
Extraction of prototype-based threshold rules using
neural training procedure

Marcin Blachnik1, Mirosław Kordos2

1 Silesian University of Technology, Department of Management and Informatics,
Katowice, Krasinskiego 8, Poland: marcin.blachnik@polsl.pl

Google: M. Blachnik
2 University of Bielsko-Biala, Department of Mathematics and Computer Science,

Bielsko-Biała, Willowa 2, Poland: mkordos@ath.bielsko.pl
Google: M. Kordos

Abstract. Complex neural and machine learning algorithms usually lack com-
prehensibility. Combination of sequential covering with prototypes based on thresh-
old neurons leads to a prototype-threshold based rule system. This kind of knowl-
edge representation may be quite powerful, providing solutions to many classifi-
cation problems using a single rule.

Keywords: Data understanding, rule extraction, prototype-based rules

1 Introduction

Neural networks and other complex machine learning models usually lack the advan-
tage of comprehensibility. This property is very important in many application, in-
cluding safety-critical applications. Also in technological applications control systems
trained for support of industrial processes (see for example [1]) simple and understand-
able models may be crucial to avoid dangerous situations and to raise confidence of
process engineers in the deployed system. The second aspect of building a comprehen-
sible model is directly related to knowledge extraction. In medical applications or social
science data driven models may be the only source of knowledge of a certain process.
There is a clear need of building data driven models using human friendly knowledge
representation.

In a typical classification problem labeled data is given as a tuple
T = {[x1, y1] , [x2, y2] , . . . , [xn, yn]}, where xi ∈ Rm is an input vector, yi ∈ [−1, 1]
is a label (only two-class problems are considered here). Four general approaches to
find comprehensible mapping f (xi)→ yi are usually considered [2]:

– propositional logic using crisp logic rules (C-rules);
– fuzzy logic and fuzzy rule based systems (F-rules);
– prototype-based rules and logic (P-rules);
– first and higher-order predicate logic.

Duch
Typewriter
 Lecture Notes in Computer Science 7553, 255-262, 2012

Duch
Typewriter

Duch
Typewriter

C-rules are the most common human friendly knowledge representation. They avoid
ambiguity facilitating uniqueness of interpretation at the expense of several limitations.
Continuous attributes usually cannot be discretized in a natural way, crisp decision bor-
ders divide the input space into hyperboxes that cannot easily cover some data distribu-
tions, and some simple forms of knowledge (like "the majority vote") may be expressed
only using a very large number of logical conditions in propositional form. Problems
with discretization have been addressed by fuzzy logic, with fuzzy rule-based systems
using membership functions to represent the degree (in [0, 1] range) of fulfilling certain
conditions [3]. This leads to more flexible decision borders and allows for handling un-
certainty inherent in real world data. However, F-rules do not represent many forms of
knowledge that predicate logic can express in a natural way.

Prototype based rules try to capture intuitive estimation of similarity in decision-
making processes [4], as it is done in case based reasoning. P-rules are represented by
reference vectors and similarity measures, and are more suited to learning from data in
continuous form than predicate logic. Relation of P-rules with F-rules has been studied
in [5, 6] where it has been shown that fuzzy rules can be converted to prototype-rules
with additive distance functions. P-rules work with symbolic attributes by applying
heterogeneous distance measures like VDM distance [7]. Moreover, they can easily
express some forms of knowledge, such as the selection of the m of n true conditions,
that limit the use of crisp and fuzzy rules.

P-rules can be have one of the two forms, the nearest neighbor rule, and the prototype-
threshold based rules. This article address the problem of extracting the prototype-
threshold based rules from the data. A simple algorithm called nOPTDL based on com-
bination of sequential covering approach to rule extraction with neural-like training
and representation of single rules is presented below. This allows to use gradient based
optimization methods to optimize properties of neurons representing single rules.

In the following section the details of prototype threshold rules are discussed, and
in section 3 the nOPTDL algorithm is presented. Section 4 presents a few examples of
its performance and contains discussion of the results. The last section concludes the
paper and draws perspectives on further research in this direction.

2 Prototype threshold based rules

A single prototype threshold based rule has the form:

If D(xi,p) < θ Then yi ← l (1)

where D(xi,p) is a distance function between vector xi and the prototype p, and l is
the class label associated with the rule.

