
Eliminators and classifiers

Włodzisław Duch and Rafał Adamczak

Department of Computer Methods
Nicholas Copernicus University

Grudziądzka 5, 87-100 Torún, Poland.
WWW: http://www.phys.uni.torun.pl/∼duch

Yoichi Hayashi

Department of Computer Science
Meiji University, Kawasaki 214-8571, Japan

Email: hayashiy@cs.meiji.ac.jp

Abstract

Classification may not be reliable for several reasons:
noise in the data, insufficient input information, overlap-
ping distributions and sharp definition of classes. Faced
with K possibilities a decision support system may still be
useful in such cases if instead of classification elimination
of improbable classes is done. Eliminators may be con-
structed using classifiers assigning new cases to a pool of
several classes instead of just one winning class. Elimina-
tion may be done with the help of several classifiers using
modified error functions. A real life medical example is
presented illustrating the usefulness of elimination.

1 Introduction.
Neural, fuzzy and machine learning systems are usually

applied as classifiers or approximators. In real-world prob-
lems designation of classes may be problematic. One of the
reasons may be due to the approximate nature of linguistic
concepts that are used to label cases changing in a contin-
uous way. Medical databases contain names of diseases
which may develop in time, from mild to severe cases,
with intermediate or mixed forms, and thus giving rise to
strongly overlapping class distributionsp(X|Ci) and fuzzy
labels. The information provided in the database may be
insufficient to distinguish the classes which may be well
differentiated by some unknown features (for example, re-
sults of a better medical test). In such situations reliable
classification is not possible and comparison of results us-
ing the accuracy based on the number of classification er-
rors may be quite misleading.

If soft class labels are needed or if insufficient number
of classes are defined some conclusions can still be drawn
by looking at the classification probabilities. For example,
the system may assign an unknown case to the overlapping
region where two or more classification probabilities have
significant values, in a way creating new, mixed or border
classes. Introduction of new classes cannot be done auto-
matically and requires close collaboration with the domain

expert. An alternative way of solving such problems is to
eliminate improbable classes, predicting that the unknown
case belongs to a subset ofk classes out ofK possible ones.
The numberk should not be fixed to account for the possi-
bility of class distributions overlapping in a different way
in different regions of the input space. Such systems may
be calledeliminators since their primary goal is to elimi-
nate with high confidence classes that are improbable.

Any modelM that estimates probabilities of classifica-
tion p(Ci|X;M) may be used to create new, soft class la-
bels or to eliminate some classes predicting thatX belongs
to two or more classes. In particular neural and neuro-
fuzzy systems are well-suited for this purpose, although
they should be modified to optimize elimination of classes
rather then predicting one class. Some other classifica-
tion systems, such as statistical discrimination methods,
support vector machines [1], decision trees or the nearest
neighbor methods provide only sharp yes/no classification
decisions [2]. Detailed interpretation of a given case is pos-
sible if methods of explanatory data analysis attempting to
visualize the case in relation to known cases from the train-
ing database are used or if classification confidence inter-
vals are calculated [3].

Our goal in this paper is two-fold. In the next sec-
tion problems specific to class elimination in neural net-
works are disussed, followed by presentation of a univer-
sal method for estimation of probabilities that is applicable
to any classifier. A real-life example of a difficult medi-
cal problem is presented in the fourth section and a short
discussion concludes this paper.

2 Elimination instead of prediction
Consider a classification problem inN dimensions with

two overlapping classes described by Gaussian distribu-
tions with equal covariance matricesΣ:

p(X|Ci)=
1

(2π)N/2|Σ|1/2
exp

{
−1

2
(X− X̄i)T Σ−1(X− X̄i)

}

Using Bayes’ theorem the posterior probability for the

first class is [4]:

p(C1|X) =
p(X|C1)P(C1)

p(X|C1)P(C1)+ p(X|C2)P(C2)
(1)

TheP(Ck) area priori class probabilities. Thusp(C1|X) =
σ(y(X)), where the functiony(X) is:

y(X) = ln
p(X|C1)P(C1)
p(X|C2)P(C2)

= W ·X−θ (2)

where

W = (X2−X1)T Σ−1 = W ·X−θ (3)

andθ = θ(X1,X2,Σ,P(C1),P(C2)). The posterior proba-
bility is thus given by a specific logistic output function.
For more than two classes normalized exponential func-
tions (called also softmax functions) are obtained by the
same reasoning:

p(Ck|X) =
exp(yk(X))

