
Chapter 1
Optimal Support Features for Meta-learning.

Włodzisław Duch1,2, Tomasz Maszczyk1, Marek Grochowski1

Abstract
Meta-learning has many aspects, but its final goal is to discover in an automatic

way many interesting models for a given data. Our early attempts in this area in-
volved heterogeneous learning systems combined with a complexity-guided search
for optimal models, performed within the framework of (dis)similarity based meth-
ods to discover “knowledge granules”. This approach, inspired by neurocognitive
mechanisms of information processing in the brain, is generalized here to learning
based on parallel chains of transformations that extract useful information granules
and use it as additional features. Various types of transformations that generate hid-
den features are analyzed and methods to generate them are discussed. They include
restricted random projections, optimization of these features using projection pursuit
methods, similarity-based and general kernel-based features, conditionally defined
features, features derived from partial successes of various learning algorithms, and
using the whole learning models as new features. In the enhanced feature space the
goal of learning is to create image of the input data that can be directly handled
by relatively simple decision processes. The focus is on hierarchical methods for
generation of information, starting from new support features that are discovered
by different types of data models created on similar tasks and successively build-
ing more complex features on the enhanced feature spaces. Resulting algorithms
facilitate deep learning, and also enable understanding of structures present in the
data by visualization of the results of data transformations and by creating logi-
cal, fuzzy and prototype-based rules based on new features. Relations to various
machine-learning approaches, comparison of results, and neurocognitive inspira-
tions for meta-learning are discussed.

Key words: Machine learning, meta-learning, feature extraction, data understand-
ing

Department of Informatics, Nicolaus Copernicus University, Grudzia̧dzka 5, Toruń, Poland ·
School of Computer Engineering, Nanyang Technological University, Singapore

1

2 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

1.1 Introduction: neurocognitive inspirations for meta-learning

Brains are still far better in solving many complex problems requiring signal analy-
sis than computational models. Already in 1855 H. Spencer in the book “Principles
of Psychology” discussed associative basis of intelligence, similarity and dissimi-
larity, relations between physical events, “psychical changes”, and activity of brain
parts (early history of connectionism is described in [1]). Why are brains so good in
complex signal processing tasks, while machine learning is so poor, despite devel-
opment of sophisticated statistical, neural network and other biologically-inspired
computational intelligence (CI) algorithms?

Artificial neural networks (ANNs) drew inspiration from neural information pro-
cessing at single neuron level, initially treating neurons as threshold logic devices,
later adding graded response (sigmoidal) neurons [2] and finally creating detailed
spiking neural models that are of interest mainly to people in computational neuro-
science [3]. Attempts to understand microcircuits and draw inspirations from func-
tions of whole neocortical columns have so far not been too successful. The Blue
Brain Project [4] created biologically accurate simulation of neocortical columns,
but the project did not provide any general principles how these columns operate.
Computational neuroscience is very important to understand details of neural func-
tions, but may not be the shortest way to computational intelligence. Situation in
computational quantum physics and chemistry is analogous: despite detailed simu-
lations of molecular properties little knowledge useful for conceptual thinking has
been generated.

Neurocognitive inspirations for CI algorithms based on general understanding of
brain functions may be quite useful. Intelligent systems should have goals, select
appropriate data, extract information from data, create percepts and reason using in-
formation derived from them. Goal setting may be a hierarchical process, with many
subgoals forming a plan of action or solution to a problem. Humans are very flexi-
ble in finding alternative solutions, but current CI methods are focused on searching
for a single best solutions. Brains search for alternative solutions recruiting many
specialized modules, some of which are used only in very unusual situations. A
single neocortical column provides many types of microcircuits that respond in a
qualitatively different way to the incoming signals [5]. Other cortical columns may
combine these responses in a hierarchical way creating complex hidden features
based on information granules extracted from all tasks that may benefit from such
information. General principles, such as complementarity of information processed
by parallel interacting streams with hierarchical organization are quite useful [6].
Neuropsychological models of decision making assume that noisy stimulus infor-
mation from multiple parallel streams is accumulated until sufficient information is
obtained to make reliable response [7]. Decisions may be made if sufficient number
of features extracted by information filters provide reliable information.

Neurocognitive principles provide an interesting perspective on recent activity
in machine learning and computational intelligence. In essence, learning may be
viewed as a composition of transformations, with parallel streams that discover ba-
sic features in the data, and recursively combine them in new parallel streams of

1 Optimal Support Features for Meta-learning. 3

higher-order features, including high-level features derived from similarity to mem-
orized prototypes or categories at some abstract level. In the space of such features
knowledge is transferred between different tasks and used in solving problems that
require sequential reasoning. Neurocognitive inspirations provide a new perspective
on: Liquid State Machines [5], ”reservoir computing” [8], deep learning architec-
tures [9], deep belief networks [10], kernel methods [11], boosting methods that use
week classifiers [12], ensemble learning [13, 14], various meta-learning approaches
[15], regularization procedures in feedforward neural networks, and many other ma-
chine learning areas.

The key to understanding general intelligence may lie in specific information
filters that make learning possible. Such filters have been developed slowly by the
evolutionary processes. Integrative chunking processes [16] combine this informa-
tion into higher-level mental representations. Filters based on microcircuits discover
phonemes, syllables, words in the auditory stream (with even more complex hierar-
chy in the visual stream), lines and edges, while chunking links sequences of lower
level patterns into single higher-level patterns, discovering associations, motifs and
elementary objects. Meta-learning tries to reach this level of general intelligence
providing additional level of control to search for composition of various transfor-
mations, including whole specialized learning modules, that “break and conquer”
difficult tasks into manageable subproblems. The great advantage of Lisp program-
ming is that the program may modify itself. There are no examples of CI programs
that could adjust themselves in a deeper way, beyond parameter optimization, to the
problem analyzed. Constructive algorithms that add new transformations as nodes
in a graphic model are a step in this direction.

Computational intelligence tries to create universal learning systems, but biolog-
ical organisms frequently show patterns of innate behavior that are useful only in
rare, quite specific situations. Models that are not working well on all data, but work
fine in some specific cases should still be useful. There is “no free lunch” [17], no
single system may reach the best results for all possible distributions of data. There-
fore instead of a direct attempt to solve all problems with one algorithm, a good
strategy is to transform them into one of many formulations that can be handled by
selected decision models. This is possible only if relevant information that depends
on the set goal is extracted from the input data stream and is made available for de-
cision processes. If the goal is to understand data (making comprehensible model of
data), algorithms that extract interesting features from raw data and combine them
into rules, find interesting prototypes in the data or provide interesting visualizations
of data should be preferred. A lot of knowledge about reliability of data samples,
possible outliers, suspected cases, relative costs of features or their redundancies is
usually ignored as there is no simple way to use it in the CI programs. Such infor-
mation is needed to set the meta-learning goals.

Many meta-learning techniques have recently been developed to deal with the
problem of model selection [15, 18]. Most of them search for optimal model char-
acterizing a given problem by some meta-features (e.g. statistical properties, land-
marking, model-based characterization), and by referring to some meta-knowledge
gained earlier. For a given data one can use the classifier that gave the best result on

4 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

a similar dataset in the StatLog Project [19]. However, choosing good meta-features
is not a trivial issue as most features do not characterize the complexity of data dis-
tributions. In addition the space of possible solutions generated by this approach is
bounded to already known types of algorithms. The challenge is to create flexible
systems that can extract relevant information and reconfigure themselves finding
many interesting solutions for a given task. Instead of a single learning algorithm
designed to solve specialized problem, priorities are set to define what makes an
interesting solution, and a search for configurations of computational modules that
automatically create algorithms on demand should be performed. This search in the
space of all possible models should be constrained by user priorities and should be
guided by experience with solving problems of similar nature, experience that de-
fines “patterns of algorithm behavior” in problem solving. Understanding visual or
auditory scenes is based on experience and does not seem to require much creativity,
even simple animals are better at it than artificial systems. With no prior knowledge
about a given problem finding an optimal sequence of transformations may not be
possible.

Meta-learning based on these ideas requires several components:

• specific filters extracting relevant information from raw data, creating useful
support features;

• various compositions of transformations that create higher-order features ana-
lyzing patterns in enhanced feature spaces;

• models of decision processes based on these high-order features;
• intelligent organization of search that discovers new models of decision pro-

cesses, learning from previous attempts.

