognition and Neural Networks. Cambridge University
Press (1996)