∑i exp(yi(X))
(4)

These normalized exponential functions may be inter-
preted as probabilities. They are provided in a natural way
by multilayer perceptron networks (MLPs). If one of the
probabilities is close to 1 or to 0 the situation is clear. Oth-
erwiseX belongs to the border area and a unique classi-
fication may not be possible. The domain expert should
decide if it makes sense to introduce a new, mixed class,
or to acknowledge that insufficient information is available
for accurate classification.
2.1 Measures of classifier performance

Measures of classifier performance based on accuracy
of confusion matricesF(Ci,Cj) do not allow to evaluate
their usefulness. Introduction of risk matrices or use of
receiver-operator characteristic (ROC) curves [5] does not
solve the problem either.

If the standard approach fails to provide sufficiently ac-
curate results for some classes one should either attempt
to create new classes or to minimize the number of errors
between a temporary new class composed of two or more
distinct classes. This requires a modification of the stan-
dard cost function. LetC(X;M) be the class predicted by
the modelM andp(Ci|X;M) the probability of classCi. In
most cases the cost function minimizes the classification
error and has either a quadratic form:

E2({X},R;M) = ∑
i
∑
X

(p(Ci|X)−δ(Ci,C(X)))2 (5)

or – since continuos output values are provided by some
models – minimization of risk for overall classification:

E({X},R;M) = (6)

∑
i
∑
X

R(Ci,C(X))H (p(Ci|X;M)−δ(Ci,C(X)))

wherei runs over all different classes andX over all train-
ing vectors,C(X) is the true class of the vectorX p and
the functionH(·) should be monotonic and positive; quite
often the quadratic function or entropy-based function are
used.

The elements of the risk matrixR(Ci,Cj) are propor-
tional to the risk of assigning theCi class when the true
class isCj (in the simplest caseR(Ci,Cj) = 1−δi j), andM
specifies all adaptive parameters and variable procedures of
the classification model that may affect the cost function.
Regularization terms aimed at minimization of the com-
plexity of the classification model are frequently added to
the cost function, allowing to avoid the overfitting prob-
lems. To minimize the leave-one-out error the sum runs
over all training examplesX p and the model used to spec-
ify the classifier should not contain theX p vector in the
reference set whilep(Ci|Xp) is computed.

A simplified version of the cost function is also useful:

Cj(Xp)← j = argmax
i

p(Ci|Xp;M) (7)

E({X} ;M) = ∑
p

K (C(Xp)−Cj(Xp))

whereCj(Xp) corresponds to the best recommendation of
the classifier and the kernel functionK(·, ·) measures sim-
ilarity of the classes. A general expression is:

E ({X} ;M) = ∑
i

K
(

d
(

X (i),R
))

Err
(

X (i)
)

(8)

For example in the local regression based on the mini-
mal distance approaches [6] the error function is:

E({X} ;M) = ∑
p

K(D(Xp,Xre f))(F(Xp;M)− yp)2 (9)

whereyi are the desired values forXi and F(Xi;M) are
the values predicted by the modelM. Here the kernel fun-
ctionK(d) measures the influence of the reference vectors
on the total error. For example, ifK(d) has a sharp high
peak aroundd = 0 the functionF(X;M) will fit the values
corresponding to the reference input vectors almost exactly
and will make large errors for other values. In classifica-
tion problems kernel function will determine the size of the
neighborhood around the known cases in which accurate
classification is required.

Suppose that both off-diagonal elementsF12 andF21 of
the confusion matrix are large, i.e. the two classes are fre-
quently mixed. In this case we can try to separate these two
classes from all the others using an independent classifier.
The joint class is designatedC1,2 and the model trained
with the following cost function:

Ed({X} ;M) = ∑
X

H (p(C1,2|X;M)−δ(C1,2,C(X)))

+ ∑
k>2

∑
X

H (p(Ck|X;M)−δ(Ck,C(X))) (10)

Training with such error function provides new, possi-
bly simpler, decision borders. In practice one should use
classifier first and only if classification is not sufficiently
reliable (several probabilities are almost equal) try to elim-
inate subsets of classes. If joining pairs of classes is not
sufficient triples and higher combinations may be consid-
ered.

3 Calculation of probabilities
Some classifiers do not provide probabilities, therefore

it is not clear how to optimized them for elimination of
classes instead of selection of the most probable class. A
universal solution independent of any classifier system is
described below.