There are several approaches to construct this type of rules. Perhaps the simplest is
based on classical decision trees. First, conditions that define each branch of the tree
may be used to define separate distance function for a single prototype associated with
the root of the tree. More common approach leading to a lower number of rules starts
from a distance matrix D (q,w) that is used to construct new features for training of
the decision tree. Each new feature represents distance from selected training vector, so
the number of new features added to the original ones is equal to the number of training

instances m = n. In this approach each node may be a single prototype threshold rule
or a combination of crisp conditions with distance-based conditions [8].

Another approach to called ordered prototype-threshold decision list OPTDL de-
rives from the sequential covering principle. In this approach, described in [9], the al-
gorithm starts from creating a single rule, and then adds new rules such that each new
rule covers examples not classified by previously constructed rules (sketch (1)). The
shape of the decision border of a single rule depends on distance function. Using Eu-
clidean distance functions creates hyperspherical borders. To avoid unclassified regions
new rules should overlap with each other. When a test vector falls in such overlapping
region unique decisions is made by ordering the rules from the most general to the most
specific. The training algorithm starts from creating the most general rule, and then each
new rule is marked as more specific then the previous ones. The decision making pro-
cess starts from analyzing the most specific rule, and if its conditions are not fulfilled
then more general rules are being analyzed. If an instance is not covered by any rule,
then the else clause is used to determine the default class label.

Algorithm 1 Sequential covering algorithm
Require: T,minSupport,maxIterations
P← ∅ {set of prototype rules}
S← T {set of uncovered or misclassified examples}
i← 0
repeat
{pi, θi} ← CreateNewRule(S,T)
P← P ∪ {pi, θi}
else← DetermineElseCondition(S)
S← ApplyRules(T,P)
S′ ← ApplyElse(S, else)
i← i+ 1

until (|S′| < minSupport) or (i ≥ maxIterations)
return P, else

Construction of a single rule requires determination of the position of a prototype
and its corresponding threshold. To this aim we have already proposed an approach
[9] based on search strategies and criteria commonly used in decision trees sOPTDL,
such as the information gain, Gini index or SSV separability measure. This algorithm
considers each input vector xi as potential prototype, and the best tuple [p, θ, l], where
θ is a threshold and l is the consequence of that rule, is optimized using search strategy
sketched in Algorithm (2), where S is the set of examples that are not classified or
incorrectly classified.

In experiments reported in [9] this approach worked quite well, although the posi-
tions of all prototypes were restricted to one of the instances of the training set. Such
approach improves the ability to interpret resulting rules, because a prototype is a real
example from the training set. On the other hand this reduces the ability to create de-
sired shape of the decision border. For two overlapping Gaussian distributions with
identical σ the optimal decision border is a hyperplane, but such decision border cannot

Algorithm 2 Search based ordered prototype-threshold decision list algorithm
(sOPTDL)
Require: S,T

for i ∈ T do
l← yi
for k ∈ |S| such that yk−1 6= yk do
θk = 0.5 · (d (xi,xk)− d (xi,xk−1))
v ← Criterion(xi, θk,Ty 6=l, Sy=l)
if v > v′ then
v′ ← v
θ′ ← θk
p← xi

end if
end for

end for
return p, θ′

be created using prototypes restricted to the examples of the training set. Abandoning
this restriction a prototype moved towards infinity with appropriately large threshold
created good approximation to linear decision boarder. In the next section optimization
procedures to determine position and appropriate threshold of a prototype is presented.

3 Neural optimization for prototype-threshold rules

The goal here is to determine optimal position of the prototype and its associated thresh-
old. This is done by optimization of parameters of neurons that implement hyperspher-
ical isolines, such that each coverage step of the rule induction consists of training of
a single neuron (the nOPTDL algorithm). The transfer function of that neuron is based
on modified logistic function:

z(x|p, θ) = σ (D (x,p)
α − θ) (2)

σ(x) =
1

(1 + exp (−x))
(3)

where p is the position of the prototype, D (x,p) is the distance function, α rep-
resents the exponent of the distance function (for Euclidean distance α = 2), and θ
denotes the threshold or bias. The α parameter is used to add flexibility to distance
functions, regulating its shape as a function of differences between vectors.

