
THE WEIGHTED k–NN WITH SELECTION OF
FEATURES AND ITS NEURAL REALIZATION.

Włodzisław Duch and Karol Grudziński
Department of Computer Methods, Nicholas Copernicus University,

Grudziądzka 5, 87-100 Torún, Poland.
E–mail: {duch, kagru}@phys.uni.torun.pl

Abstract
As a step towards neural realization of various similarity based algorithmsk-NN method has been extended to

weighted nearest neighbor scheme. Experiments show that for some datasets significant improvements are obtained.
As an alternative to the minimization procedures a best–first search weighted nearest neighbor scheme has been
implemented. A feature selection method fork-NN, based on a variant of the best–first search strategy, has also been
implemented. This method is relatively fast and for some databases gives excellent results. Finally a natural neural
network extension ofk-NN method is described, including weights and other parameters as a part of the model.

I. INTRODUCTION

RECENTLY a general framework for similarity-based methods has been presented [1].
Except for classical minimal distance methods, such ask-NN, many popular neural

network models (such as MLP, RBF, LVQ or SOM models) may be presented in this form [2].
Some of the simplest and frequently the most accurate classification algorithms applicable
to pattern recognition problems are based on thek-nearest neighbor (k-NN) rule [3]. This
approach is so important that in artificial intelligence it is referred to as the instance based
learning, memory based learning or case based learning [4]. Each training data vector is
labeled by the class it belongs to and is treated as a reference vector. During classificationk
nearest reference vectors to the unknown (query) vectorX are found, and the class of vector
X is determined by a ‘majority rule’. The probability of assigning a vectorX to classC i is
p(Ci|X) = Ni/k. In the simplest casek = 1 and only the nearest neighbor determines the class
of an unknown vector, i.e.p(Ci|X) =0 or 1. The asymptotic error rate of thek-NN classifier
in the limit of largek and large number of reference vectors becomes equal to the optimal
Bayesian values [3]. In practice the number of reference vectors is relatively small and small
values ofk work better.

Because thek-NN method is so simple it should be used as a standard reference for oth-
er classificators. Unfortunately and surprisingly very few computer programs are around
even for the simplest version ofk-NN. A possible practical problem for large datasets is the
computational complexity of the actual classification step, demanding forn reference vec-
tors calculation of∼ n2 distances and findingk smallest distances. Although Laaksonen and
Oja [5] claim that “For realistic pattern space dimensions, it is hard to find any variation of
the rule that would be significantly lighter than the brute force method” various hierarchical
schemes of partitioning the data space or hierarchical clusterization are quite effective. The
search for the nearest neighbors is easily paralelizable and training time (selection of optimal
k) is relatively short. Nearest neighbor methods are especially suitable for complex applica-
tions, where large training datasets are available. They are also used in the case-based expert
systems as an alternative to the rule-based systems.

In similarity-based methods, such ask-NN, parametrization of distance measures is of great



importance [1]. Frequently reducing the number of features and assigning scaling factors to
features leads to significant improvements. In the next two sections algorithms for feature
selection and scaling are presented. Only one neural model proposed so far is explicitly based
on the nearest neighbor rule: the Hamming network [6] computes the Hamming distances for
the binary patterns and finds the maximum overlap (minimum distance) with the prototype
vectors, realizing the 1-NN rule. In the fifth section another neural realization, which is a
significant extension of thek-NN, is presented. A short summary is presented in the last
section.

II. SELECTION OF FEATURES

IT is known that instance (memory) based algorithms degrade in performance (prediction
accuracy) when faced with many features that are not necessary for predicting the desired

output. After experimentation with various feature selection methods we have developed a
method based on a variant of “the best first” search strategy. This method is relatively fast
and applied to thek-NN method for some databases gives excellent results. It is worth to
mention that one of the authors (KG) was once converting a diabetes dataset [7] to the format
of k-NN package using AWK utility. Because of the error in the script as a second feature
a class number was added. Our selection of features method immediately picked out this
feature as the most important rejecting all other features and classification accuracy of 100%
was correctly reported. This simple test should be used for all feature selection methods.

The feature dropping algorithm proceeds as follows: features are turned off one after
another, one at a time. The leave-one-out test is performed on the training file and results
improve when some (unwanted) features are turned off and degrade when some (important)
features are turned off. Feature leading to the highest classification accuracy improvement on
the training file is selected as the least important. This feature is removed from the input set
and the whole procedure repeated until only one feature is left in the input set, presumably
the most important one.