Real input valuesX are obtained by measurements that
are carried with finite precision. The brain uses not only
large receptive fields for categorization, but also small
receptive fields to extract feature values. Instead of a
crisp numberX a Gaussian distributionGX = G(Y ;X ,SX)
centered aroundX with dispersionSX should be used.
Probabilitiesp(Ci|X;M) may be computed for any clas-
sification modelM by performing a Monte Carlo sam-
pling from the joint Gaussian distribution for all con-
tinuous featuresGX = G(Y;X,SX). DispersionsSX =
(s(X1),s(X2) . . . s(XN)) define the volume of the input
space aroundX that has an influence on computed prob-
abilities. One way to “explore the neighborhood” ofX and
see the probabilities of alternative classes is to increase the
fuzzinessSX definings(Xi) = (Xi,max−Xi,min)ρ, where the
parameterρ defines a percentage of fuzziness relatively to
the range ofXi values.

With increasingρ values the probabilitiesp(Ci|X;ρ,M)
change. Even if a crisp rule-based classifier is used non-
zero probabilities of classes alternative to the winning class
will gradually appear. The way in which these probabil-
ities change shows how reliable is the classification and
what are the alternatives worth remembering. If the proba-
bility p(Ci|X;ρ,M) changes rapidly around some valueρ0

the caseX is near classification border and an analysis of
p(Ci|X;ρ0,si,M) as a function of eachsi = s(Xi), i = 1. . .N
is needed to see which features have strong influence on

classification. Displaying such probabilities allows for a
detailed evaluation of the new data also in cases where
analysis of rules is too complicated. A more detailed analy-
sis of these probabilities based onconfidence intervals and
probabilistic confidence intervals has recently been pre-
sented by Jankowski [7]. Confidence intervals are calcu-
lated individually for a given input vector while logical
rules are extracted for the wholetraining set. Confidence
intervals measure maximal deviation from the given fea-
ture valueXi (assuming that other features of the vectorX
are fixed) that do not change the most probable classifica-
tion of the vectorX. If this vector lies near the class border
the confidence intervals are narrow, while for vectors that
are typical for their class confidence intervals should be
wide. These intervals facilitate precise interpretation and
allow to analyze the stability of sets of rules.

For some classification models probabilities
p(Ci|X;ρ,M) may be calculated analytically. For the
crisp rule classifiers [8] a ruleR[a,b](X), which is true if
X ∈ [a,b] and false otherwise, is fulfilled by a Gaussian
numberGX with probability:

p(R[a,b](GX) = T)≈ σ(β(X−a))−σ(β(X−b)) (11)

where the logistic functionσ(βX) = 1/(1+ exp(−βX))
hasβ = 2.4/

√
2s(X) slope. For large uncertaintys(X) this

probability is significantly different from zero well outside
the interval[a,b]. Thus crisp logical rules for data with
Gaussian distribution of errors are equivalent to fuzzy rules
with “soft trapezoid” membership functions defined by the
difference of the two sigmoids, used with crisp input value.
The slope of these membership functions, determined by
the parameterβ, is inversely proportional to the uncertainty
of the inputs. In the C-MLP2LN neural model [9] such
membership functions are computed by the network “lin-
guistic units”L(X ;a,b) = σ(β(X−a))−σ(β(X−b)). Re-
lating the slopeβ to the input uncertainty allows to calcu-
late probabilities in agreement with the Monte Carlo sam-
pling. Another way of calculating probabilities, based on
the softmax neural outputsp(C j|X;M) = Oj(X)/∑i Oi(X)
has been presented in [7].

After uncertainty of inputs has been taken into account
probabilitiesp(Ci|X;M) depend in a continuous way on
intervals defining linguistic variables. The error function:

E(M,S) =
1
2 ∑

X
∑

i

(p(Ci|X;M)−δ(C(X),Ci))2 (12)

depends also on uncertainties of inputsS. Several vari-
ants of such models may be considered, with Gaussian or
conical (triangular-shaped) assumptions for input distribu-
tions, or neural models with bicentral transfer functions in

the first hidden layer. Confusion matrix computed using
probabilities instead of the number of yes/no errors allows
for optimization of the error function using gradient-based
methods. This minimization may be performed directly or
may be presented as a neural network problem with a spe-
cial network architecture. Uncertaintiessi of the values of
features may be treated as additional adaptive parameters
for optimization. To avoid too many new adaptive param-
eters optimization of all, or perhaps of a few groups ofs i

uncertainties, is replaced by commonρ factors defining the
percentage of assumed uncertainty for each group.

