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Abstract. Machine learning methods are frequently used to create rule-based classifiers. For
continuous features linguistic variables used in conditions of the rules are defined by mem-
bership functions. These linguistic variables should be optimized at the level of single rules
or sets of rules. Assuming the Gaussian uncertainty of input values allows to increase the ac-
curacy of predictions and to estimate probabilities of different classes. Detailed interpretation
of relevant rules is possible using (probabilistic) confidence intervals. A real life example
of such interpretation is given for personality disorders. The approach to optimization and
interpretation described here is applicable to any rule-based system.

1 Introduction.

In many applications rule-based classifiers are created starting from machine learn-
ing, fuzzy logic or neural network methods [1]–[3]. If the number of rules is rela-
tively small and accuracy is sufficiently high such classifiers are an optimal choice,
because the reasons for their decisions are easily verified. Crisp logical rules are de-
sirable since they are most comprehensible, but they have several drawbacks. First,
using crisp rules only one class is identified as the correct one, thus providing a
black-and-white picture where some gradation may be more appropriate. Second,
reliable crisp rules may reject some cases as unclassified. Third, using the cost func-
tion based on the number of errors made by the crisp rule classifier leads to a difficult
optimization problem, since only non-gradient optimization methods may be used.

These problems are overcomed if continuous membership functions are used,
leading to fuzzy rather than crisp rules. Fuzzy rules have two disadvantages. First,
they are not so comprehensible as the crisp rules, and second, they usually involve
a number of parameters determining positions and shapes of the membership func-
tions. To avoid overparameterization systems based on fuzzy logic frequently use a
fixed set of membership functions, with predetermined shapes. Defining linguistic
variables in such context-independent way amounts in effect to a regular partition-
ing of the whole input space into convex regions. This approach suffers from the
curse of dimensionality, since withk linguistic variables ind dimensions the num-
ber of possible input combinations iskd . Fuzzy rules simply pick up those areas in
the input space that contain vectors from a single class. Without the possibility to
adapt membership functions to individual clusters in a single rule fuzzy rules do not
allow for optimal description of these clusters. Much better results may be obtained
with context-dependent linguistic variables [4].
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Another issue is the interpretation of the results obtained using rule-based clas-
sifiers. Although interpretation of crisp rules seems to be straightforward in fact it
may be quite misleading. A small change in the value of a single feature may lead to
a sudden change of the predicted class. Thus interpretation of crisp rules is not sta-
ble against small perturbations of input values. Fuzzy rules are better in this respect
since estimation of probabilities of different classes change smoothly. Still a prob-
lem of tradeoff between the fuzziness and the degree of precision remains. If the
membership functions are too fuzzy many classes have similar probability; if they
are almost crisp perturbation of the input vector may significantly change classifica-
tion probabilities, even if the size of the perturbation is within the range of accuracy
of the measured input values. Believing the predicted results without exploration of
alternative classes may in such cases be rather dangerous. Rough rules suffer from
the same interpretative problems even to a greater degree, because rough classifiers
produce a large number of unstable rules (cf. [5] on the importance of stability).

Thus although the biggest advantage of rule-based classifiers is their compre-
hensibility in practice reliable interpretation of sets of rules may not be so simple.
A solution to these problems facing crisp and fuzzy rule-based classifiers applied
to data with continuous features is presented in this paper. Neural and machine-
learning methods of rule extraction from data were described in our previous pub-
lications [1]–[3]. Therefore we will assume that a small number of crisp logical
rules has already been found. In the next section optimization and application of
sets of logical rules is described. The third section deals with detailed interpretation
of rule conditions and the fourth section illustrates optimization and interpretation
of rules on a real-life psychometric data problem. The paper is finished with a short
discussion.

2 Application and optimization of rule-based classifiers

Previously [1]–[3] we have described a complete methodology of rule extraction
from the data. It is composed from the following steps:

• Select linguistic variables. In case of a continuos featurex linguistic variables k

is true if the input valuex ∈ [Xk,X ′
k], i.e. linguistic variables are parameterized

by interval valuessk(Xk,X ′
k).

