
Control and Cybernetics

vol.29 (2000) No. 4

Neural methods of knowledge extraction

by

Włodzisław Duch, Rafał Adamczak, Krzysztof Gra̧bczewski and Norbert Jankowski

Department of Computer Methods, Nicholas Copernicus University,
ul. Grudzia̧dzka 5, 87-100 Toru´n, Poland.

E-mail: duch,raad,kgrabcze,norbert@phys.uni.torun.pl

Abstract: Contrary to the common opinion neural networks may be
used for knowledge extraction. Recently a new methodology of logical
rule extraction, optimization and application of rule-based systems has
been described. C-MLP2LN algorithm, based on constrained multilayer
perceptron network, is described here in details and the dynamics of a
transition from neural to logical system illustrated. The algorithm han-
dles real-valued features, determining appropriate linguistic variables or
membership functions as a part of the rule extraction process. Initial rules
are optimized exploring the tradeoff between accuracy/simplicity at the
rule extraction stage and between reliability of rules and rejection rate
at the optimization stage. Gaussian uncertainties of measurements are
assumed during application of crisp logical rules, leading to “soft trape-
zoidal” membership functions and allowing to optimize the linguistic vari-
ables using gradient procedures. Comments are made on application of
neural networks to knowledge discovery in benchmark and in real life
problems.

Keywords: Data mining, decision support, logical rules, fuzzy rules,
optimization, medical diagnosis.

1. Introduction.

In many applications rule-based classifiers may be created automatically extracting the
rules from data using machine learning (Mitchel 1997), fuzzy logic (Kosko 1992) or
neural network methods (Duchet al. 2000). Classical crisp logic rules are obtained
from fuzzy rules if all membership functions are rectangular (i.e. their values are 0 or
1). Rectangles allow to define logical linguistic variables for each feature by intervals
or sets of nominal values and thus allow to express logical rules in simple sentences like
“IF the odor is fishy THEN the mushroom is poisonous”. If rectangular functions are
softened or changed to trapezoidal membership functions fuzzy interpretation of rules

2 Duch, Adamczak, Gra¸bczewski and Jankowski

is obtained. Fuzzy logic classifiers are frequently based on a few triangular member-
ship functions for each input feature, a further simplification comparing to trapezoidal
functions.

If the number of rules is relatively small and their accuracy is sufficiently high
rule-based classifiers are optimal choice. Crisp logical rules are desirable since they
are most comprehensible, but they have several drawbacks. First, using crisp rules
only one class is identified as the correct one, thus providing a black-and-white picture
where some gradation could be appropriate. Second, reliable crisp rules may reject
some cases as unclassified. Third, using the number of errors given by the crisp rule
classifier for the cost function makes optimization difficult, since only non-gradient
optimization methods may be used. All these problems are overcome if continuous
membership functions are used, leading to the fuzzy rather than crisp rules. Fuzzy rules
have two disadvantages: they are not so comprehensible as the crisp rules, and they
usually involve more parameters determining positions and shapes of the membership
functions.

Systems based on fuzzy logic frequently use a fixed set of membership functions
with predetermined shapes. Although it helps to avoid overparameterization it cre-
ates some problems. Defining linguistic variables in such context-independent way
amounts in effect to a regular partitioning of the whole input space into convex re-
gions. This approach suffers from the curse of dimensionality, since withk linguistic
variables ind dimensions the number of possible input combinations isk d . Fuzzy rules
simply pick up those areas in the input space that contain vectors from a single class
only, but without the possibility to adapt membership functions to individual clusters
in a single rule they do not allow for optimal description of these clusters. Much better
results may be obtained with context-dependent linguistic variables (Duchet al. 1999),
different in each rule.

Machine learning methods are frequently tested in artificial, noiseless domains (cf.
the 3 Monk problems, Thrunet al. 1991), where real problems with large amount of
data, overlapping classes and the need for simplified, although less accurate, data de-
scription is not apparent. Neural networks are universal classifiers used in such prob-
lems, but they have an opinion of being opaque black boxes. Several neural meth-
ods have been compared experimentally on the mushroom and the 3 Monk problems
benchmark datasets (Andrewset al. 1995), and recently comparison with some ma-
chine learning methods has been given (Duchet al. 2000). There is no reason why
a simple classification model based on logical rules should always work, but in some
cases it does and is certainly worth using. In many applications simple crisp logical
rules proved to be more accurate and were able to generalize better than many machine
and neural learning algorithms (Duchet al. 1998, 1999). One should always try to
use the simplest description of the data possible, but not simpler. In a few applications
fuzzy rules proved to be more accurate (Duchet al. 2000). If the number of logical
rules required for high accuracy of classification is too large other, more sophisticated
classification models are needed – a hybrid, neuro-logical algorithm is described in this
paper.

Although interpretation of crisp rules seems to be straightforward, in fact it may

Neural methods of knowledge extraction 3

be quite misleading. A small change in the value of a single feature may lead to a
complete change of the predicted class. Thus interpretation of crisp rules is not stable
against small perturbations of input values. Fuzzy rules are better in this respect since
estimation of probabilities of different classes change smoothly. There is a tradeoff
between the fuzziness and the degree of precision remains. If the membership functions
are too broad all classes have similar probability. In the opposite case perturbation
of the input vector may significantly change classification probabilities, even if the
size of the perturbation is within the range of accuracy of the measured input values.
Interpretation without exploration of alternative diagnoses may in such cases be rather
dangerous. Rough rules suffer from the same interpretative problems even to a greater
degree, because rough classifiers (cf. Pal and Skowron 1999) produce a large number
of unstable rules (cf. Breiman 1998 on the importance of stability).