This approach leads to the following important im-
provements for any rule-based system:

• Crisp logical rules provide basic description of the
data, giving maximal comprehensibility.

• Instead of 0/1 decisions probabilities of classes
p(Ci|X;M) are obtained.

• Inexpensive gradient method are used allowing for
optimization of very large sets of rules.

• Uncertainties of inputssi provide additional adaptive
parameters.

• Rules with wider classification margins are obtained,
overcoming the brittleness problem of some rule-
based systems.

Wide classification margins are desirable to optimize
the placement of decision borders, improving generaliza-
tion of the system. If the vectorX of an unknown class
is quite typical to one of the classesCk increasing uncer-
taintiessi of Xi inputs to a reasonable value (several times
the real uncertainty, estimated for a given data) should
not decrease thep(Ck|X;M) probability significantly. If
this is not the caseX may be close to the class border
and analysis ofp(Ci|X;ρ,si,M) as a function of eachsi

is needed. These probabilities allow to evaluate the influ-
ence of different features on classification. If simple rules
are available such explanation may be satisfactory. Other-
wise to gain understanding of the whole data a similarity-
based approach to classification and explanation is worth
trying. Prototype vectors Ri are constructed using a clus-
terization, dendrogram or a decision tree algorithm and a
similarity measureD(X,R) is introduced. Positions of the
prototype vectors Ri, parameters of the similarity measures
D(·) and other adaptive parameters of the system are then
optimized using a general framework for similarity-based
methods [10]. This approach includes radial basis func-
tion networks, clusterization procedures, vector quantiza-
tion methods and generalized nearest neighbor methods as
special examples. An explanation in this case is given by

pointing out to the similarity of the new caseX to one or
more of the prototype cases Ri.

Similar result is obtained if the linear discrimination
analysis (LDA) is used - instead of sharp decision border
in the direction perpendicular to LDA hyperplane a soft lo-
gistic function is used, corresponding to a neural network
with singe neuron. The weights and bias are fixed by the
LDA solution, only the slope of the function is optimized.

4 Real-life example
Hepatobiliary disorders data, used previously in sev-

eral studies [17, 11, 12, 16], contains medical records of
536 patients admitted to a university affiliated Tokyo-based
hospital, with four types of hepatobiliary disorders: alco-
holic liver damage (AL), primary hepatoma (PH), liver cir-
rhosis (LC) and cholelithiasis (CH). The records includes
results of 9 biochemical tests and sex of the patient. The
same 163 cases as in [17] were used as the test data.

In the previous work three fuzzy sets per each input
were assigned using recommendation of the medical ex-
perts. A fuzzy neural network was constructed and trained
until 100% correct answers were obtained on the training
set. The accuracy on the test set varied from less than
60% to a peak of 75.5%. Although we quote this result in
the Table 1 below it seems impossible to find good criteria
that will predict when the training on the test set should be
stopped. Fuzzy rules equivalent to the fuzzy network were
derived but their accuracy on the test set was not given.
This data has also been analyzed by Mitra et al. [18, 16]
using a knowledge-based fuzzy MLP system with results
on the test set in the range from 33% to 66.3%, depending
on the actual fuzzy model used.

For this dataset classification using crisp rules was
not too successful. The initial 49 rules obtained by C-
MLP2LN procedure gave 83.5% on the training and 63.2%
on the test set. Optimization did not improve these results
significantly. On the other hand fuzzy rules derived using
the FSM network, with Gaussian as well as with triangu-
lar functions, gave similar accuracy of 75.6-75.8%. Fuzzy
neural network used over 100 neurons to achieve 75.5%
accuracy, indicating that good decision borders in this case
are quite complex and many logical rules will be required.
Various results for this dataset are summarized in Table 1.

FSM gives about 60 Gaussian or triangular membership
functions achieving accuracy of 75.5-75.8%. Rotation of
these functions (i.e. introducing linear combination of in-
puts to the rules) does not improve this accuracy. We have
also made 10-fold crossvalidation tests on the mixed data
(training plus test data), achieving similar results. Many
methods give rather poor results on this dataset, includ-
ing various variants of the instance-based learning (IB2-
IB4, except for the IB1c, which is specifically designed
to work with continuous input data), statistical methods

Table 1: Results for the hepatobiliary disorders. Accuracy
on the training and test sets, in %. Top results are achieved
eliminating classes or predicting pairs of classes. All cal-
culations are ours except where noted.