• Extract rules from data using neural, machine learning or statistical techniques.
• Optimize linguistic variables (Xk,X ′

k intervals) using the extracted rules and ex-
ploring the reliability/rejection rate tradeoff.

• Repeat the procedure until a stable set of rules is found.

Optimization of linguistic variables is done by minimization of the number of
wrong predictions minM

[
∑i�= j P (Ci,Cj)

]
(whereP (Ci,Cj) is the confusion matrix

for a rule-based classifierM), simultaneously with maximization of the predictive
power of the classifier maxM [Tr P (Ci,Cj)] over all intervalsXk,X ′

k contained in the
modelM. This is equivalent to minimization without constraints of the following
cost functionE(M):
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E(M) = γ∑
i�= j

P (Ci,Cj)−Tr P (Ci,Cj) ≥−n (1)

where the parameterγ determines a tradeoff between reliability and rejection rate
(number of vectors in the “don’t know” class). Sets of rules of lower reliability
(making larger number of errors) have lower rejection rates than sets of rules of
higher reliability that have larger rejection rate. IfP (Ci,Cj) depends in a discontin-
uous way on the parameters inM minimization of this formula is difficult, requiring
non-gradient minimization methods.

Real input values are obtained by measurements that are carried with finite pre-
cision, therefore it is natural to assume that instead of a crisp numberXi a Gaussian
distributionGXi = G(Yi;Xi,SXi) centered aroundXi with dispersionSXi should be
used. Performing a Monte Carlo sampling from the joint Gaussian distribution for
all continuous featuresGX = G(Y;X,SX ) an input vectorX is selected and the rule-
based classifierM is used to assign a classC(X) to these vectors. Averaging results
allows to compute probabilitiesp(Ci|X). DispersionsSX = (s(X1),s(X2) . . . s(XN))
define the volume of the input space aroundX that has an influence on computed
probabilities.

Assuming that uncertaintiessi = s(Xi) are constants independent of the feature
valuesXi is a useful simplification. For a single featurex = Xi to a very good approx-
imation [2] a ruleR[a,b](x), which is true ifx ∈ [a,b] and false otherwise, is fulfilled
by a Gaussian numberGx with probability:

p(R[a,b](Gx) = T ) ≈ σ(β(x−a))−σ(β(x−b)) (2)

whereβ = 2.4/
√

2s defines the slope of the logistic functionσ(βx) = 1/(1+ e−βx).
For large dispersions this probability is significantly different from zero well out-
side the interval[a,b]. Thus crisp logical rules for data with Gaussian distribution
of errors are equivalent to fuzzy rules with “soft trapezoid” membership functions
defined by the difference of the two sigmoids, used with crisp input value. The
slopes of these membership functions, determined by the parameterβ, are inversely
proportional to the uncertainty of the inputs. In our neural network approach to
rule extraction such membership functions are computed by the network “linguistic
units”.

For uncorrelated input featuresXi the probability thatX satisfies a ruleR =
R1(X1)∧ . . .∧RN(XN) may be defined as the product of the probabilities ofXi ∈ Ri

for i = 1, ...N. Our rule extraction methods produce very simple rules that do not
contain dependent features in a single rule, therefore taking the product is a good
approximation. Another problem occurs when probability ofX belonging to a class
described by more than one rule is estimated. Rules usually overlap because they use
only a subset of all features and their conditions do not exclude each other. Summing
and normalizing probabilities obtained for different classes may give results quite
different from real Monte Carlo probabilities. To avoid this problem probabilities
are calculated as:
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P(x ∈C) = ∑
R∈2RC

(−1)|R|+1P(x ∈
\

R) (3)

whereRC is a set of all classification rules for classC, 2RC is a set of all subsets of
RC, and|R| is the number of elements inR.