Although the biggest advantage of rule-based classifiers is their comprehensibility
in practice interpretation of rules is not so simple. On the other hand neural networks
may easily be converted into systems that are equivalent to crisp or fuzzy rule-based
classifiers and thus may have transparent interpretation. In this paper only one classi-
cal neural model, constructive multilayer perceptron (C-MLP), constrained to work as
a logical-like network (hence the name of the method, C-MLP2LN, Duchet al. 1998),
is described. However, it should be clear that using neural network models based on
localized separable transfer functions (Duch and Jankowski 1999), such as the triangu-
lar functions, or soft trapezoidal functions, allows for a smooth transition from crisp to
fuzzy rules and enables natural interpretation of rules. Such neurofuzzy systems (cf.
Duch and Diercksen 1995; Duchet al. 1997) may also be used for quite complex data
analysis (cf. Duchet al. 1999).

In the next section a short overview of recent work on extraction of knowledge
from data is presented. The third section describes the latest developments of the C-
MLP2LN model and illustrates the transition process from complex data description to
simple decision borders realized by sets of crisp logic rules. The fourth section deals
with optimization and application of sets of rules and the fifth section illustrates the
method on a few problems. The paper is finished with a short discussion.

2. Neural methods of knowledge extraction

A good strategy in data mining is to extract simplest crisp logical rules first. If the
number of logical rules required for high accuracy of classification is large then more
sophisticated methods, such as fuzzy rules, capable of providing complex decision bor-
ders, should be used. Are neural methods competitive to other methods in providing
simple and accurate sets of logical rules? There are two issues here: understanding
what neural networks really do, and using neural networks to extract logical rules de-
scribing the data. There is a strong competition from decision trees (Quinlan 1993,
Michie et al. 1994), which are fast, accurate and can easily be converted to sets of
logical rules, from inductive methods of machine learning (Mitchell 1997), and from
systems based on fuzzy (Kosko 1992) and the rough sets theory (Pal and Skowron
1999).

4 Duch, Adamczak, Gra¸bczewski and Jankowski

Despite this competition neural networks seem to have important advantages, espe-
cially for real-life problems with continuous-valued inputs. Good linguistic variables
may be determined simultaneously with logical rules, selection and aggregation of fea-
tures into smaller number of more useful features may be incorporated in the neural
model, adaptation mechanisms for continuously changing data (on-line learning) are
built in, wide-margin classification provided by neural networks leads to more robust
logical rules. An overview of neural methods used for extraction of logical rules has
recently been published (Duchet al. 2000), therefore only a summary of our recent
work on this subject is given here.

Knowledge that is understandable to human may come in different forms. The
simplest form of knowledge is contained in standard IF ... THEN prepositional rules
used in many expert systems. Non-standard rules, such as theM-of-N rules (M out
of N antecedents should be true) are quite natural for the most common MLP neural
networks, where the basic operation performed by the neurons is to compare weighted
combination of input values with the thresholdθ. The output function

o(Ii(X)) = σ(Ii) = σ

(
∑

j

Wi jXj−θi

)
, (1)

has usually sigmoidal shape (for example it may be a logistic functionσ(I) = 1/(1+
e−βI), whereβ is a constant determining the slope), and becomes at the limit of infi-
nite slope a step function. On the other hand Radial Basis Function (RBF) networks
(cf. Bishop 1995) frequently use Gaussian functions as transfer functions. Triangular
functions and symmetric trapezoidal functions are also radial and may be used in RBF
networks. In general separable output functions

o(X) = ∏
i

µi(Xi), (2)

computing products of one-dimensional function have a straightforward interpretation
as the membership functions of linguistic variables (Duch and Diercksen 1995). In
the MLP network “natural” membership functions are obtained as a difference of two
sigmoidal functions,µi(Xi) = σ(Xi)−σ(Xi−θi) or the product of sigmoidal functions
σ(Xi)(1−σ(Xi)) in all dimensions. It is not difficult to prove that after normalization
the two forms are identical:

σ(X + b)(1−σ(X−b))
σ(b)(1−σ(−b))

=
σ(X + b)−σ(X−b)

σ(b)−σ(−b)
. (3)

These membership functions are easily realized using a pair of constrained MLP
neurons (Fig. 1), where the weights are either zero or±1 and the thresholds define
the linguistic variables. In the limit of high gain (largeβ in logistic functions) they
are converted into crisp linguistic variables:sk is true if the input valueXi ∈ [Xi,k,X ′i,k],
i.e. linguistic variables for a given featureXi are parameterized by interval values
sk(Xi,k,X ′i,k).

Neural methods of knowledge extraction 5

x

+1

+1

2

b'

b

b b' b b'

1
W

W

1S

2
S

σ(W x+b)
1

σ(W x+b')
2

Type 1 Type 2

Type 3 Type 4

Figure 1. Two sigmoidal neurons are used to construct a linguistic unit converting
continuous inputs to linguistic variables. Four basic types of “window” functions are
obtained, depending on theW andS weight values.

Since crisp logical rules are the simplest and most comprehensible they should be
tried first. They provide hyperrectangular decision borders in the feature subspaces
corresponding to variables appearing in rule conditions. This approximation may not
be sufficient if complex decision borders are required, but it may work quite well if the
problem has an inherent logical structure.

Classifier based on logical rules provides an approximation to the posterior prob-
ability p(Ci|X ;M), where the classification modelM is composed of the set of rules.
Crisp rules givep(Ci|X ;M) = 0,1 but if clusters belonging to different classes overlap
this is obviously wrong. Fuzzy rules, for example in the form

p(Ck|X ;M) =
µ(k)(X)

∑i µ(i)(X)
, (4)

whereµ(k)(X) is the value of the membership function defined for the clusterk, provide
classification probabilities instead of the yes/no answers. Suchcontext-dependentor
cluster-dependent membership functionsare rarely used in classification systems
based on fuzzy logic, although they are quite natural in the neurofuzzy systems (Duch
and Diercksen 1995, Duchet al. 1997). Neurofuzzy systems adapt the number as well
as the shapes of the membership functions to the data. Although various fuzzy, rough

6 Duch, Adamczak, Gra¸bczewski and Jankowski

and neurofuzzy systems differ in their ability to discover and use logical rules for data
description, their ultimate capability depends on the decision borders they may provide
for classification. For example, if a simple ruleX1 + X2 > 1 classifies data correctly a
large number of fuzzy or crisp rules may be created to obtain a poor description of the
data, while systems that use rotated decision borders handle it perfectly with a single
rule.