At the meta-level it may not be important that a specific combination of features
proved to be successful in some task, but it is important that a specific transforma-
tion of a subset of features was once useful, or that distribution of patterns in the
feature space had some characteristics that may be described by some specific data
model and is easy to adapt to new data. Such information allows for generalization
of knowledge at the level of search patterns for a new composition of transforma-
tions, facilitating transfer of knowledge between different tasks. Not much is known
about the use of heuristic knowledge to guide the search for interesting models and
our initial attempts to meta-learning, based on the similarity framework [20, 21]
used only simple greedy search techniques. The Metal project [22] tried to collect
information about general data characteristics and correlate it with the methods that
performed well on a similar data. A system recommending classification methods
has been built using this principle, but it works well only in a rather simple cases.

This paper is focused on generation of new features that provide good founda-
tion for meta-learning, creating information on which search processes composing
appropriate transformations may operate. The raw features given in the dataset de-
scription are used to create a large set of enhanced or hidden features. The topic
of feature generation has received recently more attention in analysis of sequences
and images, where graphical models known as Conditional Random Fields became
popular [23], generating for natural text analysis sometimes millions of low-level

1 Optimal Support Features for Meta-learning. 5

features [24]. Attempts at meta-learning on the ensemble level lead to very rough
granularity of the existing models and knowledge [25], thus exploring only a small
subspace of all possible models, as it is done in the multistrategy learning [26]. Fo-
cusing on generation of new features leads to models that have fine granularity of the
basic building blocks and thus are more flexible. We have partially addressed this
problem in the work on heterogeneous systems [27–34]. Here various types of po-
tentially useful features are analyzed, including higher-order features. Visualization
of the image of input data in the enhanced feature space helps to set the priority for
application of models that worked well in the past, learning how to transfer meta-
knowledge about the types of transformations that have been useful, and transferring
this knowledge to new cases.

In the next section various transformations that extract information forming new
features are analyzed. Section three shows how transformation based learning may
benefit from enhanced feature spaces, how to define goals of learning and how to
transfer knowledge between learning tasks. Section four shows a few lessons from
applying this line of thinking to real data. The final section contains discussion and
conclusions.

1.2 Extracting Features for Meta-Learning

Brains do not attempt to recognize all objects in the same feature space. Even within
the same sensory modality a small subset of complex features is selected, allowing
to distinguish one class of objects from another. While the initial receptive fields
react to relatively simple information higher order invariant features are extracted
from signals as a result of hierarchical processing of multiple streams of informa-
tion. Object recognition or category assignment by the brain is probably based on
evaluation of similarity to memorized prototypes of objects using a few character-
istic features [35], but for different classes of objects these features may be of quite
different type, i.e. they are class specific. Using different complex features in differ-
ent regions of the input space may drastically simplify categorization problems. This
is possible in hierarchical learning models, graphical models, or using conditionally
defined features (see section 1.2.8).

Almost all adaptive learning systems are homogeneous, based on elements ex-
tracting information of the same type. Multilayer Perceptron (MLP) neural networks
use nodes that partition the input space by hyperplanes. Radial Basis Function net-
works based on localized functions frequently use nodes that provide spherical or
ellipsoidal decision borders [36]. Similarity-based methods use the same distance
function for each reference vector, decision trees use simple tests based on thresh-
olds or subsets of values creating hyperplanes. Support Vector Machines use kernels
globally optimized for a given dataset [37]. This cannot be the best inductive bias
for all data, frequently requiring large number of processing elements even in cases
when simple solutions exist. The problem has been addressed by development of
various heterogenous algorithms [31] for neural networks [27–29],neurofuzzy sys-

6 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

tems [30], decision trees [32] and similarity-based systems [33, 34, 38, 39] and mul-
tiple kernel learning methods [40]. Class-specific high order features emerge natu-
rally in hierarchical systems, such as decision trees or rule-based systems [41, 42],
where different rules or branches of the tree use different features (see [43, 44]).

The focus of neural network community has traditionally been on learning al-
gorithms and network architectures, but it is clear that selection of neural transfer
functions determines the speed of convergence in approximation and classification
problems [27, 45, 46]. The famous n-bit parity problem is trivially solved using
a periodic function cos(ω

∑
i bi) with a single parameter ω and projection of the

bit strings on weight vector with identical values W = [1, 1, ..1], while the multi-
layer perceptron (MLP) networks need O(n2) parameters and have great difficulty
to learn such functions [47]. Neural networks are non-parametric universal approx-
imators but the ability to learn requires flexible “brain modules”, or transfer func-
tions that are appropriately biased for the problem being solved. Universal learning
methods should be non-parametric but they may be heterogeneous.

Initial feature space for a set of objects O is defined by direct observations, mea-
surements, or estimations of similarity to other objects, creating the vector of raw
input data 0X(O) = X(O). These vectors may have different length and in general
some structure descriptors, grouping features of the same type. Learning from such
data is done by a series of transformations that generate new, higher order features.
Several types of transformations of input vectors should be considered: component,
selector, linear combinations and non-linear functions. Component transformations,
frequently used in fuzzy modeling [48], work on each input feature separately, scal-
ing, shifting, thresholding, or windowing raw features. Each raw feature may give
rise to several new features suitable for calculations of distances, scalar products,
membership functions and non-linear combinations at the next stage. Selector trans-
formations define subsets of vectors or subsets of features using various criteria for
information selection, distribution of feature values and class labels, or similarity to
the known cases (nearest neighbors). Non-linear functions may serve as kernels or
as neural transfer functions [27]. These elementary transformations are conveniently
presented in a network form.

Initial transformations T1 of raw data should enhance information related to the
learning goals carried by new features. At this stage combining small subsets of
features using Hebbian learning based on correlations is frequently most useful. A
new dataset 1X = T1(0X) forms an image of the original data in the space spanned
by a new set of features. Depending on the data and goals of learning, this space
may have dimensionality that is smaller or larger than the original data. The second
transformation 2X = T2(1X) usually extracts multidimensional information from
pre-processed features 1X. This requires an estimation which of the possible trans-
formations at the T1 level may extract information that will be useful for specific T2
transformations. Many aspects can be taken into account defining such transforma-
tions, as some types of features are not appropriate for some learning models and
optimization procedures. For example, binary features may not work well with gra-
dient based optimization techniques, and standardization may not help if rule-based
solutions are desired. Intelligent search procedures in meta-learning schemes should

1 Optimal Support Features for Meta-learning. 7

take such facts into account. Subsequent transformations may use T2 as well as T1
and the raw features. The process is repeated until the final transformation is made,
aimed either at separation of the data, or at mapping to a specific structures that
can be easily recognized by available decision algorithms. Higher-order features
created after a series of k transformations kXi should also be treated in the same
way as raw features. All features influence the geometry of decision regions; this
perspective helps to understand their advantages and limitations. All these transfor-
mations can be presented in a graphical form. Meta-learning needs also to consider
computational costs of different transformations.

1.2.1 Extracting Information from Single Features

Preprocessing may critically influence convergence of learning algorithms and con-
struction of the final data models. This is especially true in meta-learning, as the
performance of various methods if facilitated by different transformations, and it
may be worthwhile to apply many transformations to extract relevant information
from each feature. Raw input features may contain useful information, but not
all algorithms include preprocessing filters to access it easily. How are features
1Xij = T1j(0Xi), created from raw features 0Xi applying transformation T1j , used
by the next level of transformations? They are either used in an additive way in linear
combinations for weighted products, or in distance/similarity calculation, or in mul-
tiplicative way in probability estimation, or as a logical condition in rules or decision
trees with suitable threshold for its value. Methods that compute distances or scalar
products benefit from normalization or standardization of feature values. Using log-
arithmic, sigmoidal, exponential, polynomial and other simple functions to make
density of points in one dimension more uniform may sometimes help to circum-
vent problems that require multiresolution algorithms. Standardization is relevant
to additive use of features in distance calculation (nearest neighbor methods, most
kernel methods, RBF networks), it also helps to initialize weights in linear com-
binations (linear discrimination, MLP), but is not needed for logical rules/decision
trees.