The uncertaintysi of features may for some data dependent of the values of
Xi. Classification probabilities may in such cases be based on a direct calculation
of optimal soft-trapezoidal membership functions [6]. Linguistic units of neural
networks with LR architecture provide such window-type membership functions,
L(x;a,b) = σ(β(x−a))−σ(β(x−b)). Relating the slopeβ to the input uncertainty
allows to calculate probabilities in agreement with the Monte Carlo sampling. A
network rule node (R-node) computes normalized product-type bicentral function:

R j(X;p j) =
∏i∈I (R j) σ((Xi − ti j + bi j)sL

i j)(1−σ((Xi− ti j −bi j)sR
i j))

σ(bi jsL
i j)(1−σ(bi jsR

i j))
(4)

whereI (R j) is a set of indices of features used in a given ruleR j andR j(X;p j) =
R j(X; t j,b j,sL

j ,s
R
j ). Combining rules for separate clasessC j:

O j(X) = σ( ∑
i∈I (Cj)

Ri(X;pi)−0.5) (5)

whereI (Cj) is a set of rules indices for a given classC j, probability of a classC j

for the given vectorX is:

p(Cj|X;M) = Oj(X)/∑
i

Oi(X) (6)

and the probability of a classC j for a given vectorX and ruleRi is

p(Cj|X,Ri;M) = p(Cj|X)Ri(X;pi) (7)

Optimization of model parameters: centerst, biasesb and slopess, may be done
for example by the backpropagation gradient descend algorithm in the multilayer
perceptron networks or by the Kalman filter approach in the IncNet neural networks
[7]. Since probabilitiesp(Ci|X;M) depend now in a continuous way on the linguistic
variable parameters of the rule systemM the error function:

E(M,S) =
1
2∑

X
∑

i
(p(Ci|X;M)−δ(C(X),Ci))

2 (8)

depends also on the Gaussian uncertainties of inputsS or on all parameters of the
bicentral functions if full optimization of the membership functions is performed.
Confusion matrix computed using probabilities instead of the yes/no error count
allows for optimization of Eq. (1) using gradient-based methods. This minimization
may be performed directly or may be presented as a neural network problem with a
special network architecture. Uncertaintiessi of the values of features may be treated
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as additional adaptive parameters for optimization. Assuming that the uncertainty
of si is a percentage of the range ofXi values optimization is reduced to a one-
dimensional minimization of the error function.

This approach leads to the following important improvements for any rule-based
system:

• Crisp logical rules are preserved giving maximal comprehensibility.
• Instead of 0/1 decisions probabilities of classesp(Ci|X;M) are obtained.
• Uncertainties of inputssi provide additional adaptive parameters.
• Inexpensive gradient method are used allowing for optimization of very large

sets of rules.
• Rules with wider classification margins are obtained, overcoming the brittleness

problem.

Wide classification margins are desirable to optimize the placement of decision
borders, improving results on the test set. If the vectorX of an unknown class is
quite typical to one of the classesCk increasing uncertaintiessi of Xi inputs to a rea-
sonable value (several times the real uncertainty, estimated for a given data) should
not decrease thep(Ck|X;M) probability significantly. If this is not the caseX may
be close to the class border and a detailed analysis of the influence of eachX i feature
value on the classification probability should be performed.

3 Confidence intervals and probabilistic confidence intervals

Logical rules may be replaced byconfidence intervals or probabilistic confidence
intervals [8]. Confidence intervals are calculated individually for a given input vec-
tor while logical rules are extracted for the wholetraining set. These intervals allow
for analysis of the stabilty of rules as well as the interpretation of a given case. Sup-
pose that for a given vectorX = [X1,X2, . . . ,XN ] the highest probabilityp(Ck|X;M)
is found for the classk. Let the functionC(X) = argmaxi p(Ci|X;M), i.e.C(X) is
equal to the indexk of the most probable class for the input vectorX. The confidence
interval[X r

min,X
r
max] for the featureXr is defined by

Xr
min = min

X̄

{
C(X̄) = k ∧ ∀Xr>X̂>X̄ C(X̂) = k

}
Xr

max = max
X̄

{
C(X̄) = k ∧ ∀Xr<X̂<X̄ C(X̂) = k

}
(9)

whereX̄ = [X1, . . . ,Xr−1, X̄ ,Xr+1, . . . ,XN ], andX̂ = [X1, . . . ,Xr−1, X̂ , Xr+1, . . . ,XN ].
Confidence intervals measure maximal deviation from the valueX r that do not
change the most probable classification of the vectorX, assuming that all other fea-
ture values are unchanged. If the vectorX lies near the class border the confidence
intervals are narrow, while for vectors that are typical for their class confidence in-
tervals should be wide.
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Probabilistic intervals of confidence (PIC) should guarantee thatthe winning
classk is considerably more probable than the most probable alternative class:

Xr,ρ
min = min

X̄

{
C(X̄) = k ∧ ∀Xr>X̂>X̄ C(X̂) = k ∧ p(Ck|X̄)

maxi�=k p(Ci|X̄)
> ρ

}

Xr,ρ
max = max

X̄

{
C(X̄) = k ∧ ∀Xr<X̂<X̄ C(X̂) = k ∧ p(Ck|X̄)

maxi�=k p(Ci|X̄)
> ρ

}

Theρ factor determines the confidence level. Observation of changes in confidence
intervals for different levels ofρ may be quite informative. Comparison of proba-
bilistic intervals for the winning class and alternative classes helps to estimate the
likelihood of a winning class. Such method escapes the danger of relaying only on
the decision borders of logical rules. Assuming that other features are held constant
for a given caseX three probabilities for each featureXr are displayed in Fig. 3, 4.
The solid curve is the probability of the winning class defined byp(C(X)| X̄;M).
The class may change for different values ofX̄. The dotted curve is the probability
p(Ck2|X̄) of the most probable alternative classk2 = argmaxi {p(Ci|X;M), Ci �=
C(X)}. Thek2 class is determined for the pointX only. The dashed line presents the
probability p(CkM |X̄) of the most probable alternative class atX̄. The class index
kM = argmaxi {p(Ci|X̄), Ci �= C(X)} may change, whilek2 does not change. These
three probabilities carry all information about the case given for analysis, showing
the stability of classification against perturbation of each feature and the importance
of alternative classes in the neighborhood of the inputX.

4 Real-life example

Using the theoretical ideas described here we have developed a rule-based expert
system to support psychological diagnoses. The description of psychometric data
and the test used has already been given in [9] and [10]. Here we will focus on
interpretation of the results only. 14 coefficients are calculated from analysis of an-
swers to the psychometric test, giving after normalization “psychological scales”,
often displayed in a histogram (called “a psychogram”). The first four coefficients
are used for control, measuring consistency of answers or the number of “don’t
know” answers, allowing to find malingerers. The next 10 coefficients form clinical
scales, developed to measure tendencies towards hypochondria, depression, hyste-
ria, psychopathy, paranoia, schizophrenia, etc. For example values between 70 and
80 in the hypochondria scale may be interpreted as “very strong worries about own
health, leading to psychosomatic reactions”.

We have worked with two datasets, one for women, with 1027 cases belonging
to 27 classes (normal, neurotic, drug addicts, schizophrenic, psychopaths, organic
problems, malingerers, persons with criminal tendencies etc.) determined by ex-
pert psychologists, and the second for men, with 1167 cases and 28 classes. Rules
were generated using C4.5 classification tree [11], a very good classification system
which may generate logical rules, and the Feature Space Mapping (FSM) neural net-
work [12,13] since these two systems were the easiest to use on such complex data.
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These results are for the reclassification accuracy only using generated sets of rules.
Statistical estimation of generalization by 10-fold crossvalidation gave 82-85% cor-
rect answers with FSM (crisp unoptimized rules) and 79-84% correct answers with
C4.5. Fuzzification improves FSM crossvalidation results to 90-92%. A summary of
results is given in Table 1. Accuracy refers there to the overall reclassification accu-
racy. Results from IncNet, a neural network model used in our group [7], obtained
93-95% accuracy in crossvalidation tests, comparing with 99.2% for reclassifica-
tion.

Table 1. Comparison of results on psychometric data. Fuzzy accuracy refers to results with
optimal uncertainty (C4.5, FSM) or results with bicentral functions obtained with IncNet.