Extraction of linguistic variables and sets of logical rules proceeds in the following
manner (Duchet al. 2000):

• Select linguistic variables. In case of continuous featuresXi linguistic variablesk

is true if the input valueXi ∈ [Xi,k,X ′i,k], i.e. are parameterized by interval values
sk(Xi,k,X ′i,k).
• Extract rules from the data using neural, machine learning or statistical tech-

niques.
• Optimize linguistic variables (intervals they depend upon) using the rules and

exploring the accuracy/rejection rate tradeoff.
• Repeat previous steps until a stable set of rules is found.
• Introduce and optimize input uncertainties.

The last step will be explained in Sect. 4 below. We have described several meth-
ods of initial rule extraction, based on decision trees (using the SSV separability cri-
terion, Gra̧bczewski and Duch 1999), Feature Space Mapping Network, search-based
discretized networks and standard MLP networks trained with the backpropagation
procedure (Duchet al. 2000). Since the constructive MLP network gave very simple
and accurate sets of rules in a number of applications we have developed it further and
present the algorithm in details below.

3. C-MLP2LN model

MLP2LN is a smooth transformation between the MLP network and a network per-
forming logical operations (Logical Network, LN) (Duchet al. 1998). This trans-
formation should simplify the network as much as possible to facilitate logical rule
extraction. Skeletonization of a large MLP network is the method of choice if our goal
is to find logical rules for an already trained network. Otherwise constructive approach,
starting from a single neuron and expanding the logical network during training (called
further C-MLP2LN method) is faster and more accurate. Smooth transition from an
MLP to a logical-type of network performing similar functions is achieved during net-
work training by:
a) simplifying the network structure by decreasing the weights during the training us-
ing a penalty regularization term in the cost function;
b) gradually increasing the slopeβ of sigmoidal functionsσ(βx) to obtain crisp deci-
sion regions;
c) enforcing the integer weight values 0 and±1, interpreted as 0 = irrelevant input,+1
= positive and−1 = negative evidence.

To achieve these objectives two additional terms are added to the standard mean

Neural methods of knowledge extraction 7

square error functionE0(W) to form the total cost functionE(W):

E(W) = E0(W)+ R1(W)+ R2(W) =
1
2 ∑

p
∑
k

(
Y(p)

k −Fk

(
X(p);W

))2
+ (5)

λ1

2 ∑
i, j

W 2
i j +

λ2

2 ∑
i, j

W 2
i j(Wi j−1)2(Wi j +1)2

The first part is the standard mean square error measure of matching the network
output vectorsF(X (p);W) with the desired output vectorsY (p) for all training data sam-
plesX(p). The first regularization termR1(W), scaled byλ1, is frequently used in the
weight pruning or in the Bayesian regularization method (cf. Bishop 1995) to improve
generalization of the MLP networks. The second regularization termR 2(W), scaled by
λ2, is a sum over all weights and has a minimum (zero) for weights approaching zero
or±1.

A naive interpretation why regularization works (for a more sophisticated view
see Bishop 1995 and references there) is based on observation that small weights and
thresholds mean that only the linear part of the sigmoid aroundσ(0) is used. Therefore
the decision borders are rather smooth. On the other hand for logical rules decision
borders should be sharp and the network should be as simple (skeletal) as possible.
Therefore the regularization term that we have used so far may not be the most appro-
priate. Another regularization term:

R1(W) =
λ1

2 ∑
i j

W 2
i j

1+W2
i j

, (6)

does not grow to infinity for large weights and thus allows those weights that should
not vanish at the end of the training to stay sufficiently large. It induces an extra weight
change that is easy to implement in the backpropagation training procedure:

Wi j←

1− λ1η(

1+W2
i j

)2

Wi j (7)

whereη is the learning constant.
The first regularization term is used at the beginning of the training to force as many

weights as possible – without a sharp increase of the mean square errorE 0(W) term – to
become sufficiently small to be removed. This term is switched off and the second reg-
ularization term (scaled byλ2) increased in the second stage of the training. This allows
the network to increase the remaining weights. Large weights, together with increasing
slopes of sigmoids, lead to sharp decision borders of rectangular shape. Although non-
zero weights have values restricted to±1 increasing the slopesβ is equivalent to using
the network with one, large non-zero weight valueW = ±β with sigmoidal functions
of a unit slope.

8 Duch, Adamczak, Gra¸bczewski and Jankowski

An obvious generalization is to use several different maximalW values in the final
network, for example by adding, after skeletonization of the network, the following
penalty term:

∑
i, j

(σ(Wi j +1)−σ(Wi j−1)) . (8)

This term will not restrict the weights to±1 but will allow them to grow beyond these
values. If the network is used to extract the logical rules at the end of the training
the slopes should be infinitely steep, corresponding to infinite non-zero weights (in
practiceW = ±10000 is used), therefore nothing is gained. However, if the final goal
is a hybrid, network-rule based neuro-logical system that provides logical description
of data whenever possible and more complex decision borders wherever necessary, this
may be an attractive solution.

The architecture of the network is presented in Fig. 2. Logical (binary) inputs
may be directly connected to the rule nodes (R-nodes), while all continuous inputs go
through L-units creating linguistic variables. In some applications with a large number
of featuresan aggregationof features belonging to the same type is possible, leading
to a smaller number of linguistic variables that carry more information. Groups of fea-
tures that are of the same type are combined together by an additional layer of neurons
between the input and the L-units. These aggregation units (A-units) should incor-
porate domain knowledge about the type of input features and usually may be linear.
In some cases one may use information theory or separability criteria (Wettschereck
1997) to set up the weights for these units, decreasing the number of adaptive parame-
ters during the network training.

Initial knowledge about the problem may be inserted directly into the network
structure, defining initial network parameters and structure that is modified during on-
line training in view of the incoming data. Since the final network structure becomes
quite simple insertion of partially correct rules to be refined by the learning process is
quite straightforward.

