
DUCH, ADAMCZAK AND GRA̧ BCZEWSKI: EXTRACTION OF LOGICAL RULES. . . 1

Extraction of logical rules from training data using
backpropagation networks

Włodzisław Duch, Rafał Adamczak and Krzysztof Gra¸bczewski

Abstract—Simple method for extraction of logical rules from neural net-
works trained with backpropagation algorithm is presented. Logical in-
terpretation is assured by adding an additional term to the cost function,
forcing the weight values to be±1 or zero. Auxiliary constraint ensures
that the training process strives to a network with maximal number of zero
weights, which augmented by weight pruning yields a minimal number of
logical rules extracted by means of weights analysis. Rules are generated
consecutively, from most general, covering many training examples, to most
specific, covering a few or even single cases. If there are any exceptions to
these rules, they are being detected by additional neurons.

The algorithm applied to the Iris classification problem generates 3 rules
which give 98.7% accuracy. The rules found for the three monks and mush-
room problems classify all the examples correctly.

Keywords—Neural networks, MLP, backpropagation, logical rules.

I. I NTRODUCTION

EXTRACTION of logical rules from the data is an important
problem that has so far eluded satisfactory solution (for a

review see [1]). Adaptive systemsAW , such as the multi-layered
perceptrons (MLPs), are useful classifiers that adjust internal pa-
rametersW performing vector mappings from the input to the
output spaceY (p) = AW (X (p)). Some classification problems
have an inherent logical structure. In such cases it is preferable
to use logical rules instead of adaptive classifiers, because log-
ical reasoning is more acceptable to human users than the rec-
ommendations given by a black box systems [1]. Although the
class of problems with inherent logical structure simple enough
to be manageable by humans may be rather limited neverthe-
less it covers some important applications, such as the decision
support systems in financial institutions.

Straightforward approach to the extraction of logical rules
from neural systems is to use fuzzy logic and localized neuron
transfer functions. In such a case the rules are of the type:

IF
(
x1 ∈ X1∧ x2 ∈ X2∧ ...xN ∈ XN

)

THEN
(
y1 ∈ Y1∧ y2 ∈ Y2∧ ...yM ∈ YN

)
(1)

In particular the radial basis function (RBF) approach is
equivalent to the fuzzy logic systems with the gaussian member-
ship functions [2]. Other networks that use factorizable func-
tions, such as the Feature Space Mapping (FSM) network [3],
may be treated as neurofuzzy systems using arbitrary member-
ship functions. In this paper we will show how to obtain logical

Authors are with the Department of Computer Methods, Nicholas
Copernicus University, Grudzia¸dzka 5, 87-100 Toru´n, Poland. E-mail:
duch,raad,kgrabcze@phys.uni.torun.pl

rules from MLP networks, by far the most popular and success-
ful of the neural network models. The algorithm for extraction
of logical rules is presented in the next section and illustrated
in the third section. Further improvements of the algorithm are
discussed in the fourth section and the paper is finished with a
short discussion.

II. T HE ALGORITHM

Logical rules require symbolic inputs (linguistic variables),
therefore the input data has to be quantized first, i.e. the features
defining the problem should be identified and labeled. If the
input data componentsxi are given as real numbers in the pre-
processing stage one has to divide the data in distinct (for crisp
logic) sets and introduce new, logical (linguistic) input variables
sk:

IF (xi ∈ Xi, j) THEN (sk = label(xk) = T) (2)

For example,sk = s may designate the fact that the featuresk

is small, andsk =¬s that it is not small. The problem of optimal
selection of input features is very important and may be solved
in an adaptive way by analysis of the nodes developed by the
FSM network [3]. Crisp decision regions may be obtained in an
adaptive way by using the product∏i σ(xi−bi)(1−σ(xi + b′i))
of functions as the neuron processing function [4] and slowly in-
creasing the gain of the sigmoidal functionsσ(x) during learn-
ing. Here we will assume that the input is already quantized.
Each quantized features will have two or more values rep-
resented by a vectorVs1 = (+1,−1,−1...) for the first value,
Vs2 = (−1,+1,−1...) for the second value etc. Quantization is
implemented by the input nodes of the network, each node re-
ceiving featuresxi (real numbers) and converting them to the
vectors representing linguistic variablessk.