Fuzzy and neurofuzzy systems usually include a “fuzzification step”, defining
for each feature several localized membership functions µk(Xi) that act as recep-
tive fields, filtering out the response outside the range of significant values of the
membership functions. These functions are frequently set in an arbitrary way, cov-
ering the whole range of feature values with several membership functions that have
triangular, Gaussian or similar shapes. This is not the best way to extract informa-
tion from single features [41]. Filters that work as receptive fields separate subsets or
ranges of values that should be correlated with class distribution [49], “perceiving”
subsets or intervals where one of the classes dominate. If the correlation of feature
values in some interval [Xia, Xib], or a subset of values with some target output is
strong membership function µab(Xi) covering these values is useful. This implies
that it is not necessary to replace all input features by their fuzzified versions. Class-

8 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

conditional probabilities P(C|Xi), as computed by Naive Bayes algorithms, may
be used to identify ranges of Xi feature values where a single class dominates, pro-
viding optimal membership functions µk(Xi) = P(C|Xi)/P(Xi). Negative infor-
mation, i.e. information about the absence of some classes in certain range of feature
values, should also be segmented: if P(Ck|Xi) < ε in some interval [Xia, Xib] then
a derived feature Hikab(Xi), where H(·) is a window-type function, carries valu-
able information that higher order transformations are able to use. Eliminators may
sometimes be more useful than classifiers [50]. Projecting each feature value Xi on
these receptive fields µk increases the dimensionality of the original data, increasing
a chance of finding simple models of the data in the enhanced space.

1.2.2 Binary Features

Binary features Bi are the simplest, indicating presence or absence of some obser-
vations. They may also be created dividing nominal features into two subsets, or
creating subintervals of real features {Xi}. Using filter methods [49], or such al-
gorithms as 1R [51] or Quality of Projected Clusters [52], intervals of real feature
values that are correlated with the targets may be selected and presented as binary
features. From geometrical perspective binary feature is a label distinguishing two
subspaces, projecting all vectors in each subspace on a point 0 or 1 on the coordinate
line. The vector of n such features corresponds to all 2n vertices of the hypercube.

Feature values are usually defined globally, for all available data. Some features
are useful only locally in specific context. From geometrical perspective they are
projections of vectors that belong to subspaces where specific conditions are met,
and should remain undefined for all other vectors. Such conditionally defined fea-
tures frequently result from questionnaires: if the answer to the last question was
yes, then give additional information. In this case for each valueBi = 0 andBi = 1
subspaces have different dimensionality. The presence of such features is incor-
porated in a natural way in graphical models [53], such as Conditional Random
Fields [23], but the inference process is then more difficult than using the flat data
where standard classification techniques are used. Enhancing the feature space by
adding conditionally defined features may not be so elegant as using the full power
of graphical techniques but can go a long way towards improving the results.

Conditionally defined binary features may be obtained by imposing various re-
strictions on vector subspaces used for projections. Instead of using directly the raw
feature Bi conditions Bi = T ∧ LTi(X), and Bi = F ∧ LFi(X) are added, where
LT (X), LF (X) are logical functions defining the restrictions using feature vector
X. For example, other binary features may create complexes LT = B2∧B3...∧Bk

that help to distinguish interesting regions more precisely. Such conditional binary
features are created by branch segments in a typical decision tree, for example if one
of the path at the two top levels is X1 < t1 ∧X2 ≥ t2, then this defines a subspace
containing all vectors for which this condition is true, and in which the third and
higher level features are defined.

1 Optimal Support Features for Meta-learning. 9

Such features have not been considered in most learning models, but for prob-
lems with inherent logical structure decision trees and logical rules have appropriate
bias [41, 42] and thus are a good source for generation of conditionally defined bi-
nary features. Similar considerations may be done for nominal features that may
sometimes be grouped into larger subsets, and for each value restrictions on their
projections applied.

1.2.3 Real-valued Features

From geometrical perspective the real-valued input features acquired from various
tests and measurements on a set of objects are a projection of some property on a
single line. Enhancement of local contrast is very important in natural perception.
Some properties directly relevant to the learning task may increase their usefulness
after transformation by a non-linear sigmoidal function σ(βXi − ti). Slopes β and
thresholds ti may be individually optimized using mutual information or other rele-
vance measures independently for each feature.

Single features may show interesting patterns of p(C|X) distributions, for ex-
ample a periodic distribution, or k pure clusters. Projections on a line that show
k-separable data distributions are very useful for learning complex Boolean func-
tions. For n-bit parity problem n+ 1 separate clusters may be distinguished in pro-
jections on the long diagonal, forming useful new features. A single large cluster
of pure values is worth turning into a new feature. Such features are generated by
applying bicentral functions (localized window-type functions) to original features
[52], for example Zi = σ(Xi − ai) − σ(Xi − bi), where ai > bi. Changing
σ into a step function will lead to a binary features, filtering vectors for which
logical condition Xi ∈ [ai, bi] is true. Soft σ creates window-like membership
functions, but may also be used to create higher-dimensional features, for exam-
ple Z12 = σ(t1 −X1)σ(X2 − t2).

Providing diverse receptive fields for sampling the data separately in each di-
mension is of course not always sufficient, as two or higher-dimensional receptive
fields are necessary in some applications, for example in image or signal process-
ing filters, such as wavelets. For real-valued features simplest constraints are made
by products of intervals

∏
i[r
−
i , r

+
i], or product of bicentral functions defining hy-

perboxes in which projected vectors should lie. Other ways to restrict subspaces
used for projection may be considered, for example taking only vectors that are in a
cylindrical area surrounding the X1 coordinate Z1d = σ(X1 − t1)σ(d − ||X||−1),
where ||X||−1 norm excludes X1 feature. The point here is that transformed fea-
tures should label different regions of feature space simplifying the analysis of data
in these regions.

10 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

1.2.4 Linear Projections

Groups of several correlated features may be replaced by a single combination per-
forming principal component analysis (PCA) restricted to small subspaces. To de-
cide which groups should be combined standardized Pearson’s linear correlation is
calculated:

rij = 1− |Cij |
σiσj

∈ [−1,+1] (1.1)

where the covariance matrix is:

Cij =
1

n− 1

n∑
k=1

(
X

(k)
i − X̄i

)(
X

(k)
j − X̄j

)
; i, j = 1 · · · d (1.2)

Correlation coefficients may be clustered using dendrogram or other techniques.
Linear combinations of strongly correlated features allow not only for dimensional-
ity reduction, but also for creation of features at different scales, from a combination
of a few features, to a global PCA combinations of all features. This approach may
help to discover hierarchical sets of features that are useful in problems requiring
multiscale analysis. Another way to obtain features for multiscale problems is to do
clusterization in the input data space and make local PCA within the clusters to find
features that are most useful locally in various areas of space.

Exploratory Projection Pursuit Networks (EPPNs) [54, 55] is a general technique
that may be used to define transformations creating new features. Quadratic cost
functions used for optimization of linear transformations may lead to formulation
of the problem in terms of linear equations, but most cost functions or optimization
criteria are non-linear even for linear transformations. A few unsupervised transfor-
mations are listed below:

• Principal Component Analysis (PCA) in its many variants provides features that
correspond to feature space directions with the highest variance [17, 56, 57].

• Independent Component Analysis provides features that are statistically inde-
pendent [58, 59].

• Classical scaling, or linear transformation embedding input vectors in a space
where distances are preserved [60].

• Factor analysis, computing common and unique factors.

Many supervised transformations may be used to determine coefficients for com-
bination of input features, as listed below.

• Any measure of dependency between class and feature value distributions, such
as the Pearson’s correlation coefficient, χ2, separability criterion [61],

• Information-based measures [49], such as the mutual information between
classes and new features [62], Symmetric Uncertainty Coefficient, or Kullback-
Leibler divergence.

1 Optimal Support Features for Meta-learning. 11

• Linear Discriminatory Analysis (LDA), with each feature based on orthogonal
LDA direction obtained by one of the numerous LDA algorithms [17, 56, 57],
including linear SVM algorithms.

• Fisher Discriminatory Analysis (FDA), with each node computing canonical
component using one of many FDA algorithms [56, 63].

• Linear factor analysis, computing common and unique factors from data [64].
• Canonical correlation analysis [65].
• Localized projections of pure clusters using various projection pursuit indices,

such as the Quality of Projected Clusters [52].
• General projection pursuit transformations [54, 55] provide a framework for

various criteria used in searching for interesting transformations.

Many other transformations of this sort are known and may be used at this stage
in transformation-based systems. The Quality of Projected Clusters (QPC) is a
projection pursuit method that is based on a leave-one-out estimator measuring qual-
ity of clusters projected on W direction. The supervised version of this index is
defined as [52]:

QPC(W) = (1.3)∑
X

A+
∑

Xk∈CX

G
(
WT (X−Xk)

)
−A−

∑
Xk /∈CX

G
(
WT (X−Xk)

)
where G(x) is a function with localized support and maximum for x = 0 (e.g. a
Gaussian function), and CX denotes the set of all vectors that have the same label as
X. Parameters A+, A− control influence of each term in Eq. (1.3). For large value
of A− strong separation between classes is enforced, while increasing A+ impacts
mostly compactness and purity of clusters. Unsupervised version of this index may
simply try to discover projection directions that lead to separated clusters. This index
achieves maximum value for projections on the direction W that group vectors
belonging to the same class into a compact and well separated clusters. Therefore it
is suitable for multi-modal data [47]).

