
New developments in the Feature Space Mapping
model1

Rafał Adamczak, Włodzisław Duch, and Norbert Jankowski
Department of Computer Methods, Nicholas Copernicus University,

Grudziądzka 5, 87-100 Toru´n, Poland.
E-mail: raad,duch,norbert@phys.uni.torun.pl

Abstract

Feature Space Mapping (FSM) model is based on a network explicitly modeling probabil-
ity distribution of the input/output data vectors. New theoretical developments of this model
and results of applications to several classification problems are presented.

1 Introduction

FSM model has been introduced recently [1] as a universal adaptive system based on mul-
tidimensional separable functions. Viewed from various perspectives FSM is a neurofuzzy
system, a density estimation network, a memory-based system, a data modeling approach, an
example of self-organizing system or even an expert system. The main idea is simple: compo-
nents of the input and output vector define features, and combinations of these features define
objects in the feature spaces. These objects are described by the joint density probability of
the input/output data vectors using a network of properly parametrized transfer functions. Al-
though this model may be presented in probabilistic framework as a density network it was
originally inspired by cognitive model of mind as an approximation to real neurodynamics –
high activity of the spiking neurons may be described by the probability density function in
the feature space [2]. The importance of density estimation as the basis for neural systems has
recently been stressed by many authors (cf. [3]).

Since its introduction the FSM model has been implemented and tested on a number of
classification problems and has been used for extraction of logical rules. New theoretical de-
velopments, presented in the next section, include parametrization of rotated biradial transfer
functions and improvements in the learning algorithm. Initialization of neural networks pa-
rameters, including initialization of the FSM model, is described in a separate paper (Duch,
Adamczak, Jankowski, this volume). In the third section results of some applications to clas-
sification problems are presented.

2 FSM model

Preliminaries: given a set of trainingexamplesD = fXk; Y kg create a networkM (X;Y ; �),
where� are parameters, which gives outputs approximating the landscape of joint probability
densityp(X;Y jD). M (X;Y ; �) should be neither equal to, or proportional to, this density;

1Computational Intelligence Laboratory Technical Report 2/97. Shorter version submitted to PNNS’97 confer-
ence, Kule, Poland 14-18.10.1997

1

all that is required is that the maxima of conditional probabilitiesYp(X) = maxY p(Y jX;D)

andXp(Y) = maxX p(XjY;D) agree with the corresponding maxima ofM (X;Y ; �) ob-
tained by calculation ofYM (X) = maxY M (X;Y ; �) andXM (Y) = maxXM (X;Y ; �).
This task is simpler than the full estimation of joint or conditional probabilities. Bayesian so-
lution is achieved by introducinga priori probability distributions of parameters� (so far it
has been possible only for weights in MLP networks) and marginalizing (integrating) over
these parameters [9]. In practice committee of networks give results of similar accuracy and
are computationally less expensive than mariginalization.

Below FSM model as used for classification problems is described. Since training of the
MLP networks or other networks with fixed architecture is NP-hard [3], a robust constructive
algorithm is used to build the FSM network.

Architecture: in the simplest case a single layer structure is used. In general a feedfor-
ward hierarchical structure is used to speed up searches and define categories (clusters) and
supercategories (superclusters). Modular architecture is also useful if several qualitativelydif-
ferent sources of data are given as inputs [4]. Initial architecture is created using clusteriza-
tion techniques (Duch, Adamczak, Jankowski, this volume) and optimized during learning
process.