Interpretation of the activation of the MLP network nodes is
not easy [5]. To facilitate such an interpretation we will use very
steep (high gain) sigmoid functions, train only the input layer
and enforce the integer weight values 0 and±1, interpreted as 0
= irrelevant input,+1 = must be present and−1 = must not be
present. This is achieved by modifying the error function:

E(W) =
1
2 ∑

p
∑
k

(
Y (p)

k −AW

(
X (p)

)
k

)2
+ (3)

λ
2 ∑

i> j

W 2
i j(Wi j−1)2(Wi j +1)2

DUCH, ADAMCZAK AND GRA̧ BCZEWSKI: EXTRACTION OF LOGICAL RULES. . . 2

The first part is the standard measure of matching the network
outputsAW (X (p)) with the desired outputsY (p) for all training
datap. The second term is a sum over all weights and has mini-
mum (zero) for weights approaching zero or±1. Similarly as in
the weight pruning technique case in the backpropagation algo-
rithm this term leads to the additional change of weights:

Wi j←Wi j +λWi j(W 2
i j−1)(3W2

i j−1) (4)

whereλ scales the relative importance of auxiliary conditions.
The training proceeds separately for each output class. One hid-
den neuron is created and is trained on all data by the backpropa-
gation procedure until convergence. The weights and the thresh-
old obtained are then analyzed and the first group of logical rules
is found, covering the most common input-output relations. The
input data that is correctly handled by the first neuron will not
contribute to the error function, therefore the weights of this
neuron are kept frozen during further training. A second neuron
is added and trained on the remaining data. After convergence
the second weight vector is analyzed and corresponding rules
found. This procedure is repeated until all data are correctly
classified, weights analyzed and a set of rulesR1∨R2...∨Rn is
found, identifyingClass1. The output neuron for the first class
is connected to the hidden neurons. It performs a simple sum-
mation of the incoming signals (Fig. 1). The same procedure is
repeated for the remaining classes. Each time only one neuron
is trained, therefore the training is very fast.

RulesRk implemented by trained neurons are written in the
form of logical conditions by considering contributions of inputs
for each linguistic variable. Such variables is represented by a
vectorVs and its contribution to the activation is equal to the
dot product of the subsetWs of the weight vectorVs ·Ws. A
combination of linguistic variables activating the hidden neuron
above the threshold is a logical rule in the form:

IF (s1∧¬s2∧ ...∧ sk) THEN Class1 (5)

The rules obtained by this algorithm are ordered, starting with
rules that are used most often and ending with rules that handle
only a few cases. The final solution may be presented as a set
of rules or as a network of nodes performing logical functions,
with hidden neurons realizing the rules and the hidden-output
neuron weights all set to+1.

III. T WO EXAMPLES

The first, rather trivial example, is the XOR case. As ex-
pected, the algorithm handles the first two input cases (-1,-1)
and(+1,+1) with one hidden neuron andW11 = +1,W21 =−1
and the next two input cases(−1,+1) and(+1,−1) with W12 =
+1,W22 =−1.

In the second example the classical Iris dataset was used. The
data has 150 vectors evenly distributed in three classes, called

iris-setosa, iris-versicolor and iris-virginica. Each vector has
four features: sepal lengthx1 and widthx2, and petal lengthx3

and widthx4 (all in cm). The input values (length) for each of
these features were divided into three equal parts, called small
(s), medium(m) and large(l). Thusx1 is called small if it is in
[4.3,5.5] range, medium if in(5.5,6.7] and large if in(6.7,7.9].
Thus instead of four inputs a network with 12 inputs equal to
±1 is constructed. For example, the medium value of a single
feature is coded by(−1,+1,−1). With this discretization of the
input features three vectors of the iris-versicolor class (coded
as(m,m, l, l), (m, l,m, l) and(m,s, l,m)) become identical with
a number of iris-virginica vectors and cannot be classified cor-
rectly. These vectors were removed from the training sequence.