The shape and width of the G(x) function used in E.q. (1.3) has influence
on convergence. For continuous functions G(x) gradient-based methods may be
used to maximize the QPC index. One good choice is an inverse quartic function:
G(x) = 1/(1 + (bx)4), but any bell-shaped function is suitable here. Direct cal-
culation of the QPC index (1.3), as in the case of all nearest neighbor methods,
requiresO(n2) operations, but fast version, using centers of clusters instead of pairs
of vectors, has only O(n) complexity (Grochowski and Duch, in print). The QPC
may be used also (in the same way as the SVM approach described above) as a base
for creation of feature ranking and feature selection methods. Projection coefficients
Wi indicate then significance of the i-th feature. For noisy and non-informative vari-
ables values of associated weights should decrease to zero during QPC optimization.
Local extrema of the QPC index may provide useful insight into data structures and
may be used in a committee-based approach that combines different views on the

12 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

same data. More projections are obtained repeating procedure in the orthogonalized
space to create sequence of unique interesting projections [52].

Srivastava and Liu [66] analyzed optimal transformations for different applica-
tions presenting elegant geometrical formulation using Stiefel and Grassmann man-
ifolds. This leads to a family of algorithms that generate orthogonal linear transfor-
mations of features, optimal for specific tasks and specific datasets. PCA seems to be
optimal transformation for image reconstruction under mean-squared error, Fisher
discriminant for classification using linear discrimination, ICA for signal extraction
from a mixture using independence, optimal linear transformation of distances for
the nearest neighbor rule in appearance-based recognition of objects, transforma-
tions for optimal generalization (maximization of margin), sparse representations of
natural images and retrieval of images from a large database. In all these applica-
tions optimal transformations are different and may be found by optimizing appro-
priate cost functions. Some of the cost functions advocated in [66] may be difficult
to optimize and it is not yet clear that sophisticated techniques based on differential
geometry offer significant practical advantages. Simpler learning algorithms based
on numerical gradient techniques and systematic search algorithms give surprisingly
good results and can be applied to optimization of difficult functions [67].

1.2.5 Kernel Features

The most popular type of SVM algorithm with localized (usually Gaussian) kernels
[11] suffers from the curse of dimensionality [68]. This is due to the fact that such
algorithms rely on assumption of uniform resolution and local similarity between
data samples. To obtain accurate solution often a large number of training exam-
ples used as support vectors is required. This leads to high cost of computations
and complex models that do not generalize well. Much effort has been devoted to
improvements of the scaling [69, 70], reducing the number of support vectors, [71],
and learning multiple kernels [40]. All these developments are impressive, but there
is still room for simpler, more direct and comprehensible approaches.

In general the higher the dimensionality of the transformed space the greater the
chance that the data may be separated by a hyperplane [36]. One popular way of
creating highly-dimensional representations without increasing computational costs
is by using the kernel trick [11]. Although this problem is usually presented in
the dual space the solution in the primal space is conceptually simpler [70, 72].
Regularized linear discriminant (LDA) solution is found in the new feature space
2X = K(X) = K(1X,X), mapping X using kernel functions for each training
vector. Kernel methods work because they implicitly provide new, useful features
Zi(X) = K(X,Xi) constructed by taking the support vectors Xi as reference. Lin-
ear SVM solutions in the Z kernel feature space are equivalent to the SVM solutions,
as it has been empirically verified [73].

Feature selection techniques may be used to leave only components correspond-
ing to “support vectors” that provide essential support for classification, for example

1 Optimal Support Features for Meta-learning. 13

only those that are close to the decision borders or those close to the centers of clus-
ter, depending on the type of the problem. Once a new feature is proposed it may
be evaluated on vectors that are classified at a given stage with low confidence, thus
ensuring that features that are added indeed help to improve the system. Any CI
method may be used in the kernel-based feature space K(X). This is the idea be-
hind Support Feature Machines [73]. If the dimensionality is large data overfitting
is a big danger, therefore only the simplest and most robust models should be used.
SVM solution to use LDA with margin maximization is certainly a good strategy.

Explicit generation of features based on different similarity measures [39] re-
moves one of the SVM bottleneck allowing for optimization of resolution in dif-
ferent areas of the feature space, providing strong non-linearities where they are
needed (small dispersions in Gaussian functions), and using smooth functions when
this is sufficient. This technique may be called adaptive regularization, in contrast
to a simple regularization based on minimization of the norm of the weight vector
||W|| used in SVM or neural networks. Although simple regularization enforces
smooth decision borders decreasing model complexity it is not able to find the sim-
plest solutions and may easily miss the fact that a single binary feature contains
all information. Generation of kernel features should therefore proceed from most
general, placed far from decision border (such vectors may be easily identified by
looking at the z = W ·X distribution for W = (m1 −m2)/||m1 −m2||, where
m1 and m2 denote center points of two opposite classes), to more specific, with
non-zero contribution only close to decision border. If dispersions are small many
vectors far from decision borders have to be used to create kernel space, otherwise
all such vectors, independently of the class, would be mapped to zero point (origin
of the coordinate system). Adding features based on linear projections will remove
the need for support vectors that are far from decision borders.

Kernel features based on radial functions are projections on one radial dimension
and in this sense are similar to the linear projections. However, linear projections
are global and position independent, while radial projections use reference vector
K(X,R) = ||X − R|| that allows for focusing on the region close to R. Addi-
tional scaling factors are needed to take account of importance of different features
K(X,R;W) = ||W · (X−R)||. If Gaussian kernels are used this leads to features
of the G(W(X−R)) type. More sophisticated features are based on Mahalanobis
distance calculated for clusters of vectors located near decision borders (an inexpen-
sive method for rotation of density functions with d parameters has been introduced
in [27]), or flat local fronts using cosine distance.

There is a whole range of features based on projections on more than one dimen-
sion. Mixed “cylindrical” kernel features that are partially radial and partially linear
may also be considered. Assuming that ||W || = 1 linear projection y = W · X
defines one direction in the n-dimensional feature space, and at each point y pro-
jections are made from the remaining n − 1 dimensional subspaces orthogonal to
W, such that ||X − yW|| < θ, forming a cylinder in the feature space. In general
projections may be confined to k-dimensional hyperplane and radial dimensions to
the (n−k)-dimensional subspace. Such features have never been systematically an-
alyzed and there are no algorithms aimed at their extraction. They are conditionally

14 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

defined in a subspace of the whole feature space, so for some vectors they are not
relevant.

1.2.6 Other Non-Linear Mappings

Linear combinations derived from interesting projection directions may provide low
number of interesting features, but in some applications non-linear processing is
essential. The number of possible transformations in such case is very large. Tensor
products of features are particularly useful, as Pao has already noted introducing
functional link networks [74, 75]. Rational function neural networks [36] in signal
processing [76] and other applications use ratios of polynomial combinations of
features; a linear dependence on a ratio y = x1/x2 is not easy to approximate
if the two features x1, x2 are used directly. The challenge is to provide a single
framework for systematic selection and creation of interesting transformations in a
meta-learning scheme.

Linear transformations in the kernel space are equivalent to non-linear transfor-
mations in the original feature space. A few non-linear transformations are listed
below:

• Kernel versions of linear transformations, including radial and other basis set
expansion methods [11].

• Weighted distance-based transformations, a special case of general kernel trans-
formations, that use (optimized) reference vectors [39].

• Perceptron nodes based on sigmoidal functions with scalar product or distance-
based activations [77, 78], as in layers of MLP networks, but with targets spec-
ified by some criterion (any criterion used for linear transformations is suffi-
cient).

• Heterogeneous transformations using several types of kernels to capture details
at different resolution [27].

• Heterogeneous nodes based or several type of non-linear functions to achieve
multiresolution transformations [27].

• Nodes implementing fuzzy separable functions, or other fuzzy functions [79].
• Multidimensional scaling (MDS) to reduce dimensionality while preserving

distances [80].

MDS requires costly minimization to map new vectors into reduced space; lin-
ear approximations to multidimensional scaling may be used to provide interesting
features [60]. If highly nonlinear low-dimensional decision borders are needed large
number of neurons should be used in the hidden layer, providing linear projection
into high-dimensional space followed by squashing by the neural transfer functions
to normalize the output from this transformation.