The training proceeds separately for each output class. Although the method works
with general multilayer backpropagation networks we recommend the C-MLP2LN
constructive procedure that frequently leads to a satisfactory solution in a much faster
way. This is due to the fact that no experimentation is needed to determine the net-
work architecture and that a single neuron is trained at a time instead of all neurons
simultaneously. While the actual differences in timing strongly depend on the problem
constructive MLP2LN method has frequently been more than two orders of magnitude
faster than the standard network.

As with all neural procedures for some data the network training may slow down
and require some experimentation so the procedure is not completely automatic. Typi-
cal parameter values that work in most cases are given in the description of the training
procedure here.

1. Set up the structure of the aggregation layer and create L-units for continuous
inputs, usually 1-3 units per input (too small number of the linguistic variables
will lead to low accuracy of rules).

Neural methods of knowledge extraction 9

X
1

X

X

2

3

L-units

R-units
X

4
A-units

Figure 2. MLP network with linguistic and rule units. An additional aggregation layer
provides theXi inputs to the L-units;X1-X3 are real-valued,X4 is a logical input.

2. Create one hidden neuron (R-unit neuron) per class.
3. Train the neuron on data for the first class using backpropagation procedure

with regularization. Start with smallλ1 = 10−5 andλ2 = 0 and the unit slope
σ(βx),β = 1.

4. If convergence is too slow add another R-unit neuron and train two neurons si-
multaneously; in rare cases training even more neurons may significantly speed
up the training.

(a) Train as long as the error decreases; then increaseλ 1← 10λ1 and the slope
of sigmoidal functionsβ← β+ 1 and train further; repeat this step until
sharp increase of the error is noticed whenλ 1 is increased.

(b) Decreaseλ1 slightly until the error is reduced to the previous value and
train until convergence.

(c) Takeλ2 = λ1 and putλ1 = 0; train slowly increasing the slopes andλ 2 until
the remaining weights reach 0±0.05 or±1±0.05.

(d) Set very large slopesβ≈ 1000 and integer weights 0,±1.

5. Analyze the weights and the threshold(s) obtained by checking the combinations
of linguistic features that activate the first neuron(s). This analysis allows to
write the first group of logical rules that cover the most common input-output
relations.

10 Duch, Adamczak, Gra¸bczewski and Jankowski

6. Freeze the weights of existing neurons during further training. This is equivalent
to training only new neurons (usually one per class at a time).

7. Add the next neuron and train it on the remaining data in the same way as the
first one. Connect it to the output neuron for the class it belongs to (if more than
one R-neuron for this class has been created).

8. Repeat this procedure until all data are correctly classified, or the number of rules
obtained grows sharply, signifying overfitting (for example one or more rules per
one new vector classified correctly are obtained).

9. Repeat the whole procedure for data belonging to other classes.

The network expands after a neuron is added and then shrinks after connections
with small weights are removed. A set of rulesR 1∨ R 2...∨ R n is found for each class
separately. The output neuron for a given class is connected to the hidden neurons
created for that class – in simple cases only one neuron may be sufficient to learn
all instances, becoming an output neuron rather than a hidden neuron (cf. Fig. 3).
Output neurons performing summation of the incoming signals are linear and have
either positive weight+1 (adding more rules) or negative weight−1. The last case
corresponds to those rules that cancel some of the errors created by the previously
found rules that were too general. They may be regarded as exceptions to the rules.

Since each time only one neuron per class is trained the C-MLP2LN training is
fast. Both standard MLP architecture with linguistic inputs or the L-R network may be
used with the C-MLP2LN training algorithm. The first neuron for a given class learns
the most general pattern, covering the largest number of instances. Therefore rules
obtained by this algorithm are ordered, starting with rules that have the largest coverage
and ending with rules that handle only a few cases. An optimal balance between the
number of rules and the generalization error is usually obtained when only the rules
that cover larger number of cases are retained. The final solution may be presented
as a set of rules, or as a network of nodes performing logical functions, with hidden
neurons realizing the rules, and the hidden-output neuron weights set to±1. However,
some rules obtained from analysis of the network may involve spurious conditions and
therefore the optimization and simplification steps are necessary.

λ1 andλ2 parameters determine the simplicity/accuracy tradeoff of the generated
network and extracted rules. If a very simple network giving only a rough description
of the data (and thus simple logical rules) is desiredλ 1 should be as large as possi-
ble. Although one may estimate the relative size of the regularization term versus the
mean square error (MSE) a few experiments are sufficient to find the largest value for
which the MSE is still acceptable and does not decrease quickly whenλ 1 is decreased.
Smaller values ofλ1 should be used to obtain more accurate networks (larger sets of
rules). The final value ofλ2 near the end of the training is always set to larger values
than the maximum value ofλ 1 at the beginning of the training.

The dynamics of the learning process is illustrated using the well-known example
of the Iris data. For each of the 3 different classes of the Iris flowers 50 samples
are given, described by 4 numbers, the length and the width of flower’s sepals and
petals. The final structure of the simplest network that solves the problem is shown in

Neural methods of knowledge extraction 11

1

1

C1

C2

C3

x3

x4

Figure 3. Structure of the simplest network solving the Iris problem.

Fig. 3. Only two of the four inputs have non-zero weights and only the second class
needs the full L-unit, the weights in other L-units became sufficiently small to delete
corresponding connections. There is no additional output layer since a single neuron
classifies all data from the first class correctly (this class represents Iris-setosa kind of
flowers) and the two other neurons make only 3 errors on the remaining two classes
(Iris virginica and versicolor).