Transfer functions: there are no restrictions on the type of transfer functions in the FSM
model. Good transfer functions�(X; �) shouldoffer the most flexible densities (flexible shapes
of �(X; �) =const contours) with the smallest number of adaptive parameters�. Small net-
work with a few complex nodes is equivalent to a large network with simple nodes. Recently
we have reviewed various transfer functions suitable for neural networks [5]. The simplest
functions with suitable properties for density modeling are of Gaussian or approximated Gaus-
sian type. Our favorite functions are of the biradial type:

Bi(X;D; b; s) =

N∏
i=1

�(esi � (Xi �Di + ebi))(1 � �(esi � (Xi �Di � e
bi))) (1)

where�(x) = 1=(1 + e�x). The first sigmoidal factor in the product is growing for in-
creasing inputXi while the second is decreasing, localizing the function aroundDi. Shape
adaptation of the densityBi(X;D; b; s) is possible by shiftingcentersD, spreadsband rescal-
ing slopess. Radial basis functions are defined relatively to only one centerjjX�Djj. Here
two centers are used,D+B andD� B, therefore we call these functions biradial. Exponen-
tial formBi = ebi (andesi) used instead ofbi (orsi) parameters stabilizes learning preventing
oscillations.

Biradial functions in product form are separable and give localized convex densities. The
number of adjustable parameters per processing unit is in this case3N . Using two (or just
one) new parameters allows for delocalization of biradial functions:

SBi(X;D; b; s; �; �) =

N∏
i=1

(�+�(esi �(Xi�Di+e
bi
)))(1���(esi �(Xi�Di�e

bi
))) (2)

2

For� = 0, � = 1 this function is identical to the biradial localized functions while for
� = � = 0 each component under the product turns into the usual sigmoidal function. Semi-
local transfer functionsSBi have3N + 1 parameters (if� = 1 � �), 3N + 2 parameters
(independent�; �) or up to5N parameters (different�i and�i used in each dimension). In
our simulations we have found that biradial functions lead to faster convergence with smaller
number of nodes than Gaussian functions [5].

The function realized by the FSM network represents crisp logical rules if the contours
of constant density are defined by cuboids. Fuzzy logical rules require probability densities
described by separable functions, with each one-dimensional component equivalent to a mem-
bership function (specific for a given data cluster). Increasing the slopessi of biradial func-
tions allows for a smooth transition from complex to cuboidal density contours. For crisp
logical rule extraction we have also used rectangular functions defined by:

G(X;D;�) =

N∏
i

G(Xi;Di; �i) = 1 if all jDi �Xij < �i else0 (3)

Next step towards even greater flexibility requires individualrotation of densities provided
by each unit. Of course one can introduce a rotation matrix operating on the inputsR �X, but
in practice it is very hard to parametrize thisN �N matrix withN � 1 independent rotation
angles and calculate derivatives necessary for error minimization procedures. We have found
two ways to obtain rotated densities in all dimensions using transfer functions with justN

additional parameters per network node. In the first approach product form of the combination
of sigmoids is used

CP (X;D;D0; R) =

∏
i

(
�(RiX +Di) � �(RiX +D0

i)

)
(4)

SCP (X;D;D0; R; �; �) =

∏
i

(
� � �(RiX+Di) + � � �(RiX+D0

i)

)

whereRi is thei-th row of the rotation matrixR with the following structure:

R =

s1 �1 0 � � � 0

0 s2 �2 0

...
...

...
sN�1 �N�1

0 � � � 0 sN

 (5)

If � = 1 and� = �1 theSCP function is localized and gives similar densities as the
biradial functions. Choosing other values non-local rotated transfer functions are created.

In the second approach the density is created by the sum of a “window-type" combinations
of sigmoidsL(x;D;D0

) = �(x+D) � �(x+D0

) in N � 1 dimensions and a combination
rotated by a vectorK:

3

CK(X;D;D0;W;K) =

N�1∑
i=1

WiL(Xi; Di; D
0

i) +WNL(K �X;DN ; D
0

N) (6)

The last density is perpendicular to theK vector. TreatingCK(�) as the activation function
and using sigmoidal output function with a proper threshold�(CK(�)�b) leaves only the non-
zero densities in the direction perpendicular toK. These densities are not hyperelipsoidal, but
sufficiently flexible to model complex clusters. An alternative is to use the product form:

CPK (X;D;D0;W;K) = L(K �X;DN ; D
0

N)

N�1∏
i=1

L(Xi; Di; D
0

i) (7)

as the transfer function – the output sigmoid is not needed in this case. Rotation adds only
N � 1 parameters forCP (�) function andN parameters forCK(�) function.