Dataset System Crisp Rules Accuracy Fuzzy accuracy

women C4.5 55 93.0 93.7

women FSM 69 95.4 97.6

women IncNet – – 99.2

men C4.5 61 92.5 93.1

men FSM 98 95.9 96.9

men IncNet – – 99.2

These rules are most accurate on the available data if about 1% of the uncertainty
of measurement in each of the scales is assumed, corresponding to a Gaussian dis-
persion centered around measured values. Larger uncertainties, on the order of 5%,
lead to about the same number of classification errors as the original crisp rules, but
provide softer evaluation of possible diagnoses, assigning non-zero probabilities to
classes that were not covered by slightly fuzzified rules. Taking the input vector (66
74 54 68 75 69 69 52 75 69 77 58 65) for one of the cases difficult to diagnose,
in Fig. 1 the influence of growing uncertainties has been presented. The top two
plots show the profile and gaussian curves for each of the attributes occurring in
rule No. 54 classifying the “organic problems” cases. In the first of these standard
deviation of all attributes is equal to 1.3 times the range of possible values, while in
the second standard deviation is equal to 3 times the range. The boxes above each
feature value present the probability of belonging to a single premise of the rule.
The bottom two plots show analogical properties for rule No. 59 which classifies
to the “schizophrenia” class. Figure 2 shows how the probabilities in this example
depend on the assumptions about the data uncertainty.

If the change of the input uncertainty has strong influence on the probability of
the winning class a more detailed analysis may be useful. In contrast to rule-based
classifiers we will focus here on a single case, using all features and estimation of
conditional probabilities from IncNet classifier [7]. Figures 3 and 4 show proba-
bilistic intervals of confidence for two quite different patients (the first and the last
scale has been omitted, therefore only 12 features are displayed). The little squares
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Fig. 1. Two rules applied to a case with small and large uncertainties.
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Fig. 2. Probabilities of classes and rules (in percents) for different values of assumed uncer-
taintiessi, in percentage of the total range of the feature values.

show the probability of the winning class corresponding to the measured input val-
ues of the psychometric scales. Figure 3 presents an easy case: the psychopathy has
a large probability 0.97 and the case is quite far from any other alternative classes.
The whole range of values, 0-120, is shown and an alternative class appears only
for features 4, 7 and 12, but the confidence intervals are quite broad. Classification
does not depend on the precise values of some featuresr (for example features 2, 3,
5, 6, etc) since there are no alternative classes in the whole range of valuesX̄ may
take. The second set of plots, Fig. 4, is not so simple. The winner class, paranoia,
has probability 0.68 while the alternative class, schizophrenia has probability 0.28.
The analysis of plots shows that the values for scales 7 and 11 are close to the border
and therefore both diagnoses are probable.
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Fig. 3. Class: Psychopathy (prob. 0.97); alternative class: neurosis (prob. 0.002).
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Fig. 4. Class: Paranoia (prob. 0.68); alternative class: schizophrenia (prob. 0.28).
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5 Discussion

Machine Learning community has focused on artificial cases where a few symbolic
attributes are defined (for example, the three Monk’s problems). In real data mining
problems many continuous-valuedattributes may be presented and large sets of rules
may be needed. Rule-based classifiers are useful only if rules are reliable, accurate,
stable and sufficiently simple to be understood. Most classifiers are unstable [5] and
lead to rules that are significantly different if the training set is slightly changed.
Such rules contain little useful information and in fact may be rather misleading.
Even if stable and robust rules are found [1] the user should be warned about po-
tential misclassifications, other probable classification possibilities and influence of
each feature on the classification probability.

In this paper optimization and interpretation of sets of rules have been described.
The method is equivalent to a specific fuzzification of crisp membership functions,
equivalent to an assumption of uncertainties in the inputs. Analysis of the change
of probabilities of classification in response to the change in uncertainties allows
to estimate confidence in the performance of a rule-based system. If the confidence
is low a more detailed analysis of the influence of each feature on classification
probability is started. Probabilistic confidence intervals may be applied to any clas-
sificator estimatingp(Ck|X), enabling detailed interpretation of cases. In practical
applications users are interested in relevant features and may rarely be satisfied with
answers to questions “why” based on quotation of complex sets of logical rules.
Similarity to prototypes, or case-based interpretation, is an alternative to rule-based
systems. Therefore one should not exaggerate the importance of logical description
as the only understandable alternative to other classification methods.

Support by the KBN, grant 8 T11F 014 14, is gratefully acknowledged.
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