In Fig. 4 contours of decision borders are shown at various training stages. 5 output
values around 0.5 are shown. In the beginning of the training contours are broadly
spaced and at the end they collapse to a single line. At the beginning of the training
(first subfigure, after 20 learning epochs withλ 1 = 10−5 andη = 0.1) the network
has slopesβ = 1 and the absolute value of the largest weight is around 4; sigmoidal
functions are smooth and the position of the 0.5 contour is influenced (through the MSE
minimization) by all vectors in the training set. The next two subfigures show contours
after 100 and 400 epochs, with the same learning and regularization parameters. The
largest weight grew to about 13. The next subfigure shows contours after another 200
epochs of training withλ1 = 10−3 andβ = 3, and the fifth subfigure after another 200
epochs withλ1 = 0 andλ2 = 10−2. Finally the last figure shows the logical network
with β = 10000 and±1 weights. Please note that the decision border between the
first class (left corner, Iris-Setosa) and the other two classes is at the optimal position,
x3 < 2.55. Some machine learning algorithms will place it near 2 or 3, since there is
a gap in this interval without any data vectors in it. Such systems obviously produce
rules giving poor generalization in crossvalidation tests.

The final rules obtained from this network are:

IF (x3 < 2.55) THEN Class1
IF (x4 > 1.66) THEN Class3
IF (x3 > 2.55∧x4 < 1.66) THEN Class2

MLP is changed into a logical network by increasing the slopeβ of sigmoidal func-
tions to infinity, changing them into the step-functions. Such training process should
be done carefully since very steep sigmoidal functions have non-zero gradients only
in small regions of the feature space, and thus the number of vectors contributing to
the learning process goes to zero. Therefore when convergence becomes slow for large
slopes it is necessary to stop network training, extract logical rules and optimize the in-

12 Duch, Adamczak, Gra¸bczewski and Jankowski

0 2 4 6
0

1

2

3

4

0 2 4 6
0

1

2

3

4

0 2 4 6
0

1

2

3

4

0 2 4 6
0

1

2

3

4

0 2 4 6
0

1

2

3

4

0 2 4 6
0

1

2

3

4

Figure 4. Contours of decision borders during training on the Iris data. The data is
displayed inx3 (petal length in centimeters) andx4 (petal width) coordinates. Top left
figure shows constant values of the network outputs at the beginning of the training
when small slopes of the sigmoidal functions are used. During the training slopes
gradually increase and contours collapse to a single line. The final subfigure at the
bottom right corresponds to the infinite slopes of sigmoidal functions.

Neural methods of knowledge extraction 13

tervals of the linguistic variables. This optimization step, described below, is performed
at the level of the rule-based classifier, not the MLP network, and is independent of the
methods used to generate the rules.

4. Optimization and application of logical rules

Optimization of linguistic variables that the rules are based on is done by minimiza-
tion of the number of wrong predictions minM

[
∑i�= j P (Ci,Cj)

]
(whereP (Ci,Cj) is

the confusion matrix for a rule-based classifierM), simultaneously with maximization
of the predictive power of the classifier maxM [Tr P (Ci,Cj)] over all intervalsXk,X ′k
contained in modelM. This is equivalent to minimization without constraints of the
following cost functionE(M):

E(M) = γ∑
i�= j

P (Ci,Cj)−Tr P (Ci,Cj)≥−n, (9)

where parameterγ decides whether high overall accuracy with low rejection rate or
high reliability with larger rejection rate is desired. Minimization of this formula is
difficult if P (Ci,Cj) depends in a discontinuous way on the parameters inM, requiring
non-gradient minimization methods. This is unfortunately the case if a crisp logic rule-
based classifier is used.

Real input values are obtained by measurements that are carried with finite pre-
cision, therefore it is natural to assume that instead of a crisp numberx a Gaussian
distributionGx = G(y;x,sx) centered aroundx with dispersionsx should be used. Per-
forming a Monte Carlo sampling from Gaussian distributions for all input features and
using the rule-based classifierM to assign a class to all vectorsX ′ from the distri-
bution GX = G(Y,X ,SX) allows to compute probabilitiesp(Ci|X). DispersionsSX =
(sx1,sx2 . . . sxN) define the volume of the input space aroundX that has an influence on
computed probabilities. Assuming that uncertaintiess i = sxi are independent of feature
values is a useful approximation justified if the data is properly standardized.

Since the erf function obtained from integration of Gaussian distributions is quite
similar to the logistic function to a very good approximation a ruleR [a,b](x) which is
true (R=1) ifx ∈ [a,b] and false otherwise (R=0) is fulfilled by a Gaussian numberG x

with probability:

p(R[a,b](Gx) = T)≈ σ(β(x−a))−σ(β(x−b)), (10)

whereβ= 2.4/
√

2sx defines the slope of the logistic functionσ(x)= 1/(1+exp(−βx)).
For large dispersionsx this probability is significantly different from zero well outside
the interval[a,b]. Thus crisp logical rules for inputs with Gaussian distribution of er-
rors are equivalent to fuzzy rules with “soft trapezoid” membership functions defined
by the difference of the two sigmoids, used with crisp input value. The slopes of these
membership functions, determined by the parameterβ, are inversely proportional to
the uncertainty of the inputs. In our neural network approach to rule extraction such
membership functions are computed by the network “linguistic units”.

14 Duch, Adamczak, Gra¸bczewski and Jankowski

The probability thatx belongs to a ruleR = r1 ∧ . . . ∧rN (eachri is the rule con-
dition, a subset or an interval) may be defined as a product of probabilities ofx ∈ r i

for i = 1..N. Such definition assumes that all the attributes which occur in ruleR are
mutually independent, which is usually not the case. However, if the rule generator
produces as simple rules as possible there should be no pairs of strongly dependent at-
tributes in a single rule. Therefore the product should be very close to real probability.
Obviously the rule may not contain more than one premise per one attribute, but it is
easy to convert the rules appropriately if they do not satisfy this condition.