Learning algorithm: There is a tradeoff between complexity of the network (propor-
tional to the number of network nodes needed to achieve certain accuracy) and complexity
of the transfer functions. Overall complexity, counted using the total number of adaptive pa-
rameters, should be minimized. In the constructive algorithm this is rather simple: after ini-
tialization and expansion of the network in the first training epochs accuracy of classification
is checked on the test or validation dataset. At some point this accuracy starts to decrease al-
though the accuracy on the training data still decreases. At this point complexity of the model
is optimal and the training is stopped.

Initial structure of the network includes input and output units (one output unit or one out-
put unitper class) and a single layer of hidden units with parameters determined by a clustering
algorithm [7]. For on-line learning initializationis performed after a fixed number of incoming
training data is collected. Parametert numbers the training epochs, parameter�k is a “local
time", growing differently for each network node. One of the problems with RBF networks
is their inability to select relevant input features. In FSM feature selection is performed by
adding penalty term for small dispersions to the error function:

E(V) = E0(V) + �

N∑
i

1=(1 + �i) (8)

whereE0(V) is the standard quadratic error function andV represents all adaptive param-
eters, such as positions and dispersions�i = jbi�b

0

ij of localized units. The sum runs over all
active inputs for the node that is the most active upon presentation of a given training vector.
The penalty term encourages dispersions to grow – if�i includes the whole range of input data
the connection toxi is deleted. Formally we could assign the weightsWi = 1=(1 + �i) to
theXi input connections and minimize the sum of weights. After the training each node has
class label and has localized density in relevant dimensions of the input subspace (and con-
stant density in irrelevant dimensions). An alternative approach to modification of the error
function is to expand dispersions after several training epochs as much as possible without
increasing the classification error. After initialization of the FSM architecture and parameters
learning algorithm proceeds as follows:

4

1. Increase all dispersions untilM (X;P) > 0:5 for all training vectorsX; in this way
approximation to the probability densityp(XjD is more smooth and nodes covering
outliers are not created.

2. Estimate dispersions�ini for each class – used to create new nodes. Estimated disper-
sions are slowly decreased during training (this is a form of simulated annealing).

3. Start of the learning epoch: read new data vectorX; find the nodeNm that is maximally
active; find the closest nodeN 0

m to the maximally active node,N 0

m of the same class as
X.

4. If N 0

m andNm belong to the same classC and the activity ofG(Nm) is greater than a
given threshold (experience shows that 0.6 is a good value) there is no need for further
optimization and the program goes back to step 3; otherwise parameters of theNm node
are optimized:

mn mn + 1 (9)

Wn Wn + � � (C �M (X;D;�)) � rWM (X;D;�) (10)

Dnj Dnj + (t) � (Xj �Dkj)=mk (11)

�nj �nj + �(t)(1�G(X;Dn; �n))jXj �Dnjj (12)

�(t) �(1 + (t� �k)=�)
�2 (13)

(t) �(1 + (t� �k)=�)
�1 (14)

Here� is about 100 (time in epochs) and is constant,� and� are also constants. The
“mass"mn of nodes is set to zero at the beginning of each epoch. Node that is selected
frequently gains a large mass and its parameters are changed more slowly.

5. If N 0

m andNm belong to different classes check two conditions: isjjX�D(Nm)jj >

�(Nm)

√
ln(10), i.e. is the new vectorX sufficiently far from the center of the nearest

cluster? If yes, checkG(Nm) < Minact, i.e. does the activity of the node exceed certain
minimum? Minact is set to 0.2 at the beginning of training and after some time, when
learning slows down, it is decreased by two. If both conditions are fulfilled create new
node;
otherwise go back to 3.

6. Create new node: initial parameters are:Dc = X ; Wc = C � M (X;D;�). Initial
values of dispersion components�ci are set to�ini if jDci�Dnij > �ni+ �ini, i.e. if
the nearest center is far enough to assume standard initial dispersion; otherwise�ci =

jDci �Dnij.