For the Iris dataset a single neuron per one class was sufficient
to train the network, therefore the final network structure is 12
input nodes and 3 output nodes (hidden nodes are only needed
when more than one neuron is necessary to cover all rules for
a given class). The scaling parameter was increased fromλ =
0.001 at the beginning of the training toλ = 0.01− 0.1 near
the end. The network needed about 1000 epochs on average
and the final weights were within 0.05 from the desired±1 or 0
values. The following weights and thresholds are obtained (only
the signs of the weights are written):

Iris-setosa:(+,0,0;0,0,+;+,−,0;+,−,−),θ = 2
Iris-versicolor:(0,0,0;0,0,0;0,+,−;0,+,−),θ = 3
Iris-virginica: (0,0,0;0,0,0;−,−,+;−,−,+),θ = 1

m
s

l

m
s

l

m
s

l

m
s

l

X

X

X

X

1

2

3

4

l1

l2

l3

input
linguistic
variables

hidden
layer output

C

C

C

1

2

3

Fig. 1. Final structure of the network for the Iris problem.

Logical rules corresponding to these weights may be pre-
sented in several equivalent ways. In the simplest case analysis
proceeds as follows: contributions from various values to the ac-
tivation of the output neuron are considered. For the Iris-setosa
vectors the weights for the first feature are(+,0,0), therefore
contribution fromx1 = s is ∆ = +1 and from bothx1 = m and

DUCH, ADAMCZAK AND GRA̧ BCZEWSKI: EXTRACTION OF LOGICAL RULES. . . 3

x1 = l, equivalent tox1 = ¬s, contribution is∆ = −1. Analysis
of other features and weights is summed up in Table I.

TABLE I

CONTRIBUTIONS OF FEATURES FOR THE FIRST CLASS(IRIS-SETOSA).

No. value ∆ value ∆ value ∆
x1 s +1 ¬s -1
x2 l +1 ¬l -1
x3 s +2 m -2 l 0
x4 s +3 ¬s -1

Using this table one can easily create a tree (Fig. 2) with
weights equal to the total contribution of each feature to the final
activation. At the first level contribution ofx4 is +3 for x4 = s or
−1 for x4 = ¬s; at the second level (forx3) the branching factor
is 3, forx1 it is 2 and forx2 it is 2, giving a total of 24 leaves. For
Iris-setosa class only the leaves with activation equal to or larger
than the thresholdθ = 2 should be considered. Logical rules are
read directly from this tree. Equivalent rules are obtained if the
order in which the levels are considered is changed. A useful
heuristic to find the simplest set of rules is to start with features
that contribute the most to the activation (in this case with fea-
tures 4 and 3). As shown in Fig. 2, ifx4 = s the activation∆
is already 3 and if it is followed byx3 = s the activation∆ = 5
and the two other features will not reduce the activation below
3 (since each may subtruct at most 1). Therefore the activation
is greater than the threshold∆ ≥ θ = 2 for x3 = s∧ x4 = s. In
the same way other conditions consistent with the weights are
found, giving a rule with four antecedents for class Iris-setosa,
one rule for Iris-versicolor and one for Iris-virginica:

IF (x3 = s∧ x4 = s)∨
(x1 = s∧ x3 = l∧ x4 = s)∨
(x1 = ¬s∧ x2 = l∧ x3 = l∧ x4 = s)∨ (6)

(x1 = s∧ x2 = l∧ x3 = s∧ x4 = ¬s)

THEN iris-setosa

IF (x3 = m∧ x4 = m) THEN iris-versicolor (7)