Another problem occurs when probability ofx belonging to a class described by
more than one rule is estimated. Rules usually overlap because they use only a subset of
all attributes and their conditions do not exclude each other. Summing and normalizing
probabilities obtained for different classes may give results quite different from real
Monte Carlo probabilities. To avoid this problem probabilities are calculated as:

P(x ∈C) = ∑
R∈2RC

(−1)|R|+1P(x ∈
\

R), (11)

whereRC is a set of classification rules for classC, 2RC is a set of all subsets ofRC,
|R| is the number of elements inR and

T
R is the subspace (for discretex a set) created

from conjunction of all rulesR. If there arek rules for classC and they do not overlap
this equation reduces to a sumP(x∈ R1 ∧R2... ∧Rk), otherwise regions where pairs are
overlapping should be subtracted. Since this subtraction removes regions where 3 rules
are overlapping twice they have to be added etc, hence the need for(−1) |R|+1 factor.

An assumption that the uncertainty of inputssi is identical in all points of the in-
put space may not be justified. A more general approach to compute classification
probabilities is based on a direct calculation of optimal soft-trapezoidal membership
functions. Linguistic units of the LR-network provide such window-type membership
functions,L(x;a,b) = σ(β(x−a))−σ(β(x−b)). Relating the slopeβ to the input un-
certainty allows to calculate probabilities that are the same as from the Monte Carlo
sampling. A general rule node computes normalized product-type bicentral function:

R j(X; t j,b j,sL
j ,s

R
j)=

∏i∈I (R j) σ((Xi− ti j + bi j)sL
i j)(1−σ((Xi− ti j−bi j)sR

i j))

σ(bi jsL
i j)(1−σ(bi jsR

i j))
,(12)

whereI (R j) is a set of indices of features used in a given ruleR j. The outputO j(X)
of a neuronj that combines rules for separate clasessC j is:

O j(X) = σ(∑
i∈I (Cj)

Ri(X;pi)−0.5), (13)

whereI (Cj) is a set of rules indices for a given classC j andp is a set of all parameters
in Eq. 12. Probability of the classC j for given vectorX is given by:

p(Cj|X;M) =
O j(X)

∑i Oi(X)
, (14)

Neural methods of knowledge extraction 15

and probability of classC j for a given vectorX and ruleRi is

p(Cj|X,Ri;M) = p(Cj|X)Ri(X;pi). (15)

Optimization of centerst, biasesb and slopess is done by the Kalman filter approach
(Jankowski 1999) or batch version of gradient descent learning algorithm. Since prob-
abilities p(Ci|X;M) depend now in a continuous way on the linguistic variable param-
eters of the rule systemM the error function comparing the true classC(X) with the
classCi predicted with probabilityp(Ci|X;M) is:

E(M,sx) =
1
2∑

X
∑

i
(p(Ci|X;M)−δ(C(X),Ci))

2 . (16)

This function depends on the Gaussian uncertainties of inputss x or parameters of
bicentral functions used to calculate probabilities. Confusion matrix computed using
probabilities instead of the number of errors allows for optimization of Eq. (9) using
gradient-based methods. This minimization may be performed directly or may be pre-
sented as a neural network problem with a special network architecture. Assuming that
the uncertainty ofsx is a percentage of the range ofX values optimization is reduced to
a one dimensional minimization of the error function. Uncertaintiess x of the values of
features may also be treated as additional adaptive parameters for optimization on the
training data.

This approach leads to the following important improvements of any rule-based
system:
• Crisp logical rules are used for maximum comprehensibility.
• Uncertainties of inputs are taken into account.
• Instead of 0/1 decisions probabilities of classesp(Ci|X;M) are obtained.
• Uncertainties of inputssx provide additional adaptive parameters.
• The neighborhood ofX is explored and alternative classes discovered with in-

creasingsx.
• Inexpensive gradient method are used allowing for optimization of very large

sets of rules.
• Rules with wider classification margins are obtained, overcoming the brittleness

problem.
Wide classification margins are desirable to improve generalization of the classifier

by optimizing the placement of the decision borders. If the vectorX of unknown class is
quite typical to one of the classesCk increasing uncertainties of inputssx to a reasonable
value (several times the real uncertainty, estimated for a given data) should not decrease
the p(Ck|X;M) probability significantly. If this is not the caseX may be close to the
class border and a detailed analysis of the influence of each feature on the classification
probability should be performed.

An alternative way to go beyond logical rules introduced in (Jankowski 1999; Duch
et al. 2000a) is based onconfidence intervals andprobabilistic confidence intervals.
Confidence intervals are calculated individually for a given input vector while logical
rules are extracted for the wholetraining set.

16 Duch, Adamczak, Gra¸bczewski and Jankowski

5. Summary of empirical results

Using the early version of theoretical ideas described above we have analyzed a large
number of benchmark datasets (detailed comparison with other systems is given in
Duchet al. 2000). These methods were also used in a real-life project, analyzing the
psychometric data (Duchet al. 1999). Many results, including explicit logical rules,
are collected in the Web page:
http://www.phys.uni.torun.pl/kmk/projects/rules.html

Rules are most useful when they are simple, comprehensible and accurate. Many
sets of rules of various complexity have been generated using the C-MLP2LN ap-
proach. They may be used as a reference or benchmark for other rule extraction sys-
tems. Quite frequently only the reclassification accuracy (in-sample or overall accu-
racy) on the whole dataset for extracted rules is quoted. This may not be sufficient
to estimate statistical accuracy of rules. Performing crossvalidation different rules are
extracted for different partitions of the dataset and it becomes impossible to present a
single set of rules or to compare rules obtained by different methods. The best com-
parison of accuracy is offered on large datasets with separate test parts, such as the
hypothyroid or the NASA shuttle problem (both stored in the UCI repository, Murphy
and Aha 1994). The simplest rules are usually quite stable in crossvalidation tests and
for such rules reclassification accuracy is close to statistical estimations.

C-MLP2LN was tried on the symbolic benchmark problems, the 3 Monk problems
(Thrunet al. 1991) and the Mushroom problem (UCI repository). All 3 Monk problems
have been solved with 100% accuracy (Duchet al. 1997a). 4 simple rules involving
6 features were found classifying all poisonous and edible mushrooms without errors.
Since for this dataset there are 8124 vectors, with 22 symbolic features corresponding
to 118 logical input variables, the task is nontrivial and shows the potential of the
method in applications to purely symbolic datasets.