7. The second most excited node is also optimized if it belongs to a different class than the
most excited node. Three cases are distinguished: if the vectorX is within the range of
this node, i.e.jjX�Djj) < �, dispersion of the node is decreased:

5

�k = �k � #
G(X;D;�)(jXk �Dkj)� �k)

1� (t� �)=�
; � = � + (t� �)=2 (15)

If the vectorX is not within the range of the second most excited node, and the node’s
activityG(X;D;�) is greater than some threshold (we use 0.6 for this threshold):

�k = �k � #
G(X;D;�)�k

1� (t� �)=�
; � = � + (t� �)=2 (16)

Finally if the node is far and is not excited so strongly its dispersion is decreased by:

�k = �k � G(X;D;�)�k; � = � + (t � �)=2 (17)

Remarks on the learning procedure:
Increasing the number of nodes leads to 100% classification accuracy on the training set,

overfiting the data. The simplest way to avoid it is to assume lower goal for accuracy and
check the performance on a test dataset. This requires several stops and checks while the net-
works adapts itself more and more closely to the data. An alternative approach based on max-
imum certainty [8] requires only training data but a committee of several networks should be
created.

After the training epoch is finished the qualityQk of each nodek is estimated by dividing
the number of correctly classified vectors through the number of all vectors handled by this
node (i.e. nodes that the winners and their excitation exceeds certain threshold). Classification
results may improve if dispersions are reduced after each epoch by�k = �k � (1 � Q)�k.
Some units may have changed so much that they do not classify any vectors at all, or their
qualityQ is close to zero. Such nodes are removed from the network, allowing it to grow
more “healthy" nodes in other areas of the input space. Sometimes restricting the number of
nodes created in each epoch leads to smaller networks, but it may also lead to slower learning
withoutany gains. DistancejjX�D(Nm)jjdoes not have to be Euclidean. If two nodes show
almost equal activity and one of them belongs to the wrong class it is selected as the winner
to allow further adaptation.

In early implementation [1] at the classification stage we have used gradients to find the
node a new vectorX should be assigned to, which led to a recursive process. It appears that
the activation of nodes is sufficient for correct assignment and thus slow gradient dynamics
is not needed. Missing values in input are handled using linear search strategy, as described
in [1]. To simplify searching for real time fast classifications, when many network nodes are
created during the learning phase, a hierarchical approach may be used. Dendrograms are used
to identify superclusters represented by nodes with large dispersion. Activation of a few such
supernodes is checked first and only the nodes with densities contained in the winner node
are searched further. Search time may always be reduced to thelog of the number of network
nodes.

6

3 Illustrative applications

Improvements in the algorithm presented in the previous section brought improvements in the
classification accuracy of the FSM system, comparing to our previous results [6]. Due to the
lack of space only a few results for larger datasets are quoted below.

Galaxies data were obtained from ESO-LV catalog (all details of this dataset are described
in [10]). The goal is to achieve automatic classification comparable to that of human experts.
This is a large data set (more than 5000 galaxies). The network was trained on 1700 ESO-
LV galaxies, and tested on the remaining 3517 galaxies. Each vector has 13 features and the
training set is divided in two classes: Early-type and Late-type galaxies. Backpropagation
algorithm gave for this dataset 89.6% agreement with human experts classifying galaxies. Our
previous results gave 98.0% accuracy on the training set and 93.2% on the test set using a
network with 384 nodes. With the improvements presented in this paper 96% accuracy on the
training set leads to 160 nodes and 93.0% accuracy on the test set, while 98.0% on the training
set leads to 172 nodes and 93.6% accuracy on the test set, i.e. with less than half of the number
of parameters used previously slightly higher accuracy is achieved.