IF (x3 = l)∨ (x4 = l) THEN iris-virginica (8)

These rules allow for correct classification of the 147 vectors,
achieving 98% of accuracy. The validity of the rules found was
confirmed with a Prolog program. The accuracy of classifica-
tion using logical rules critically depends on selection of fea-
tures. For example, dividing each input value into two classes
only, small and large, extending to the middle of [min,max] seg-
ment, 13 vectors from Iris-setosa class get mixed with the vec-
tors from two other classes. Division into 4 classes also de-
creases classification accuracy, mixing 16 Iris-versicolor cases

Fig. 2. Tree-based search for rules after network has been trained.

with Iris-virginica. Evidently division into 3 classes was fortu-
itous.

IV. I MPROVEMENTS

Analysis of the histograms of the individual features for each
class shows that the division into 3 equal parts is almost op-
timal, cutting the histograms into the regions where values of
features are most frequently found in a given class. For exam-
ple, Iris-virginica class is more frequent for the value ofx 3 above
4.93 and Iris-versicolor are more frequent below this value. Dis-
cretization based on histograms made by dividing the data range
into 15 bins and smoothing the histogram by counting not only
the number of vectors falling in a given bin but also adding 0.4
to adjacent bins is shown in Fig. 3. This discretization leads to
the following table for linguistic variables:

TABLE II

L INGUISTIC VARIABLES OBTAINED BY ANALYSIS OF HISTOGRAMS.

s m l

x1 [4.3,5.5] (5.5,6.1] (6.1,7.9]
x2 [2.0,2,75] (2.75,3.2] (3.2,4.4]
x3 [1.0,2.0] (2.0,4.93] (4.93,6.9]
x4 [0.1,0.6] (0.6,1.7] (1.7,2.5]

With this discretization and the rules given above only two
vectors cannot be classified, i.e. classification accuracy is
98.7%.

The weight vector found does not guarantee that the simplest
rules are found. There may be many zeros in the error function
for different sets of weights. To enforce the simplest structure
of the weight vector we will break the extra term in the error
function into two parts:

E(W) =
1
2∑

p
∑
k

(
Y (p)

k −AW

(
X (p)

)
k

)2
+ (9)

λ1

2 ∑
i> j

W 2
i j +

λ2

2 ∑
i> j

W 2
i j(Wi j−1)2(Wi j +1)2

DUCH, ADAMCZAK AND GRA̧ BCZEWSKI: EXTRACTION OF LOGICAL RULES. . . 4

4 5 6 7 8
0

5

10

15

20

2 3 4 5
0

5

10

15

20

0 2 4 6 8
0

5

10

15

20

25

30

0 1 2 3
0

10

20

30

40

Fig. 3. Histograms of the four Iris features. Thex3, x4 features (lower pictures)
allow for better discrimination than the first two features.

The additional term withλ1 gives backpropagation proce-
dure an additional incentive to find solutions with large num-
ber of zero weights, i.e. to eliminate irrelevant features. In
the Iris dataset case the weight vector for the neuron correctly
classifying samples from the first class is now simplified to
(0,0,0;0,0,0;+,0,0;+,0,0),θ = 1 and only one rule is left!

IF (x3 = s∨ x4 = s) THEN iris-setosa (10)

The three rules, Eq. 7, 8 and 10, one for each class, allow for
correct classification of 147 vectors (98%) using only thex 3 and
x4 features. This is the simplest description of the Iris dataset
that we know of (Fig. 4).