Although this algorithm may be used with any method is is particularly easy to use with
the k-NN because the leave-one-out test is very easy to perform. Apart from the value ofk
there is no learning and the cost of each step is equal to the cost of classification of all training
vectors. If the cross-validation calculations are performed the leave-one-out test is done on
the training partition of the dataset. The number of the leave-one-out evaluations in the worst
case isN · (N + 1)/2−1.

The artificial example presented below illustrates the feature dropping algorithm for a
dataset containing five attributes. Features that are turned off at each step are listed and
the leave-one-out test on the training file is performed.

Level 1: f1, f2, f3, f4, f5; best improvement for f4
Level 2: f4 f1, f4 f2, f4 f3, f4 f5; best improvement for f5
Level 3: (f4 f5) f1, (f4 f5) f2, (f4 f5) f3; best improvement for f1
Level 4: (f4 f5 f1) f2, (f4 f5 f1) f3
After all N −1 levels are performed the sequence of features that should be removed to

achieve the highest classification accuracy on a training file is selected. It may happen that
at some level there is no improvement and the feature which leads to minimal degradation is
selected. If the number of features is large and there is no improvement for several levels the
procedure may be stopped, because there is little chance that results will improve at a later



stage. Standardization of the input vectors before the feature selection procedure is usually
desired. The method is fast if the number of features is not to high but considering the datasets
such as DNA with 180 attributes the selection of features requires over 16000 leave-one-out
tests. A partial ranking of features may be done at a lower cost. The least expensive method,
requiringN tests, stops after the first level. If all feature were completely independent and
the effects of feature removal were additive this would be sufficient. The fullN − 1 level
selection procedure may be performed using the subset of features identified as promising at
the first level (i.e. those features that may be removed without degradation of the accuracy of
k-NN). Other search strategies may be used to select the best combination of features [8]. The
feature dropping method may be efficiently parallelized to reduce the time of calculations.

III. SCALING FACTORS IN SIMILARITY MEASURES

FEATURE selection assigns binary scaling factors to each feature:s i = 0 or 1. Minkovsky’s
distance with the scaling factors is:

D(A,B;s)α =
N

∑
i

sid(Ai,Bi)α (1)

The scaling factorssi determine relative importance of different features. In this section
two groups of methods that automatically assign such scaling factors are proposed. The first
group of methods is based on minimization of the cost function and the second group on the
best-first search applied to discretized scaling factors. Although we have usedk-NN proposed
methods of scaling factor determination may be used with any similarity-based classifier.

Methods based on minimization. The cost function is simply the number of classifi-
cation errors the classifier makes. We use three minimization procedures: simplex method
(a local method), adaptive simulated annealing (ASA, a global method) and multisimplex
global minimization method. The local simplex method usually requires less than 100 eval-
uations and is the fastest but results obtained with this method have large variance. It is a
good method to start from to see whether the optimization of features works for a particular
database. For a dataset having separate training file ASA or multisimplex method converge
to similar results in all calculations (the advantage of global minimization). However, global
optimization methods are expensive and may require a large number of accuracy evaluations
for convergence.

Best first search methods. We will discuss three methods belonging to this group. They
are designated asS0, S1 and the scale-tuning method. The last algorithm is used to search
for optimal scaling factors starting from a solution obtained by other methods. Our experi-
ments indicate that search-based algorithms are faster and usually give better accuracy than
minimization methods. Since scaling factors are real-valued they have to be quantized, either
with fixed precision (in methodS0 andS1) or precision that is steadily increased during the
progress of the search procedure (scale-tuning method).

TheS0 algorithm starts from a selection of a single most important feature. Classification
method is used with just one feature, ranking the performance of each features. Features that
lead to highest performance are good candidates to start from, and their indices are stored in
an array in decreasing rank order. The scaling factors 1 corresponding to feature which has
highest rank is set as 1, defining the relative distance scale. The scaling factor corresponding



to the next-highest ranked features2 is determined by evaluating the classifier’s performance
for two input features, withs2 = m∆ ∈ [0,1] (the default is∆ = 0.05). The bests2 and
classification accuracy is stored (at present if there are several scaling factors leading to the
same highest accuracy – only the first is remembered and the rest is ignored). The process
is repeated taking the next-highest ranking features 3 = m∆ ∈ [0,1] with s1,s2 fixed, and
evaluating the performance for 3 features. Finally after all scaling factors are determined the
performance of the classifier on the test set with the scaled similarity function is evaluated.
The total number of evaluations on the training set is on the order ofN/∆. The method
corresponds to quantized version of the line search optimization procedure.