Method Training set Test set
FSM-50, 2 most prob. classes 96.0 92.0
FSM-50, class 2+3 combined 96.0 87.7
FSM-50, class 1+2 combined 95.4 86.5
Neurorule [11] 85.8 85.6
Neurolinear [11] 86.8 84.6

1-NN, weighted (ASA) 83.4 82.8
FSM, 50 networks 94.1 81.0
1-NN, 4 features 76.9 80.4
K* method – 78.5
kNN, k=1, Manhattan 79.1 77.9
FSM, Gaussian functions 93 75.6
FSM, 60 triangular functions 93 75.8
IB1c (instance-based) – 76.7
C4.5 decision tree 94.4 75.5
Fuzzy neural network [16, 18] 100 75.5
Cascade Correlation – 71.0
MLP with RPROP – 68.0
Best fuzzy MLP model [12] 75.5 66.3
C4.5 decision rules 64.5 66.3
DLVQ (38 nodes) 100 66.0
LDA (statistical) 68.4 65.0
49 crisp logical rules 83.5 63.2
FOIL (inductive logic) 99 60.1
T2 (rules from decision tree) 67.5 53.3
1R (rules) 58.4 50.3
Naive Bayes – 46.6
IB2-IB4 81.2-85.5 43.6-44.6

(Bayes, LDA) and pattern recognition methods (LVQ).

The best classification results were obtained with the
committee of 50 FSM neural networks [14, 15] (in Table
1 shown as FSM-50), reaching 81%. Thek-nearest neigh-
bors (kNN) with k=1, Manhattan distance function and se-
lection of features gives 80.4% accuracy (for details see
[13]) and after feature weighting 82.8% (the training accu-
racy of kNN is estimated using the leave-one-out method).
K* method based on algorithmic complexity optimization
gives 78.5% on the test set, with other methods giving sig-
nificantly worse results.

The confusion matrix obtained on the training data from
the FSM system, averaged over 5 runs and rounded to in-
teger values is (rows - predicted, columns - required):

AL PH LC CH
AL 70 6 3 3
PH 3 121 3 1
LC 1 8 77 2
CH 0 0 0 72

 (13)

Looking at the confusion matrix one may notice that the
main problem comes from predicting AL or LC when the
true class is PH. The number of vectors that are classified
incorrectly with high confidence (probability over 0.9) in
the training data is 10 and in the test data 7 (only 4.3%).
Rejection of these cases increases confidence in classifica-
tion, as shown in Fig. 1.

0 5 10 15 20 25
94

94.5

95

95.5

96

96.5

97

97.5

98

98.5

99

Rejected vectors [%]

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 [%

]

Figure 1: Relation between the accuracy of classification
and the rejection rate.

In [11, 12] a “relaxed success criterion” has been used,
counting as a success if the first two strongly excited out-
put neurons contain the correct class. This is equivalent to
elimination of 2 classes, leaving the combination of other
two as the most probable. In this case accuracy improves,
reaching about 90%. In [11] two rule extraction methods,
Neurorule andNeurolinear are used, and the best test set
results reach 88.3% and 90.2% respectively. Unfortunately
true classification accuracy results of these methods are
significantly worse then those quoted in Table 1, reaching
only 48.4% (Neurorule) and 54.4% (Neurolinear) [11] on
the test set. We have used here the elimination approach
defining first a committee of 50 FSM networks that classify
81% of cases correctly with high reliability, while cases
which cannot be reliably classified are passed to the sec-
ond stage, in which elimination of pairs of classes (1+2 or
2+3) is made. Training a “supersystem” with error function
given by Eq. 10 that tries to obtain the true class as one of
the two most probable classes gives 92% correct answers
on the test and 96% on the training set. This high accu-
racy unfortunately drops to 87% if a threshold ofp ≥ 0.2

is introduced for the second class. In any case we can reli-
ably diagnose about 80% of the test cases and for the half
of the remaining cases we can eliminate two classes and
assign the case under consideration to a mixture of the two
remaining classes.