1 Optimal Support Features for Meta-learning. 15

1.2.7 Adaptive Models as Features

Meta-learning usually leads to several interesting models, as different types of fea-
tures and optimization procedures used by the search procedure may create roughly
equivalent description of individual models. The output of each model may be
treated as a high-order feature. This reasoning is motivated both from the neurocog-
nitive perspective, and from the machine learning perspective. Attention mecha-
nisms are used to save energy and inhibit parts of the neocortex that are not compe-
tent in analysis of a given type of signal. All sensory inputs (except olfactory) travel
through the thalamus where their importance and rough category is estimated. Tha-
lamic nuclei activate only those brain areas that may contribute useful information
to the analysis of a given type of signals [81].

Usually new learning methods are developed with the hope that they will be uni-
versally useful. However, evolution has implanted in brains of animals many spe-
cialized behaviors, called instincts. From the machine learning perspective a com-
mittee of models should use diverse individual models specializing in analysis of
different regions of the input space, especially for learning difficult tasks. Individ-
ual models are frequently unstable [82], i.e. quite different models are created as
a result of repeated training (if learning algorithms contains stochastic elements)
or if the training set is slightly perturbed [83]. The mixture of models allows for
approximation of complicated probability distributions improving stability of indi-
vidual models. Specialized models that handle cases for which other models fail
should be maintained. In contrast to boosting [12] and similar procedures [84] ex-
plicit information about competence of each model in different regions of the feature
space should be used. Functions describing these regions of competence (or incom-
petence) may be used for regional boosting [85] or for integration of decisions of
individual models [14, 86]. The same may be done with some features that are useful
only in localized regions of space but should not be used in other regions.

In all areas where some feature or the whole model Ml works well the com-
petence factor should reach F (X;Ml) ≈ 1 and it should decrease to zero in
regions where many errors are made. A Gaussian-like function may be used,
F (||X − Ri||;Ml) = 1 − G(||X − Ri||a;σi), where a ≥ 1 coefficient is used
to flatten the function, or a simpler 1/ (1 + ||X−Ri||−a) inverse function, or a lo-
gistic function 1 − σ(a(||X − Ri|| − b)), where a defines its steepness and b the
radius where the value drops to 1/2. Multiplying many factors in the incompetence
function of the model may decrease the competence values, therefore each factor
should quickly reach 1 outside the incompetence area. This is achieved by using
steep functions or defining a threshold values above which exactly 1 is taken.

The final decision based on results of all l = 1 . . .m models providing esti-
mation of probabilities P(Ci|X;Ml) for i = 1 . . .K classes may be done using
majority voting, averaging results of all models, selecting a single model that shows
highest confidence (i.e. gives the largest probability), selecting a subset of models
with confidence above some threshold, or using simple linear combination [13]. In

16 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

the last case for class Ci coefficients of linear combination are determined from the
least-mean square solution of:

P(Ci|X;M) =

m∑
l=1

∑
m

Wi,l(X)P(Ci|X;Ml) (1.4)

=

m∑
l=1

∑
m

Wi,lF (X;Ml)P(Ci|X;Ml)

The incompetence factors simply modify probabilities F (X;Ml)P(Ci|X;Ml)
that are used to set linear equations for all training vectors X, therefore the solution
is done in the same way as before. The final probability of classification is esti-
mated by renormalization P(Ci|X;M)/

∑
j P(Cj |X;M). In this case results of

each model are used as high order feature for local linear combination of results.
This approach may also be justified using neurocognitive inspirations: thalamo-
cortical loops control which brain areas should be strongly activated depending on
their predicted competence.

In different regions of the input space (around reference vector R) kernel features
K(X,R) that use weighted distance functions should have zero weights for those
input features that are locally irrelevant. Many variants of committee or boosting
algorithms with competence are possible [13], focusing on generation of diversified
models, Bayesian framework for dynamic selection of most competent classifier
[87], regional boosting [85], confidence-rated boosting predictions [12], task clus-
tering and gating approach [88], or stacked generalization [89, 90].

1.2.8 Summary of the Feature Types

Features are weighted and combined by distance functions, kernels, hidden layers,
and in many other ways, but geometrical perspective shows what kind of infor-
mation can be extracted from them. What types of subspaces and hypersurfaces
that contained them are generated? An attempt to categorize different types of fea-
tures from this perspective, including conditionally defined features, is shown below.
X represents here arbitrary type of scalar feature, B is binary, N nominal, R con-
tinuous real valued, K is general kernel feature, M are motifs in sequences, and S
are signals.

• B1) Binary, equivalent to unrestricted projections on two points.
• B2) Binary, constrained by other binary features, complexes B1 ∧ B2... ∧ Bk,

subsets of vertices of a cube.
• B3) Binary, projection of subspaces constrained by a distance B = 0 ∧ R1 ∈

[r−1 , r
+
1]... ∧Rk ∈ [r−k , r

+
k].

• N1-N3) Nominal features are similar to binary with subsets instead of intervals.

1 Optimal Support Features for Meta-learning. 17

• R1) Real, equivalent to unrestricted orthogonal projections on a line, with
thresholds and rescaling.

• R2) Real, orthogonal projections on a line restricted by intervals or soft mem-
bership functions, selecting subspaces orthogonal to the line.

• R3) Real, orthogonal projections with cylindrical constrains restricting distance
from the line.

• R4) Real, any optimized projection pursuit on a line (PCA, ICA, LDA, QPC).
• R5) Real, any projection on a line with periodic or semi-periodic intervals or

general 1D patterns, or posterior probabilities for each class calculated along
this line p(C|X).

• K1) Kernel features K(X,Ri) with reference vectors Ri, projections on a ra-
dial coordinate creating hyperspheres.

• K2) Kernel features with intervals, membership functions and general patterns
on a radial coordinate.

• K3) General kernel features for similarity estimation of structured objects.
• M1) Motifs, based on correlations between elements and on sequences of dis-

crete symbols.
• S1) Signal decompositions and projections on basis functions.
• T1) Other non-linear transformations restricting subspaces in a more complex

way, rational functions, universal transfer functions.

Combinations of different types of features, for example cylindrical constraints
with intervals or semi-periodic functions are also possible. The classification given
above is not very precise and far from complete, but should give an idea what type of
decision borders may be generated by different types of features. Higher-order fea-
tures may be build by learning machines using features that have been constructed
by earlier transformations. Relevance indices applied to these features, or feature
selection methods, should help to estimate their importance, although some features
may be needed for local representation of information only, so their global relevance
may be low [49].

1.3 Transformation-based meta-learning

A necessary step for meta-learning is to create taxonomy, categorizing and describ-
ing similarities and relations among transformations and facilitate systematic search
in the space of all possible compositions of these transformations. An obvious di-
vision is between transformations optimized locally with well-defined targets, and
adaptive transformations that are based on a distal criteria, where the targets are de-
fined globally, for composition of transformations (as in backpropagation). In the
second case interpretation of features implemented by hidden nodes is rather diffi-
cult. In the first case activity of the network nodes implementing fixed transforma-
tions has clear interpretation, and increased complexity of adding new node should
be justified by discovery of new aspects of the data. Local T2 transformations have

18 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

coefficients calculated directly from the input data or data after T1 transformation.
They may be very useful for initialization of global adaptive transformations, or
may be useful to find better solutions of more complex fixed transformations. For
example, multidimensional scaling requires very difficult minimization and most of
the time converges to a better solution if PCA transformations is performed first.

After initial transformations all data is converted to internal representation kX,
forming a new image of the data, distributed in a simpler way than the original im-
age. The final transformation should be able to extract desired information form this
image. If the final transformation is linear Y = k+1X = Tk+1(kX; kW) parame-
ters kW are either determined in an iterative procedure simultaneously with all other
parameters W from previous transformations (as in the backpropagation algorithms
[36]), or sequentially determined by calculating the pseudoinverse transformation,
as is frequently practiced in the two-phase RBF learning [91]. Simultaneous adap-
tation of all parameters (RBF centers, scaling parameters, output layer weights) in
experiments on more demanding data gives better results.

Three basic strategies to create composition of transformations are:

• Use constructive method adding features based on simple transformations; pro-
ceed as long as increased quality justifies added complexity [29, 92].

• Start from complex transformations and optimize parameters, for example us-
ing flexible neural transfer functions [28, 93], optimizing each transformation
before adding the next one.

• Use pruning and regularization techniques for large network with nodes based
on simple transformations and global optimization [36].