Several small and noisy medical datasets were analyzed. Such datasets are difficult
for many methods since they require good regularization or a very simple classifier to
avoid overfitting of the data. Without regularization some methods may produce results
that on the test set or in crossvalidation tests are below the base rate (frequency of the
majority class). Although a good statistical approach to computational learning theory
exists (cf. Bishop 1995) in practice it is difficult to find classifiers with complexity
that would be optimized for a given dataset. Extracting logical rules with C-MLP2LN
algorithm one immediately sees that the most general rules discovered at the beginning
cover many cases while rules created with lower regularization parametersλ 1,λ2 cover
a few cases only and thus give too complex description of the dataset.

Consider the appendicitis dataset (Weiss and Kulikowski 1991). It contains only
106 cases, with 8 attributes (results of medical tests), and 2 classes: 88 cases with
acute appendicitis and 18 cases with other problems. Two simple rules:

MNEA > 6650∨MBAP > 12, (17)

giving an overall accuracy of 91.5% result from single neuron. Classification accuracy
is improved by adding two more logical rules resulting from a second neuron created

Neural methods of knowledge extraction 17

by the C-MLP2LN algorithm, but the first of these rules covers just two cases and the
second just one case. Such rules are more likely due to the noise in the data then to a
highly specific and rare cases of interest to an expert. What may be more interesting is
to find rules of similar accuracy using other input features. Since initialization of the
MLP network is random it has a chance to find several different solutions, for example

WBC1> 8400∨MBAP≥ 42, (18)

has slightly lower overall accuracy of 89.6%.
Another small dataset, the Ljubliana cancer data (from UCI repository, Murphy and

Aha 1994) contains 286 cases, 201 no-recurrence-events (70.3%) and 85 are recurrence-
events. There are 9 input features, with 2 to 13 different values each. A single logical
rule for the recurrence-events:

involved nodes> 2∧ Degree-malignant> 2

with ELSE condition for the second class, gives over 77% accuracy in crossvalidation
tests. Although more accurate optimized rules have been found (Duchet al. 2000)
crossvalidation tests showed no improvement. It is doubtful that there is more knowl-
edge that may be extracted from this data than contained in the simple statement based
on the rule given above: recurrence is expected if the number of involved nodes is
bigger than 2 and the cells are highly malignant.

The quality of solutions that may be achieved using the C-MLP2LN algorithm is
perhaps exemplified in the best way on a hypothyroid dataset. It contains 3772 cases for
training, 3428 cases for testing, 22 attributes (15 binary, 6 continuous), and 3 classes:
primary hypothyroid, compensated hypothyroid and normal (no hypothyroid). The
class distribution is very unbalanced: in the training set is 93, 191, 3488 vectors and
in the test set 73, 177, 3178. Our final optimized rules for the first two classes are
(reliability of each rule is in parentheses):

R 1(C1): TSH≥ 30.48∧ FTI < 64.27 (97.06%)
R 2(C1): TSH∈ [6.02,29.53]∧ FTI < 64.27∧ T3< 23.22 (100%)
R 1(C2): TSH≥ 6.02∧ FTI ∈ [64.27,186.71]∧ TT4∈ [50,150.5)

∧ on thyroxine=no∧ surgery=no (98.96%)

The ELSE condition has 100% reliability on the training set. These rules make only
4 errors on the training set (99.89%) and 22 errors on the test set (99.36%). They
are more accurate than any other classification method that we have tried on this data,
except for C4.5 decision tree (Quinlan 1993) which gave slightly better test result.

The C-MLP2LN method may also fail in some cases, although it probably means
that the data is not suitable for logical description. For example, we have analyzed the
hepatobiliary disorders dataset (Hayashiet al. 1990), which contains medical records of
536 patients admitted to a university affiliated Tokyo-based hospital, with four types of
hepatobiliary disorders: alcoholic liver damage, primary hepatoma, liver cirrhosis and
cholelithiasis. The records included sex of the patient and the results of 9 biochemical
tests. As in the original study 163 cases were used as the test data. A fuzzy neural
network was trained until 100% correct answers were obtained on the training set. The

18 Duch, Adamczak, Gra¸bczewski and Jankowski

accuracy on the test set varied from less than 60% to a peak of 75.5% but since there
was no correlation between the results on the training and on the test set the method is
unable to find the best solution. This data has also been analyzed by Mitra et al. (1997)
using a knowledge-based fuzzy MLP system. Accuracy of results on the test set was
between 33% to 66.3%, depending on the actual fuzzy model used. For this dataset
49 crisp logical rules were initially obtained by C-MLP2LN procedure, giving 83.5%
accuracy on the training and 63.2% on the test set. Optimization did not improve these
results significantly. Fuzzy rules derived using the FSM network, with Gaussian as well
as with triangular functions, gave similar accuracy of 75.6-75.8%. The best results for
this dataset, 83.4% on the training and 82.8% on the test set, were obtained with the
weighted nearest neighbor (k=1) method. Clearly in this case the decision borders are
too complex for logical rules.

6. Discussion

Machine Learning community has focused on artificial problems where a few symbolic
attributes are defined (for example, the three Monk’s problems). It is quite hard to find
results of machine learning methods for the datasets stored in the UCI repository or
for other benchmark real-world datasets (Michieet al. 1994). In data mining prob-
lems many continuous-valued features may be present and large sets of rules may be
needed. Rule-based classifiers are useful only if rules are reliable, accurate, stable and
sufficiently simple to be understood. Most classifiers are unstable (Breiman 1998) and
lead to rules that are significantly different if the training set is slightly changed. Such
rules contain little useful information and in fact may be rather misleading. Even if
stable and robust rules are found the user should be warned about potential misclassi-
fications, other classification options, and sensitivity of the classification probability to
small variations of each feature. Neural methods are capable of providing simple and
accurate sets of rules. They are wide-margin classifiers, placing their decision borders
as far from the data as possible and thus providing good linguistic variables with op-
timal discretization of continuous features. They may also produce many sets of rules
of various complexity (thanks to different regularization levels) as well as different but
equivalent sets of rules (thanks to random initialization).