Letter Image Recognition Data [11] contains 16-dimensional description of 26 English
language letters (statistical moments and edge counts). Out of 20.000 vectors the last 5000
were selected as test cases. For 96% of accuracy 590 and for 98% accuracy on the training set
850 nodes were generated. Accuracy of classification on the test set was 90.5% and 91.1%,
again a significant improvement over our previous results [6]. Other methods are not doing
much better in this case, with backpropagation network achieving only 68% accuracy on the
training and 67% on the test set. Interestingly best k-NN is reported with 93.2% accuracy in
this case – if this result is reliable this means that our description of the data clusters is still
not able to capture all the details of the data distribution.

DNA database [11] contains data on segments (windows) of 60 DNA base-pairs, coded by
3 bits for a total of 180 attributes. In the middle of such window three types of boundaries are
possible (intron to exon, exon to intron or neither). There are 2000 training vectors and 1186
test vectors. The network was trained to 96% and 98% accuracy on the training set, leading to
130 and 235 nodes, over five-times less than our previous network with 1250 nodes. Accuracy
on the test set was 91.9% and 92.9%, significantly better than the 91.2% accuracy achieved
by an MLP network and much better than 85.4% accuracy of k-NN classifier.

The StatLog version of thesatellite image data generated from Landsat Multi-Spectral
Scanner [11] consists of four spectral values of pixels in 3x3 neighborhoods (a total of 36 at-
tributes in 0 to 255 range) in a satellite image, and one of 6 classes assigned to the central pixel
in each neighborhood. The training set has 4435 vectors, the test set 2000 vectors. For 96%
accuracy on the training set 270 nodes were created and 87.6% accuracy on the test set ob-
tained, while for 98% accuracy on the training set 303 nodes were created and 88.0% accuracy
obtained. Accuracy of MLP on the training and test sets were reported as 88.8% and 86.1%
respectively, Cascade Corelation gave worse test set accuracy of 83.7%, RBF gave 88.9% and
87.9%, with the best results obtained again by k-NN, 91.1% on the training and 90.6% on the
test set.

All four dataset selected here are relatively large and for the two of them k-NN gives the
best results, showing that the borders between the classes are quite complex and require large
number of reference vectors for accurate description. FSM is an improvement over other neu-

7

ral classifers and comparing to the k-NN offers great reduction of the reference information
as well as much greater speeds of classification.

Acknowledgments

Support by the Polish Committee for Scientific Research, grant 8T11F 00308, is gratefully
acknowledged.

References

[1] W. Duch, G.H.F. Diercksen, Feature Space Mapping as a universal adaptive system,
Computer Physics Communications 87 (1995) 341–371

[2] W. Duch, From cognitive models to neurofuzzy systems – the mind space approach.Sys-
tems Analysis-Modelling-Simulation 24 (1996) 53–65

[3] C. Bishop, “Neural networks for pattern recognition" (Clarendon Press, Oxford 1995)

[4] W. Duch and N. Jankowski, “Bi-radial transfer functions," in:Proc. second conference
on neural networks and their applications, Orle Gniazdo, Poland, vol. I, pp. 131–137,
1996.

[5] W. Duch and N. Jankowski, “New Neural Transfer Functions," submitted toJ. of Applied
Mathematics and Computer Science, 1997

[6] W. Duch W, R. Adamczak “Feature Space Mapping network for classification," in:Proc.
second conference on neural networks and their applications,Orle Gniazdo, Poland, vol.
I, pp. 125–130, 1996

[7] R. Adamczak, W. Duch, N. Jankowski, “Initialization of adaptive parameters in neural
networks", this volume

[8] S.J. Roberts, W. Penny, “A maximum Certainty Approach to Feedforward Neural Net-
works", Electronics Letters (submitted, 1997).

[9] D.J. MacKay, “A practical Bayesian framework for backpropagation networks", Neural
Computations 4 (1992) 448-472

[10] O. Lahav, A. Naim, L. Sodre Jr. and M. C. Storrie-Lombardi, Neural computation as
a tool for galaxy classification: methods and examples, Institute of Astronomy, Cam-
bridge, Technical report CB3 OHA (1995)

[11] C.J. Mertz, P.M. Murphy, UCI repository of machine learning databases,
http://www.ics.uci.edu/pub/machine-learning-databases.

8