The last solution is the most popular in neural network community, but there
are many other possibilities. After adding each new feature the image of the data
in the extended feature space is changed and new transformations are created in
this space, not in the original one. For example, adding more transformations with
distance-based conditions may add new kernel features and start to build the fi-
nal transformation assigning significant weights only to the kernel-based support
features. This may either be equivalent to the kernel SVM (for linear output trans-
formations) created by evaluation of similarity in the original input space, or to the
higher-order nearest neighbor methods, so far little explored in machine learning.
From geometrical perspective kernel transformations are capable of smoothing or
flatting decision borders: using support vectors R that lie close to complex decision
border in the input space X a combination of kernel features W ·K(X,R) = const
lies close to a hyperplane in the kernel space K. A single hyperplane after such
transformation is frequently sufficient to achieve good separation of data. This cre-
ates similar decision borders to the edited k-NN approach with support vectors as
references, although the final linear model avoids overfitting in a better way. How-
ever, if the data has complex logical structure, with many disjoint clusters from the
same class, this is not an optimal approach.

Geometry of heteroassociative vector transformations, from the input feature
space to the output space, is quite important and leads to transformations that will
be very useful in meta-learning systems, facilitating learning of arbitrary problems.

1 Optimal Support Features for Meta-learning. 19

At each point of the input space relative importance of features may change. One
way to implement this idea [38] is to create local non-symmetric similarity function
D(X−Y;X), smoothly changing between different regions of the input space. For
example, this may be a Minkovsky function D(X −Y;X) =

∑
i si(X)|Xi − Yi|

with the scaling factor that depend on the point X of the input space. Many factors
are very small or zero. They may be calculated for each training vector using lo-
cal PCA, and interpolated between the vectors. Local Linear Embedding (LLE) is
a popular method of this sort [94] and many other manifold learning methods have
been developed. Alternatively a smooth mapping may be generated by MLP training
or other neural networks to approximate desired scaling factors.

Prototype rules for data understanding and transformation may be created using
geometrical learning techniques that construct a convex hull encompassing the data,
for example an enclosing polytope, cylinder, a set of ellipsoids or some other sur-
face enclosing the data points. Although geometrical algorithms may be different
than neural or SVM algorithms, the decision surfaces they provide are similar to
those offered by feedforward networks. A covering may be generated by a set of
balls or ellipsoids following principal curve, for example using the piecewise lin-
ear skeletonization approximation to principal curves [95]. One algorithm of this
type creates a “hypersausage” decision regions [96]. One-class SVM also provides
covering in the kernel space [11].

Kernel methods expand dimensionality of the feature space if the number of
samples is larger than the number of input features (see neurobiological justifica-
tion of such projections in [5]). Enlarging the data dimensionality increases the
chance to make the data separable, and this is frequently the goal of this trans-
formation, 2X = T2(1X; 1W). Random linear projections of input vectors into a
high-dimensional space 2X = L(1X) are the simplest way to increase dimension-
ality, with the random matrix L that has more rows than columns. The final trans-
formation is chosen to be linear Y = T3(2X; 2W) = 2W · 2X, although it may
not be the best solution and other classifiers may be used on the enhanced feature
space. This is basically equivalent to random initialization of feedforward neural
networks with linear transfer functions only. Such methods are used to start a two-
phase RBF learning [91]. For simple data random projections work rather well [97],
but one should always check results of linear discrimination in the original feature
space, as it may not be significantly worse. Many non-random ways to create inter-
esting features may certainly give better results. It may also be worthwhile to add
pre-processed 1X = T1(X) features to the new features generated by the second
transformation 2X = (1X, T2(1X; 1W)), because they are easier to interpret and
frequently contain useful information.

1.3.1 Redefining the Goal of Learning

Multi-objective optimization problems do not have a single best solution [98]. Usu-
ally data mining systems return just a single best model but if several criteria are

20 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

optimized finding a set of Pareto optimal models is a better goal. For example,
accuracy should be maximized, but variance should be minimized, or sensitivity
should be maximized while the false alarm rate should be kept below some thresh-
old. The search process for optimal models in meta-learning should explore many
compositions of transformations retaining those that are close to the Pareto front.
A forest of heterogeneous decision trees [32] is an example of a multi-objective
meta-search in a model space restricted to decision trees. Heterogeneous trees use
different types of rule premises, splitting the branches not only using individual
features, but also using tests based on kernel features, defined by the weighted dis-
tances from the training data vectors. Adding distance-based conditions with opti-
mal support vectors far from decision borders provides flat spherical borders that
approximate hyperplanes in the border region. The beam search maintains at each
stage k decision trees (search states), ordering them by their accuracy estimated
using cross-validation on the training data [32]. This algorithm has found some of
the simplest and most accurate decision rules that gave different tradeoffs between
sensitivity and specificity.

Each data model depends on some specific assumptions about the data distribu-
tion in the input space, and is successfully applicable only to some types of prob-
lems. For example SVM and many other statistical learning methods [11] rely on
the assumption of uniform resolution, local similarity between data samples, and
may completely fail in case of high-dimensional functions that are not sufficiently
smooth [68]. In such case accurate solution may require an extremely large num-
ber of training samples that will be used as reference vectors, leading to high cost of
computations and creating complex models that do not generalize well. To avoid any
bias useful “knowledge granules” in the data should be discovered. Support features
created through parallel hierarchical streams of transformations that discover inter-
esting aspects of data are focused on local improvements rather than some global
goal, such as data separability. The image of the original data in the enhanced space
may have certain characteristic patterns that the decision processes should learn
about. The final transformations should have several different biases and the meta-
learning search should try to match the best one to the image of the data. The goal of
learning should then focus on creation of one of the standard types of such images
rather than linear separability.

One way to discover what type of structures emerge after data transformations
is to use visualization of the data images in the original feature space and in the
enhanced space [99, 100]. PCA, ICA and QPC projections may show interesting
structures in the data. Multidimensional Scaling (MDS) [80] is a non-linear mapping
that tries to faithfully display distances between vectors. Also projections based on
directions obtained from linear SVM are useful. The first projection on W1 line for
linearly separable data should give y(X;W1) = W1 ·X + θ < 0 for vectors from
the first class, and y(X;W1) > 0 for the second class. The second best direction
may then be obtained by repeating SVM calculations in the space orthogonalized to
the W1 direction. This process may be repeated to obtain more dimensions. Fisher
Discriminant Analysis (FDA) is another linear discriminant that may be used for
visualization [56].

1 Optimal Support Features for Meta-learning. 21

Visualization of transformations in case of difficult logical problems reveals the
nature of difficulties and helps to set simpler goals for learning. Consider a parity-
like problem: each vector labeled as even is surrounded by vectors labeled as odd
and vice versa [47]. Localized transformations are not be able to generalize such
information but linear projections may provide interesting views on such data. For
n-bit parity linear projection y = W ·X, where W = [1, 1...1], counts the number
of 1 bits, producing alternating clusters with vectors that belong to the odd and even
classes. A periodic function (such as cosine) solves the parity problem using a single
parameter, but will not handle other logical problems. In case of many Boolean
functions finding transformations that lead to the k-separable solutions, with single-
vectors from a single class in intervals [yi, yi+1] along the projection line defines
much easier goal than achieving separability. The whole feature space is divided into
parallel slices, orthogonal to the W line. Such solutions are equivalent to a single
prototype Pi in the middle of each [yi, yi+1] interval, with the nearest neighbor
decision rules using Euclidean distance function. They may also be generated using
projections on a radial direction satisfying K(X,R) = 1 for a ≤ ||X −R|| ≤ b.
This kernel feature is zero outside of the spherical shell between the distance a and
b from R. For binary hypercube such features discover large pure clusters of data.

The number of parameters that fully describes such solution in n-dimensional
feature space is n + k − 1. If these prototypes are not on a single line the near-
est neighbor rule will create Voronoi tessellation of the feature space and if each
Voronoi region contains vectors from a single class the solution may be called q-
separable, where q is the lowest number of Voronoi regions that is sufficient to sep-
arate the data into pure clusters. This requires qn parameters but depending on the
distributions of these regions simpler solutions may exist. Consider for example a
3 by 3 regular board defined in two dimensions by 4 lines (two parallel lines in
each direction). These lines divide the space into 9 regions, but instead of 9 proto-
types (18 parameters) only 4 lines (12 parameters) are sufficient. On the other hand
describing k hyperspheres in n-dimensional space is easy if prototypes with radial
threshold functions are used, requiring k(n + 1) parameters, while the same data
distribution will be very hard to classify using transformations based on linear pro-
jections. Characterization of the complexity of the learning problem should thus be
done with reference to the types of transformations and the number of parameters
that are needed to describe the solution.