Discretization according to the histogram values requires re-
jection of two Iris-versicolor vectors and leads to the following
weights:

Iris-setosa:(0,0,0;0,0,0;+,0,0;+,0,0),θ = 1
Iris-versicolor:(0,0,0;0,0,+;−,+,−;−,+,−),θ = 3
Iris-virginica: (0,0,0;0,0,−;−,−,+;−,−,+),θ = 2

The final structure of the network correctly classifying 148
vectors (98.7%) is shown in Fig. 1. In addition to the rule (10)
two logical rules are found:

IF (x3 = m∧ x4 = m)∨ (x2 = l∧ x3 = m)∨
(x2 = l∧ x4 = m) THEN iris-versicolor (11)

IF (x3 = l∧ x4 = l)∨ (x2 = ¬l∧ x3 = l)∨
(x2 = ¬l∧ x4 = l) THEN iris-virginica (12)

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

x setosa o versicolor + virginica

Fig. 4. Iris dataset displayed inx3 andx4 coordinates; decision regions (rules)
for the three classes are also shown. Note the three Iris-versicolor cases that
are incorrectly classified using these two features only.

V. M ORE EXAMPLES AND FURTHER IMPROVEMENTS TO

THE ALGORITHM

Despite of the difficulties with discretizing the input, the case
of iris dataset turned out to be relatively simple. Each of the
three classes was classified correctly by a network with single
hidden neuron. The problems we describe in this section deal
with objects described by discrete features. However to have
them resolved we had to build more sophisticated networks. It
revealed some limitations of the algorithm in the form described
in section II and suggested the necessary improvements.

The new classification tasks we tried our method against are
the three monks and mushrooms problems. They are described
in detail in [1]. We state them here in a compact form:

Each of the three monks problems is to determine whether an
object described by six features1 is a monk or not. The problems
define “being a monk” as having features satisfying the follow-
ing formulae respectively:
1. head shape = body shape∨ jacket color =red
2. exactly two of the six features have their first values
3. ¬ (body shape =octagon ∨ jacket color =blue)
∨ (holding =sward ∧ jacket color =green)
The mushrooms problem is to classify mushrooms as poisonous
or edible, given their 22 attributes. The attributes have between
2 and 12 different values.

Sometimes attempts to train a net with a single neuron are
unsuccessful. In such cases it is reasonable to start with two
neurons in the hidden layer and train them simultaneously. If
this does not help the number of neurons is increased until a
convergeable network is constructed. After that the weights for
all the trained neurons get frozen. We used this technique for

1The features and their values can be found in Fig. 5.

DUCH, ADAMCZAK AND GRA̧ BCZEWSKI: EXTRACTION OF LOGICAL RULES. . . 5

instance in the monks 1 example (see Fig. 5) - the first two
neurons were constructed this way. In some other tests we had
to allow up to four neurons.

round
square

octagon

round
square

octagon

sword
balloon

flag

yes
no

yes
no

red
yellow
green
blue

head shape

body shape

is smiling

holding

jacket
colour

has tie

+1

+1

-1

-1

Σ

Fig. 5. The network for monks 1 problem. The first two neurons were taught
simultaneously. The other two handle exceptions.

Another modification to the method had to be made to sup-
port the cases when the network we create learns more gen-
eral patterns then needed. The monks 1 problem illustrates this.
The first two neurons classify properly all the positive exam-
ples, however some negative ones are also accepted. It means
that the patterns, which are not recognized properly are excep-
tions to the rules extracted from the network. To rectify this we
have to extend the hidden layer by some neurons with a nega-
tive contribution to the output node. Two different ways leading
to this result seem to be natural and simple. We can either use
a sigmoidal function mapping onto the interval (−1,0) or set
the weights of links connecting the new neurons with the out-
put to −1. In both cases the training dataset must be changed
so that only the exceptions give nonzero output (−1 and 1 re-
spectively). Then our algorithm can be applied to it, as if a new
task were defined. After the whole process is finished we have
two separate sets of rules, one comprising information on pos-
itive examples, and the other describing exceptions. In further
descriptions we will use the word “ rules” to mean the rules of
the first set, and the word “exceptions” for the members of the
second set. To classify a pattern correctly, the first condition
one ought to check is whether it is an exception, and then (only
if it is not true) the basic classification rules can be applied to
determine if the pattern belongs to the class.