Unfortunately theS0 algorithm frequently does not work for datasets for which the selec-
tion of features works. Better results are usually obtained by dropping, rather than adding
features. TheS1 algorithm is ‘a mirror image’ of theS0 algorithm. In the initial ranking
of the features all scaling factors are set to 1 and evaluation with a single feature turned off
si = 0 is made fori = 1. . .N. Thus the ranking is done in the same way as in the feature
dropping selection method. The most important feature has a fixed value of the scaling factor
s1 = 1 and the optimal scaling factor for the second feature in the ranking is determined by
the search procedure, while the remaining scaling factors are all fixed to 1. The search is
repeated for feature that has next-highest rating, with optimal values of scaling factors for
higher ranked features kept fixed and lower-ranked features left at 1, until all scaling factors
are determined.

The last search-based method is used to tune the scaling factors already found by some
other procedure (either by a minimization method or one of the methods described above).
In this method scaling factors are changed without initial ranking, from first to the last one.
Scales are changed for every feature by adding or subtracting a constant values i ← si± δ
whereδ is a parameter given by the user (by defaultδ = 0.5). If change of the scaling factor
leads to an improvement of the classification accuracy the scaling factor is updated, otherwise
it remains unchanged. After the last scaling factor is checked in this way theδ parameter is
divided by 2 and the whole procedure repeated. The algorithm is terminated if the difference
in classification accuracy during two subsequent iterations is smaller than a given threshold.

IV. RESULTS

DUE to the lack of space only a few results are presented. In the well known hypothyroid
dataset [7] despite the high number of training cases (3772) thek-NN method (after

selection ofk and selection of the distance measure) performs only slightly better than the
majority classifier, giving classification accuracy of 94.4% on the test set (3428 cases). This
is much worse than most other algorithms, including neural networks and logical rules [9].
After applying the feature dropping algorithm from 21 features present in the original dataset
only 4 remain (f3, f8, f17, f21), increasing the classification accuracy on the test set by
nearly 3% to 97.9% (a significant improvement since the number of cases in the test set is
large). Applying scaling methodS1 and tuning the scaling factors we were able to increase
the classification accuracy further to 98.1%. This is probably the best result for this database
obtained so far with the minimal distance method although still significantly worse than the
result obtained with logical rules.

Another interesting database is the hepatobiliary disorders data obtained from Tokyo Den-
tal and Medical University [9] (536 cases, including 163 test cases, 9 features, 4 classes).



k-NN with Manhattan distance function gives 77.9% accuracy for this dataset which is al-
ready much better than other methods [10] (for example MLP trained with RPROP gives
accuracies that are below 70%). After applying feature selection method 4 features were re-
moved (features 2, 5, 6 and 9), increasing accuracy to 79.1%. Using scaledk-NN methods
it was possible to increase the accuracy further to 82.8%. These results are significantly bet-
ter than for all other classifiers applied to this data (including IB2-IB4, FOIL, LDA, DLVQ,
C4.5, FSM, Fuzzy MLP and K* methods).

We have also tried the 3 artificial datasets for the Monk problems, popular in machine
learning community [7]. For the Monk1 problem (124 train, 432 test cases, 2 classes, 6
features)k-NN with Euclidean metric,k = 1, gives 89.5% accuracy on the test set, while
minimization of the scaling factors with the simplex method increases accuracy to 97.2%, and
with multisimplex even to 100%. The best-first search scaling method or feature selection
gives also 100% accuracy. For the Monk2 problem (169 train, 432 test cases, 2 classes, 6
features)k-NN gives 82.6% which is increased by scaling to 84.5%, still rather disappointing
since many rule-based methods may find the original classification rules achieving 100%
accuracy and MLPs are also capable of such accuracy. Perhaps this is a difficult problem
for the memory-based methods such ask-NN. Many other methods achieve less than 80%
of accuracy for this problem [7]. For the Monk3 problem (122 train, 432 test, 2 classes,
6 features)k-NN gives 89.1% accuracy and is significantly improved by using the simplex
minimization (93.3%), multisimplex (92.4%) and ASA (94.2%). The best results, 97.2%
accuracy on the training set, was obtained using best-first feature scaling followed by tuning
the scaling factors.