Useful features may be generated capturing frequent correlations of inputs (Heb-
bian learning, PCA, ICA, discovering motifs), or searching for clusters of relatively
pure data using linear and radial projections. Visualizing resulting images of data
should reveal what types of methods are most appropriate for further analysis.

1.3.2 Transfer of knowledge

According to the “no free lunch” theorem [17] no single adaptive system may reach
the best results for all possible distributions of data. It is therefore worthwhile to

22 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

look at what different algorithms may do well and when they fail. Data with sim-
ple logical structure require sharp decision borders provided by decision trees and
rule-based systems [41, 42], but are quite difficult to analyze with statistical or neu-
ral algorithms. SVM will miss simple solution where the best answer is given by a
single binary feature. Frequently data has Gaussian distribution and linear discrim-
ination (linear SVM, simple MLP networks) provides the best solution. k-NN and
SVM in kernelized form work well when decision borders have complex topology,
but fail when sharp decision borders are needed or when data structure has complex
Boolean logic [101]. Neural networks suffer from similar problems as SVM and will
not converge for highly non-separable problems (in the k-separability sense). New
methods are frequently invented and tested on data that are almost Gaussian-like,
and thus are very easy to analyze, so it is important to assign complexity estimate
for different classification problems. Basis Set Function networks (Radial or Separa-
ble) may provide local description but have problems with simple decision borders
creating complex models.

Different adaptive systems have biases that makes them suitable for particu-
lar classes of problems. Discovering this bias and finding an appropriate model is
usually done by tedious experimentations with combinations of pre-processing, fil-
tering and selection, clusterization, classification or regression and post-processing
techniques, combined with meta-learning procedures based on stacking, boosting,
committees and other techniques. The number of possible combinations of different
modules in large data mining packages exceeds now 10 billions, and new modules
are still added. With proper control of search and complexity of generated models
[102, 103] automatic composition of transformations guided by geometrical per-
spective for creation of features offers an interesting approach that may overcome
the limits of the “no free-lunch” theorem. Universal learning is an elusive dream
that will not be realized without diverse transformations, specific for each applica-
tion. Success of meta-search relies on the availability of specific transformations
for image analysis, multimedia streams, signal decomposition, text analysis, biose-
quences and many other problems. Finding proper representation of the problem is
more than half of the solution. While these specific problems are not addressed here
it is worthwhile to analyze methods that may be applied to derive useful features
from typical measurements, as found in benchmark databases.

One strategy frequently used by people is to learn directly from others. Al-
though each individual agent rarely discovers something interesting, in a population
of agents that try different approaches accidental observations are exchanged and,
if found useful, become common know-how. Transfer learning is concerned with
learning a number of related tasks together. In image, text analysis or robotics many
methods have been devised for knowledge transfer. Related machine learning sub-
jects include: learning from hints [104], lifelong learning [105], multi-task learning
[106], cross-domain learning [107, 108], cross-category learning [109] and self-
taught learning [110]. EigenTransfer algorithm [111] tries to unify various transfer
learning ideas representing the target task by a graph. The task graph has nodes
with vectors and labels, connecting the target and auxiliary data in the same feature
space. Eigenvectors of this task graph are used as new features to transfer knowl-

1 Optimal Support Features for Meta-learning. 23

edge from auxiliary data to help classify target data. Significant improvements have
been demonstrated in various transfer learning task domains.

Current approaches to transfer learning focus on using additional data to create
a better learning model for a given training data. The same feature space is used
and the same learning algorithm. This type of transfer learning is not suitable for
meta-learning. In the Universal Learning Machine (ULM) algorithm [112] transfer
of knowledge between different algorithms is made by sharing new higher-order fea-
tures that have been successful in discovering knowledge granules in one of these al-
gorithms. Decision trees and rule-based algorithms discovered binary features (B1-
B3 type). Real R1-R4 types of features are discovered by projection pursuit, linear
SVM and simple projections on the line connecting centers of local clusters. Naive
Bayes provides p(C|X) posterior probabilities along these lines. Edited k-NN and
kernel methods find good kernel features based on similarity. The best features are
easily identified using ranking methods. In the experiments performed using this
idea [112] significant improvements almost in every algorithm has been found by
adding a few features from other algorithms. For example, on the hypothyroid prob-
lem (3 classes, 3772 training cases and 3428 test cases, 15 binary and 6 continuous
features) adding two binary features discovered by decision tree improved test re-
sults of SVM with Gaussian kernel from 94.1 to 99.5±0.4%, reducing the number of
support vectors and order of magnitude. Naive Bayes algorithm fails on the original
data, reaching only 41.3% accuracy, but in the enhanced space gives 98.1±0.8%.
This data has inherent logical structure that cannot be extracted by Gaussian ker-
nels or Naive Bayes but is captured by decision rules generated by the tree. Transfer
of knowledge for meta-learning is possible on an abstract level between different
models.

Universal Learning Machines are not restricted to any particular algorithm, trying
to extract and transfer new features to new algorithm, enhancing the pool of all fea-
tures. Support Features Machines (SFM) form an alternative to the SVM approach,
using linear discriminant functions defined in such enhanced spaces [73]. For each
vector X there are n input features plus m kernel features Zi(X) = K(X,Xi), i =
1..m. Linear models in the kernel space are as accurate as the kernel SVM, but
creating this space explicitly allows for more flexibility. Simple solutions are not
overlooked if original features are not discarded. Information granules from other
models may be transferred, and mixing kernels of miscellaneous types and with
various parameters allows for multiresolution in different parts of the input space.

1.4 Lessons from illustrative calculations

For illustration of the ideas presented in previous sections a few datasets with dif-
ferent characteristics are analyzed below: one artificial binary dataset (Parity), one
artificial set with nominal features (Monks 1), one microarray gene expression data
[113], two medical datasets (Cleveland Heart Disease and Wisconsin Breast Cancer
data), Spam database derived from texts, Ionosphere data with radar signal patterns.

24 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

These data can be downloaded from the UCI Machine Learning Repository [114].
A summary of these datasets is presented in Tab. 1.1. Methods described above
have been used for visualization of transformed images of different types of data to
determine what kind of structures they create.

Title #Features #Samples #Samples per class Source
Parity 8 8 256 128 C0 128 C1 artificial
Monks 1 6 124 62 C0 62 C1 [114]
Leukemia 100 72 47 “ALL” 25 “AML” [113]

Heart 13 270 150 “absence” 120 “presence” [114]
Wisconsin 10 683 444 “benign” 239 “malignant” [115]

Spam 57 4601 1813 “spam” 2788 “valid” [114]
Ionopshere 34 351 224 “Type 1” 126 “Type 2” [114]

Table 1.1 Summary of used datasets

MDS mappings and PCA, ICA, QPC, SVM projections in the original and in the
enhanced feature spaces are shown using one-dimensional probability distributions
and two-dimensional scatterograms. Analyzing distribution in Figs. 1.1 – 1.8 one
can determine which classifier has the best bias and will create the simplest model
of a given dataset. To check if an optimal choice has been made comparison with
classification accuracies for each dataset using various classifiers has been done, in
the original as well as in the reduced one and two-dimensional spaces. The following
classifiers have been used:

1. Naive Bayesian Classifier (NBC)
2. k-Nearest Neighbors (kNN)
3. Separability Split Value Tree (SSV) [61]
4. Support Vector Machines with Linear Kernel (SVML)
5. Support Vector Machines with Gaussian Kernel (SVMG)

1.4.1 Parity

High-dimensional parity problem is very difficult for most classification methods.
Many papers have been published about special neural network models that solve
parity problem. The difficulty is quite clear: linear separation cannot be achieved
by simple transformations because this is a k-separable problem (Fig. 1.1). For n-
bit strings it can easily be separated into n + 1 intervals [47, 101], but learning
proper MLP weights to achieve it is very difficult. MDS does not show any interest-
ing structure here, as all vectors from one class have their nearest neighbors from
the opposite class. Therefore Gaussian RBF networks or kernel methods based on
similarity are not able to extract useful information. PCA and SVM find a very use-
ful projection direction [1, 1..1], but the second direction does not help at all. FDA
shows significant overlaps for projection on the first direction.