In this paper the C-MLP2LN constructive constrained multilayer perceptron has
been described in details. An example was given illustrating the dynamics of decision
borders converging to a solution equivalent to logical rules. These initial rules are then
optimized exploring the reliability/rejection rate tradeoff. In the final step an assump-
tion about the uncertainties in the inputs is made, allowing to use crisp logical rules to
compute classification probabilities. Crisp rules are then equivalent to fuzzy rules with
soft trapezoidal membership functions. In practical applications users are interested in
relevant features and may rarely be satisfied with answers to questions “why” based
on quotation of complex sets of logical rules. Similarity to prototypes, or case-based
interpretation, is an alternative to rule-based systems. Therefore one should not exag-
gerate the importance of logical description as the only understandable alternative to
other classification methods.

Neural methods of knowledge extraction 19

Neural methods are so far restricted to relatively simple form of prepositional rules
based on linguistic variables. This is sufficient for classification problems, where each
case is described in the same feature space. In some applications more complex de-
scriptions are required, with stepwise concept building. Chemical problems may be a
good example here. Unfortunately it is difficult to find benchmark data for such cases.

Acknowledgments: Support by the Polish Committee for Scientific Research is
gratefully acknowledged.

References

ANDREWSR, DIEDERICH J, TICKLE A.B. (1995) A Survey and Critique of Tech-
niques for Extracting Rules from Trained Artificial Neural Networks. Knowledge-
Based Systems 8, 373-389.

BISHOP C. (1995) Neural networks for pattern recognition. Clarendon Press, Ox-
ford.

BREIMAN L. (1998) Bias-Variance, regularization, instability and stabilization. In:
C. Bishop, ed. Neural Networks and Machine Learning. Springer 1998

BUTCHER J.N, ROUSES.V. (1996) Personality: individual differences and clinical
assessment. Annual Review of Psychology 47, 87 (1996)

DUCH W, DIERCKSENG.H.F. (1995)Feature Space Mapping as a universal adap-
tive system. Computer Physics Communication 87, 341-371

DUCH W, JANKOWSKI N. (1999) New neural transfer functions. Neural Computing
Surveys 2, 639-658

DUCH W, ADAMCZAK R, JANKOWSKI N (1997) New developments in the Feature
Space Mapping model, 3rd Conf. on Neural Networks, Kule, Poland, Oct. 1997,
pp. 65-70

DUCH W, R. ADAMCZAK , K. GRA̧BCZEWSKI (1997A) Extraction of crisp logical
rules using constrained backpropagation networks.Proc. of International Joint
Conference on Neural Networks (IJCNN’97), Houston, Texas, pp. 2384-2389

DUCH W, ADAMCZAK R, GRA̧BCZEWSKI K (1998) Extraction of logical rules from
backpropagation networks. Neural Processing Letters 7, 1-9

DUCH W, KUCHARSKI T, GOMUŁA J., ADAMCZAK R. (1999) Metody uczenia ma-
szynowego w analizie danych psychometrycznych. Zastosowanie do wielowymi-
arowego kwestionariusza osobowości MMPI-WISKAD. Toruń, 650 pp.

DUCH W, ADAMCZAK R, GRA̧BCZEWSKI K (2000) Methodology of extraction, op-
timization and application of crisp and fuzzy logical rules. IEEE Transactions
on Neural Networks (in print)

DUCH W, GRA̧BCZEWSKI K, JANKOWSKI N. AND ADAMCZAK R (2000A) Optimi-
zation and interpretation of rule-based classifiers, Intelligent Information Sys-
tems IX, Bystra, Poland, June 2000 (submitted)

GRA̧BCZEWSKI K AND DUCH W (1999) A general purpose separability criterion for
classification systems., 4th Conf. on Neural Networks and Their Applications,
Zakopane, pp. 203-208

HAYASHI Y., IMURA A., YOSHIDA K. (1990) Fuzzy neural expert system and its ap-

20 Duch, Adamczak, Gra¸bczewski and Jankowski

plication to medical diagnosis, In: 8th International Congress on Cybernetics
and Systems, New York City, pp. 54-61

JANKOWSKI N. (1999) Ontogenic neural networks and their applications to classifi-
cation of medical data. PhD thesis, Department of Computer Methods, Nicholas
Copernicus University, Toru´n, Poland

KOSKO B. (1992) Neural Networks and Fuzzy Systems. Prentice Hall
MICHIE D, SPIEGELHALTER D.J. AND C.C. TAYLOR (1994) Machine learning, neu-

ral and statistical classification. Elis Horwood, London
MITCHELL T.M. (1997) Machine Learning. McGraw-Hill 1997
MITRA S, DE R, PAL S. (1997)Knowledge based fuzzy MLP for classification and

rule generation, IEEE Transactions on Neural Networks 8, 1338-1350
MURPHY P.M. AND AHA, D. W. (1994) UCI repository of machine learning databases,

Univ. of California at Irvine, Dept. of Information and Computer Science.
http://www.ics.uci.edu/∼mlearn/MLRepository.html

PAL S. K, SKOWRON A (1999) Rough Fuzzy Hybridization A New Trend in Decision-
Making. Springer-Verlag

QUINLAN J.R (1993)C4.5: Programs for machine learning. San Mateo, Morgan
Kaufman

THRUN S.B.et al. (1991) The MONK’s problems: a performance comparison of dif-
ferent learning algorithms. Carnegie Mellon University, CMU-CS-91-197

WEISSS.M, KULIKOWSKI C.A, EDS. (1991) Computer systems that learn. Morgan
Kauffman, San Mateo, CA

WETTSCHERECKD, AHA D.W, AND MOHRI T. (1997) A Review and Empirical Eval-
uation of Feature Weighting Methods for a Class of Lazy Learning Algorithms.
Artificial Intelligence Review 11, pp. 273-314