The inner part of the transfer function g (x) = D (x,p)
α − θ defines the area cov-

ered by active neuron, such that vectors x that fall into this area give positive values
g (x) > 0, and those being outside negative values g (x) < 0. The logistic function is
used for smooth nonlinear normalization of the g (x) values to fit them into the range
[0, 1]. x vectors close to the border defined by z(·) = 0.5 will increase this value to-
wards 1 inside, and towards 0 outside the area covered by the neuron, with the speed of

change that depends on the slope of the logistic function, and the scaling of the distance
function.

The objective function used to optimize the properties of the neuron is defined as:

E(p, θ) =
∑
i∈C

z (xi|p, θ) · l · yi (4)

which is a sum of neuron activations multiplied by the product of the consequence
l = ±1 of the rule associated with the prototype p. C denotes a set of training examples
incorrectly classified (T with l 6= yi) and samples that are not yet covered by current
set of rules (T for which l = yi).

This objective function can be optimized using gradient or other types of algorithms.
To avoid local minima and speed up convergence gradient optimization procedure that
is restarted from 5 different random localization is used, each time starting from vector
that is not yet properly classified.

4 Numerical experiments

Experiments described here compare the accuracy and comprehensibility of rules in-
duced by our system. Experiments were performed using 6 benchmark datasets with
different characteristics, taken from the UCI repository [10]. They include the Cleve-
land heart disease (Heart disease), Pima Indian diabetes (Diabetes), sonar (Sonar), Wis-
consin breast cancer (Breast cancer), and appendicitis (Appendicitis). The properties of
these datasets are summarized in Tab. (1). These datasets represent quite diverse appli-
cations, including medical data with heterogeneous type of attributes, and datasets with
many continuous type of attributes, such as Sonar dataset, that are difficult to handle
using crisp rules [2].

Table 1. Description of the datasets used in rule extraction experiments.

Dataset # vectors # features # of classes comment
Heart disease 297 13 2 6 vectors with missing values were re-

moved
Diabetes 768 8 2
Sonar 208 60 2
Breast cancer 683 9 2 16 vectors with missing values were re-

moved
Ionosphere 351 34 2
Appendicitis 106 8 2

In the first experiment the influence of the number of extracted rules on classification
accuracy of the nOPTDL has been analyzed. 10-fold crossvalidation has been used for
estimation of accuracy, repeating the test for different number of rules in the range
k = [1 . . . 10]. Results are presented in Fig. (1).

Classification accuracy using just a single P-rule is sometimes as good as with many
rules (heart, breast cancer). In other cases adding new rules improves accuracy up to a
point, but for all datasets no more than 5 rules were needed to reach the maximum

(a) Heart disease (b) Diabetes dataset

(c) Sonar dataset (d) Breast cancer

(e) Ionosphere dataset (f) Appendicitis dataset

Fig. 1. Classification accuracy and variance as the function of the number of rules of the nOPTDL.

accuracy. This shows that prototype-threshold form of knowledge representation may
be quite powerful.

To compare proposed nOPTDL algorithm to other state-of-the-art rule extraction
algorithms another test was done using double crossvalidation: the inner cross valida-
tion was used to optimize parameters of given classification algorithm (for example, the
number of rules in our system), and the outer validation was used to predict the final
accuracy. This testing procedure is presented in Fig.(4).

Our algorithm has been compared to the previous version based on search strategies
(sOPTDL), and also to C4.5 decision tree [11] and Ripper rule induction system [12].
The experiments have been conducted using RapidMiner [13] with Weka extension,
and with Spider toolbox [14]. The parameters of both C4.5 and Ripper algorithms has

Fig. 2. The accuracy estimation procedure

also been optimized using double cross validation, optimizing pureness and the minimal
weights of instances. Results are presented in Tab. (2).

Table 2. Comparison of the accuracy of the new algorithm with C4.5 decision tree and Ripper
rule induction algorithm.