5 Discussion
If reliable classification in a multi-class problem is im-

possible one can still provide a useful decision support us-
ing a classifier that is able to predict some cases with high
confidence and an eliminator that can reliably eliminate
several classes. The case under consideration most proba-
bly belongs to a mixture of remaining classes. Eliminators
are build by analysis of confusion matrices and training
classifiers with modified error functions.

Since not all classifiers provide probabilities and thus
allow to estimate the confidence in their decisions we
have described here a universal way to obtain probabili-
ties p(Ck|X;ρ,M) using Monte Carlo estimations. In some
cases these probabilities may be determined analytically.
Since usually only one new case is evaluated at a time (for
example in medical applications) the cost of Monte Carlo
simulations is not so relevant. Further research to deter-
mine the best ways of elimination of classes and applica-
tions of such approach to medical and other problems are
under way.

References
[1] N. Cristianini, J. Shawe-Taylor,“An introduction

to support vector machines (and other kernel-based
learning methods),” Cambridge University Press,
2000

[2] D. Michie, D.J. Spiegelhalter, C.C. Taylor (eds.),Ma-
chine Learning, Neural and Statistical Classification,
Ellis Horwood, New York, 1994

[3] W. Duch, Y. Hayashi, “Computational intelligence
methods and data understanding,”International Sym-
posium on Computational Intelligence, Kosice - Slo-
vakia, August 2000 (in print)

[4] C. M. Bishop,Neural Networks for Pattern Recogni-
tion, Oxford University Press, 1995.

[5] J.A. Swets, “Measuring the accuracy of diagnostic
systems.”Science, Vol. 240, pp. 1285-93, 1988

[6] C.G. Atkenson, A.W. Moor and S. Schaal, “Lo-
cally weighted learning,”Artificial Intelligence Re-
view, Vol. 11, pp. 75-113, 1997

[7] Duch, W., Jankowski, N., Adamczak, R.,
Grąbczewski, K. (2000) Optimization and Inter-
pretation of Rule-Based Classifiers. Intelligent
Information Systems IX, Springer Verlag (in print)

[8] Duch, W., Adamczak, R., Gr ˛abczewski, K. (1999)
Methodology of extraction, optimization and applica-
tion of logical rules. Intelligent Information Systems
VIII, Ustroń, Poland, 14-18.06.1999, pp. 22-31

[9] Duch, W., Adamczak, R., Gr ˛abczewski, K. (1998)
Extraction of logical rules from backpropagation net-
works. Neural Processing Letters7, 1-9

[10] Duch, W. (1998) A framework for similarity-based
classification methods, Intelligent Information Sys-
tems VII, Malbork, Poland, June 1998, pp. 288–291

[11] Y. Hayashi, R. Setiono and K. Yoshida, “A compari-
son between two neural network rule extraction tech-
niques for the diagnosis of hepatobiliary disorders.”
Artificial Intelligence in Medicine, 2000 (in print).

[12] Y. Hayashi, R. Setiono and K. Yoshida, “Diagnosis of
hepatobiliary disorders using rules extracted from ar-
tificial neural networks.” In: Pro. 1999 IEEE Interna-
tional Fuzzy Systems Conference, Seoul, Korea, Au-
gust 1999, vol. I, pp. 344-348.

[13] W. Duch, R. Adamczak, K. Gr¸abczewski, G.Żal,
Y. Hayashi, “Fuzzy and crisp logical rule extraction
methods in application to medical data." Computa-
tional Intelligence and Applications. Springer Studies
in Fuzziness and Soft Computing, Vol. 23 (ed. P.S.
Szczepaniak), Springer 2000, pp. 593-616

[14] Duch, W., Diercksen, G.H.F. (1995)Feature Space
Mapping as a universal adaptive system, Computer
Physics Communication87, 341–371

[15] Duch, W., Adamczak, R., Jankowski, N. (1997) New
developments in the Feature Space Mapping model.
3rd Conf. on Neural Networks, Kule, Poland, Oct.
1997, pp. 65-70

[16] Pal, S.K. and Mitra S. (1999)Neuro-Fuzzy Pattern
Recognition. J. Wiley, New York

[17] Y. Hayashi, A. Imura, K. Yoshida, “Fuzzy neural ex-
pert system and its application to medical diagnosis",
in: 8th International Congress on Cybernetics and
Systems, New York City 1990, pp. 54-61

[18] S. Mitra, R. De, S. Pal, "Knowledge based fuzzy
MLP for classification and rule generation", IEEE
Transactions on Neural Networks 8, 1338-1350, 1997