Our method applied to the monks 1 problem needed three
passes2. The two hidden neurons mentioned above, trained dur-
ing the first pass, recognized all the positive examples and 11

2By one pass (or stage) we mean a single process of training leading to con-
vergence and finished with freezing the weights of all trained neuron

negative ones. So, we had to weed the exceptions out. In the
second pass, training one hidden neuron let us detect 6 of them.
The third pass with another hidden neuron added was taught
the remaining 5 exceptions. Some statistics concerning all the
stages of the algorithm for all the problems presented in this sec-
tion have been composed into Table III. Successive columns of
the table have the following meaning: the first specifies prob-
lems and the final numbers of generated rules and exceptions,
the second enumerates particular stages, the third gives the num-
ber of neurons trained simultaneously and fourth says if the aim
was searching for rules or exceptions (to highlight the differ-
ence rules are printed in bold and exceptions in italic). The fifth
column contains the numbers of instances classified properly
thanks to rules generated during a given pass. The last column
seems to confirm our note, that the method learns the most com-
mon rules first. The isolated cases are being recognized after
subsequent stages.

TABLE III

STAGES STATISTICS FOR SOME CLASSIFICATION TASKS.

Problem Pass No. Neurons Rules/Exc. Examples

monks 1 1 2 rules 42
4 rules 2 1 exceptions 6
2 exceptions 3 1 exceptions 5
monks 2 1 1 rules 33
16 rules 2 1 exceptions 5
8 exceptions 3 1 rules 16

4 2 exceptions 6
5 2 rules 10
6 2 exceptions 3
7 4 rules 5

monks 3 1 1 rules 57
3 rules 2 2 exceptions 5
4 exceptions 3 1 rules 3
mushrooms 1 1 rules 3868
12 rules 2 1 rules 40
no exceptions 3 1 rules 8

In the monks 1 example we ended up with 4 rules and 2 excep-
tions, altogether composed of 14 atomic formulae. They classify
the training data without any errors.

Although the monks 2 example definition is very simple, the
training process required much effort. As shown in Table III
it needed the biggest number of passes of the algorithm. Each
of the three first rules searching stages ended with some excep-
tions and thence required additional stages. Moreover last stages
made the impression that the relations among the training sam-
ples were very difficult to detect. Three passes trained networks
with two hidden units, and the last one required even four units.
It is worth to point out that the four nodes of the network con-
structed during the last pass are responsible for correct classifi-
cation of just five examples. This shows how the neurons trained
at the final passes of our algorithm can specialize in recogniz-
ing patterns which do not resemble the others. We extracted 16
rules and 8 exceptions from the resulting network. The number
of atomic formulae which compose them is 132.

DUCH, ADAMCZAK AND GRA̧BCZEWSKI: EXTRACTION OF LOGICAL RULES. . . 6

The third monks problem also required one additional pass to
find exceptions. Finally, two neurons gave three rules, and other
two nodes generated four exceptions. The whole logical system
for this case contains 33 atomic formulae.

The last, but by no means least result of the algorithm was
achieved for the mushrooms classification dataset. This exam-
ple is in some sense the richest one, as the database consists
of 8124 vectors. No additional information about how to ex-
tract the training set is distributed with it, so we decided to train
our network with all the data. We were quite surprised to see a
single neuron capable of learning all the training samples. Un-
fortunately such a network was useless for us, as it had too many
nonzero weights. The search tree used in the process of extract-
ing rules grows exponentially with the number of “nonredun-
dant” attributes describing objects. The tree (Fig. 2) built for
the case of Iris-setosa was small and easy to trace. Thanks to
the small number of features (4) it was possible to work out the
rules with a pen and a piece of paper. It wouldn’ t be possible
with a 22 levels tree as each feature can have up to three differ-
ent values of possible contribution to the weighted sum which
determines the signal sent out by the hidden unit. Our algorithm
uses some heuristics, to avoid searching branches which do not
give any rules and some simpler methods can check it out. Nev-
ertheless, we have to assume, that the complexity of the algo-
rithm is 3N , where N is the number of nonredundant attributes.
It means that in many cases we have to adjust relevant training
coefficients to reduce to zero as many weights as possible. In
the mushrooms example, the price we had to pay was increasing
the number of passes (and neurons as well) to three, as one unit
was no longer able to learn all the patterns with satisfiably small
number of nonzero weights. However it made the analysis of
the network much easier (i.e. possible) and reduced the number
of rules to 12, and the number of atomic formulae to 27.