Dataset nOPTDL sOPTDL C4.5 3 Ripper 4

Acc±Std Acc±Std Acc±std Acc±std
Heart disease 83,5±5,76 80.48±4.33 77,2±4,3 80,13±7,24
Diabetes 72,00±4,4 71.62±4.01 74,2±4,7 74,61±2,66
Sonar 81,12±11,42 75.02±8.91 72,5±11,2 79,76±6,8
Breast cancer 96,92±2,13 96.93±1.08 95,28±4,7 96,28±1,7
Ionosphere 88,05±5,26 92.02±3.51 90,33±4,7 88,61±4,2
Appendicitis 86,72±6,63 82.27±11.85 83,9±6 85,81±6,2

For Heart disease the average accuracy of nOPTDL (1 rule) is over 5% higher in
comparison with C4.5 classifier (21 rules), and 3% higher then the Ripper algorithm
(4 rules). Very good accuracy was also achieved for the Appendicitis dataset. Average
accuracy of Sonar dataset (4 rules) was also very high, however the standard deviation,
comparable to that obtained from C4.5 decision tree, was much higher than the stan-
dard deviation of Ripper algorithm. Diabetes also required 3 P-rules, in other cases a
single rule was sufficient. These results show that knowledge representation using small
number of P-rules may be quite powerful.

5 Conclusions and future research

A simple modification of OPTDL algorithm (nOPTDL) for extraction of prototype
threshold based rules has been described. Neurons implementing sigmoidal functions
combined with distance-based functions represent single P-rules. Such approach en-
ables efficient gradient based optimization methods for rule extraction. Moreover, the
use of VDM metric and heterogeneous distance functions allows for applications of this
method to datasets consisting of symbolic or mixed types of features.

Experiments performed on diverse types of datasets showed that good classification
accuracy may be achieved with a small number of P-rules, which is the goal of any rule

induction algorithm. In most cases even one single rule leads to a rather small error rate,
showing high expressive powers of prototype based knowledge representation.

Further extensions of this algorithm, including beam search instead of the best first
search, should improve its quality. Our future work also includes adding local feature
weights to each neuron to automatically adjust feature importance. Enforcing regular-
ization should increase the sparsity of obtained feature weights and lead to improvement
of comprehensibility by filtering useless attributes and simplifying extracted knowl-
edge. Adopting appropriate distance measures, and switching to the Chebyshev distance
(Linf norm) may allow for classical crisp rule extraction using the same OPTDL family
of algorithms.

Acknowledgment The work was sponsored by the Polish Ministry of Science and
Higher Education, project No. 4421/B/T02/2010/38 (N516 442138).
The software package is available on the web page of The Instance Selection and Pro-
totype Based Rules Project at http:\\www.prules.org

References

1. Wieczorek, T.: Neural modeling of technological processes. Silesian University of Technol-
ogy (2008)

2. Duch, W., Setiono, R., Zurada, J.: Computational intelligence methods for understanding of
data. Proceedings of the IEEE 92 (2004) 771–805

3. Nauck, D., Klawonn, F., Kruse, R., Klawonn, F.: Foundations of Neuro-Fuzzy Systems. John
Wiley & Sons, New York (1997)

4. Duch, W., Grudziński, K.: Prototype based rules - new way to understand the data. In: IEEE
International Joint Conference on Neural Networks, Washington D.C, IEEE Press (2001)
1858–1863

5. Duch, W., Blachnik, M.: Fuzzy rule-based systems derived from similarity to prototypes. In
Pal, N., Kasabov, N., Mudi, R., Pal, S., Parui, S., eds.: LNCS. Volume 3316. Physica Verlag,
Springer, New York (2004) 912–917

6. Kuncheva, L.: On the equivalence between fuzzy and statistical classifiers. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 15 (1996) 245–253

7. Wilson, D.R., Martinez, T.R.: Value difference metrics for continuously valued attributes.
In: Proceedings of the International Conference on Artificial Intelligence, Expert Systems
and Neural Networks. (1996) 11–14

8. Gra̧bczewski, K., Duch, W.: Heterogenous forests of decision trees. Springer LNCS 2415
(2002) 504–509

9. Blachnik, M., Duch, W.: Prototype-based threshold rules. LNCS 4234 (2006)
10. Merz, C., Murphy, P.: UCI repository of machine learning databases (1998-2004)

http://www.ics.uci.edu/∼mlearn/MLRepository.html.
11. Quinlan, J.: C 4.5: Programs for machine learning. Morgan Kaufmann, San Mateo, CA

(1993)
12. William, C.: Fast effective rule induction. In: Twelfth International Conference on Machine

Learning. (1995) 115–123
13. Rapid-I: Rapidminer. http://www.rapid-i.com (-)
14. Weston, J., Elisseeff, A., BakIr, G., Sinz, F.: The spider.

http://www.kyb.tuebingen.mpg.de/bs/people/spider/ (-)