V. NEURAL REALIZATION OF THE MINIMAL-DISTANCE METHOD

THE network realization described here is a generalization of thek-NN method and should
improve the results further. The network has hidden nodes computing distancesD(X−

R), whereR are reference (training) vectors.k nodes with the smallest distances output
their class labelh j(X;R) = Ci and the remaining nodes outputh j(X;R) = 0. The classes are
numbered fromCi = 1. . .NC. The output layer computes probabilities using the formula:

P(Ci|X;M) = ∑
j

Wi j ·h j(X) p(Ci|X;M) =
P(Ci|X;M)

∑i P(Ci|X;M)
(2)

The weightsWi j between output node computing probabilities for classCi are equal to
Wi j = S(Ci,Cj)/Cj, where the matrixS(·) estimates similarity among the output classes and
in the traditionalk-NN is replaced by a Kronecker delta. Thus each vector that belongs to
thek nearest ones or that falls into ther radius ofX and is of theC j class, contributes to the
probability of theCi class a valueS(Ci,Cj). The structure of the network is shown in Fig. 1.
For the cost function that should be optimized one may take:

E(W,k) = ∑
X

∑
i

R (Ci,C(X))
(

p(Ci|X;M)−δ(Ci,C(X))2) (3)

where the modelM includesk as parameter and theS(Ci,Cj) is the output-class similarity
matrix. If we want to minimize the number of classification errors output probabilities should
be changed into binary 0, 1 values by the winner-takes-all procedure.



X

X

X

X

1

2

3

4

input
hidden
layer output

R1

R2

R3

R4

R5

C1

C1

C2

C2

C3

p(C1|X;M)

p(C2|X;M)

p(C3|X;M)

W11

W35

Fig. 1. Network generalization of thek-NN method. The hidden nodes compute distances to reference vectors and
returnk values of class labels associated with the nodes, while the output nodes compute probabilities.

The output weights, initialized toWi j = S(Ci,Cj)/Cj, may be treated as adaptive param-
eters. Introduction of soft weightingG(D(·)) allows to use gradient optimization methods.
For many datasets (especially for images) this simple network may outperform MLPs and
other neural models, since the results should be at least as good as thek-NN results.

VI. SUMMARY

SURPRISINGLY few methods in the literature try to improve upon the simplek-NN scheme.
In this paper several aspects of the similarity based methods were discussed: selection

of features and determination of the feature scaling factors. Several new methods were in-
troduced, significantly improving the results obtained by the straightforwardk-NN approach.
A natural network realization ofk-NN method leads to a model with more parameters and
should allow to improve the results even further. It is applicable to problems with an infinite
number of output classes and using the matrixS(·) may take into account the similarity of the
output classes. We are convinced that investigation of connections between neural networks
and similarity based methods is a fruitful task.

Acknowledgment: We would like to thank the Polish Committee for Scientific Research,
grant no. 8T11F 014 14, for partial support of this work.

References
[1] W. Duch, Neural minimal distance methods, Proc. 3-rd Conf. on Neural Networks and Their Applications,

Kule, Poland, Oct. 14-18, 1997; W. Duch, K. Grudziński, A framework for similarity-based methods. 2nd
Polish Conf. on Theory and Applications of Artificial Intelligence, Łód´z 1998, pp. 33-60

[2] W. Duch, K. Grudzínski, G.H.F. Diercksen,Minimal distance neural methods. Proc. IJCNN’98, pp. 1299-
1304; W. Duch, R. Adamczak, G.H.F. Diercksen,Distance-based multilayer perceptrons. CIMCA, Ed. M.
Mohammadian, IOS Press, Amsterdam, pp. 75-80

[3] P.R. Krishnaiah, L.N. Kanal, eds, Handbook of statistics 2: classification, pattern recognition and reduction of
dimensionality (North Holland, Amsterdam 1982)

[4] T.M. Mitchell, Machine Learning. McGraw-Hill 1997
[5] J. Laaksonen, E. Oja, Classification with Learningk-Nearest Neighbors. In:Proc. of ICNN’96, Washington,

D.C, June 1996, pp. 1480-1483.
[6] P. Floreen, The convergence of Hamming memory networks,Trans. Neural Networks 2 (1991) 449–457
[7] C.J. Mertz, P.M. Murphy, UCI repository, http://www.ics.uci.edu/pub/machine-learning-databases.
[8] L. Kanal, V. Kumar (Eds), Search in Artificial Intelligence (Springer Verlag 1988)
[9] W. Duch, R. Adamczak, K. Gr ˛abczewski, G.̇Zal, Hybrid neural-global minimization method of logical rule

extraction. Journal of Advanced Computational Intelligence (in print)
[10] W. Duch, R. Adamczak, K. Gr ˛abczewski, G.̇Zal, Y. Hayashi,Fuzzy and crisp logical rule extraction methods

in application to medical data. Fuzzy Systems in Medicine, Springer 1999 (in print)