Rules extraction for Iris-setosa was so easy for one more rea-
son: each feature had just three possible values. As a result of
this each contribution of a feature to a weighted sum could be
unambiguously represented by a feature value or its negation.
In more complicated cases a contribution might be represented
by a complex formula. Human make multiple mistakes during
the analysis needed for extraction of rules, therefore at quite an
early stage of the work we decided to write a piece of C++ code
to make the complicated weights analysis for us. The accuracy
of all the examples was also checked automatically by simple
prolog programs.

VI. DISCUSSION AND SUMMARY

The problem of extracting rules from neural networks has a
natural geometrical interpretation. Crisp logic rules correspond
to a division of the input space with perpendicular hyperplanes
into areas with symbolic names (Fig. 4). If the classes in the
input space are correctly separated with such hyperplanes log-
ical description of the data is possible. Logical approximation
may become arbitrarily accurate by increasing the number of

linguistic variables, but the number of rules may become un-
acceptably large. Fuzzy logic offers better approximation with
smaller number of rules, including simple piecewise linear ap-
proximations rules and more complex membership functions. In
RBF or FSM systems [3] after initial clusterization positions as
well as the shapes of prototype data clusters are modified, giving
complex membership functions for each class. As long as sepa-
rable network functions are used the rules: IF X ∈ XC THEN the
vector X is of the class C, may be analyzed in the fuzzy logic
sense.

We have presented here a simple method of rule extraction
based on the standard backpropagation technique with modified
error function. Crisp logical rules are found automatically by
analyzing nodes of trained networks. The method seems to out-
perform in many ways previous methods of rule extraction [1],
[7], [8].

ACKNOWLEDGMENTS

Support by the Polish Committee for Scientific Research,
grant 8T11F 00308, is gratefully acknowledged.

REFERENCES

[1] R. Andrews, J. Diederich, A.B. Tickle, “A Survey and Critique of Tech-
niques for Extracting Rules from Trained Artificial Neural Networks,“
Knowledge-Based Systems vol. 8, pp. 373–389, 1995.

[2] J-S. R. Jang, C.T. Sun, “Functional Equivalence Between Radial Basis
Function Neural Networks and Fuzzy Inference Systems,” IEEE Trans. on
Neural Networks, vol. 4, no. 1, pp. 156–158, 1993.

[3] W. Duch, G.H.F. Diercksen, “Feature Space Mapping as a universal adap-
tive system,” Computer Physics Communications, vol. 87, pp. 341–371,
1995.

[4] W. Duch and N. Jankowski, “Bi-radial transfer functions,” in Proc. sec-
ond conference on neural networks and their applications, Orle Gniazdo,
Poland, vol. I, pp. 131–137, 1996.

[5] J.M. Żurada, “ Introduction to Artificial Neural Systems,” West Publishing
Company, St Paul, 1992.

[6] ftp.ics.uci.edu/pub/machine-learning-databases contains the Iris dataset.
[7] LiMiu Fu, “Neural Networks in Computer Intelligence,” McGraw Hill Inc.

1994.
[8] A. Lozowski, T.J. Cholewo, J.M. Żurada, “Symbolic rule representation

in neural network models,” in Proc. second conference on neural networks
and their applications, Orle Gniazdo, Poland, vol. II, pp. 300–305, 1996.