1 Optimal Support Features for Meta-learning. 25

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1
w

1

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

w
1

w
2

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02
w

1

−0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

w
1

w
2

−3 −2 −1 0 1 2 3
w

1

−3 −2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

w
1

w
2

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
w

1

−2.5 −2 −1.5 −1 −0.5 0

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

w
1

w
2

−3 −2 −1 0 1 2 3
w

1

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

w
1

w
2

Fig. 1.1 8-bit parity dataset, from top to bottom: MDS, PCA, FDA, SVM and QPC.

26 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

The QPC index has found two directions that are equally useful. Points that are
in small clusters projected on the first direction belong to a large cluster projected
on the second direction, giving much better chance for correct classification. In fact
any two projections on the longest diagonals are equally useful. This example shows
how visualization may point the way towards perfect solution of a difficult problem
even in situations when most classifiers fail. Complexity of models created on the
original data is high: for example, SVM takes all 256 vectors as support vectors,
achieving results around the base rate (50%). Looking at Fig. 1.1 one can understand
the type of non-linearity after projections. Meta-learning should discover that the
best classifier to handle such data distribution is:

• any decision tree, after transformation to one dimension by PCA, SVM or two-
dimensions by QPC (offering the most stable solution);

• NBC, in one or two-dimensions, combining the two QPC directions for the most
robust solution, provided that it will use density estimation based on Gaussian
mixtures or other localized kernels rather than a single Gaussian function;

• kNN on the 1D data reduced by PCA, SVM or QPC, with k=1, although it will
make a small error for the two extreme points.

• SVM with Gaussian kernel works well on one or two-dimensional data reduced
by SVM or QPC projections.

This choice agrees with the results of calculations [100] where the highest accu-
racy (99.6±1.2) has been obtained by the SSV classifier on the 2D data transformed
by SVM or QPC method. Results of NBC and kNN are not worse from the statistical
point of view (within one standard deviation). kNN results on the original data with
k≤ 15 are always wrong, as all 8 closest neighbors belong to the opposite class.
After dimensionality reduction kNN with k=1 is sufficient. Another suggestion is
to use radial projections, instead of linear projections. Due to the symmetry of the
problem projection on any radial coordinates centered in one of the vertices will
show n+ 1 clusters like projection on the long diagonal.

Visualization in Fig. 1.1 also suggest that using 2D QPC projected data the near-
est neighbor rule may be easily modified: instead of a fixed number of neighbors for
vector X, take its projections y1, y2 on the two dimensions, and count the number of
neighbors ki(εi) in the largest interval yi ± εi around yi that contain vectors from a
single class only, summing results from both dimensions k1(ε1) + k2(ε2). This new
type of the nearest neighbor rule has not been explored so far.

For problems with inherent complex logic, such as the parity or other Boolean
functions [101], a good goal is to create k-separable solutions adding transforma-
tions based on linear or radial projections, and then solution of the problem becomes
easy.

1 Optimal Support Features for Meta-learning. 27

Features NBC kNN SSV SVML SVMG
PCA 1 99.21±1.65 99.20±1.68 (1) 99.21±1.65 (13/7) 39.15±13.47 (256) 99.20±1.68 (256)
PCA 2 99.23±1.62 99.21±1.65 (1) 99.23±1.62 (13/7) 43.36±7.02 (256) 98.83±1.88 (256)
MDS 1 38.35±7.00 43.73±7.44 (4) 47.66±4.69 (1/1) 42.98±5.84 (256) 44.10±8.50 (256)
MDS 2 30.49±13.79 48.46±7.77 (1) 49.20±1.03 (1/1) 43.83±8.72 (256) 43.04±8.91 (256)
FDA 1 75.84±10.63 76.60±7.37 (10) 73.83±6.97 (17/9) 45.73±6.83 (256) 77.76±7.89 (256)
FDA 2 74.56±10.69 99.23±1.62 (1) 96.87±3.54 (35/18) 44.16±5.67 (256) 98.84±1.85 (256)
SVM 1 99.23±1.62 99.61±1.21 (1) 99.23±1.62 (13/7) 54.61±6.36 (256) 99.61±1.21 (9)
SVM 2 99.21±1.65 99.61±1.21 (1) 99.61±1.21 (13/7) 50.29±9.28 (256) 99.61±1.21 (43)
QPC 1 99.20±2.52 99.21±1.65 (1) 99.20±2.52 (13/7) 41.46±9.57 (256) 99.21±1.65 (256)
QPC 2 98.41±2.04 98.44±2.70 (1) 99.61±1.21 (13/7) 43.01±8.21 (256) 98.44±2.70 (24)

ALL 23.38±6.74 1.16±1.88 (10) 49.2±1.03 (1/1) 31.61±8.31 (256) 16.80±22.76 (256)

Table 1.2 Average classification accuracy given by 10-fold crossvalidation test for 8-bit parity
problem with reduced features.

1.4.2 Monks 1

Monks 1 is an artificial dataset containing 124 cases, where 62 samples belong to
the first class, and the remaining 62 to the second. Each sample is described by
6 attributes. Logical function has been used to create class labels. This is another
example of dataset with inherent logical structure, but this time linear k-separability
may not be a good goal. In Fig. 1.2 MDS does not show any structure, and PCA,
FDA and SVM projections are also not useful. Only QPC projection shows clear
structure of a logical rule. In this case a good goal for learning is to transform the
data creating an image in the extended feature space that can be easily understood
covering it with logical rules.

Table 1.3 shows that correct solution is achieved only in the two-dimensional
QPC feature space, where only linear SVM fails, all other classifiers can easily
handle such data. Decision tree offers the simplest model in this case although in
crossvalidation small error has been made.

Features NBC kNN SSV SVML SVMG
PCA 1 56.98±14.12 53.97±15.61 (8) 57.94±11.00 (3/2) 63.71±10.68 (98) 58.84±12.08 (102)
PCA 2 54.67±13.93 61.28±17.07 (9) 61.34±11.82 (11/6) 63.71±10.05 (95) 67.17±17.05 (99)
MDS 1 67.94±11.24 69.48±10.83 (8) 68.58±10.44 (3/2) 69.61±11.77 (88) 64.67±10.88 (92)
MDS 2 63.52±16.02 67.75±16.51 (9) 66.98±12.21 (35/18) 64.74±16.52 (103) 62.17±15.47 (104)
FDA 1 72.05±12.03 69.35±8.72 (7) 67.82±9.10 (3/2) 69.93±11.32 (80) 72.37±9.29 (85)
FDA 2 64.48±17.54 69.29±13.70 (9) 68.65±14.74 (3/2) 69.23±10.57 (80) 70.96±10.63 (85)
SVM 1 70.38±10.73 70.12±8.55 (9) 70.32±16.06 (3/2) 71.98±13.14 (78) 72.82±10.20 (77)
SVM 2 71.79±8.78 69.29±10.93 (9) 69.35±9.80 (3/2) 72.75±10.80 (80) 68.65±13.99 (93)
QPC 1 72.56±9.70 81.34±12.49 (3) 82.43±12.22 (47/24) 67.50±13.54 (82) 67.43±17.05 (84)
QPC 2 100±0 100±0 (1) 98.46±3.24 (7/4) 66.92±16.68 (83) 99.16±2.63 (45)

ALL 69.35±16.54 71.15±12.68 (10) 83.26±14.13 (35/18) 65.38±10.75 (83) 78.20±8.65 (87)

Table 1.3 Average classification accuracy given by 10-fold crossvalidation test for Monks 1 prob-
lem with reduced features.

28 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

−5 −4 −3 −2 −1 0 1 2 3 4
w

1

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

w
1

w
2

−3 −2 −1 0 1 2 3
w

1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

w
1

w
2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
w

1

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

w
1

w
2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
w

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

w
1

w
2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
w

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

w
1

w
2

Fig. 1.2 Monks 1 data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.

1 Optimal Support Features for Meta-learning. 29

1.4.3 Leukemia

Leukemia contains microarray gene expressions data for two types of leukemia
(ALL and AML), with a total of 47 ALL and 25 AML samples measured with
7129 probes [113]. Visualization and evaluations of this data is based here on the
100 features with the highest FDA ranking index.

This data showed a remarkable separation using both one and two-dimensional
QPC, SVM and FDA projections (Fig. 1.3), showing more interesting data distri-
butions than MDS or PCA. Choosing one of the three linear transformations (for
example the QPC), and projecting original data to the one-dimensional space, SSV
decision tree, kNN, NBC and SVM classifiers, give 100% accuracy in the 10CV
tests (Table 1.4). All these models are very simple, with k=1 for kNN, or decision
trees with 3 nodes, or only 2 support vectors for linear SVM. Results on the whole
data are worse than on these projected features. Results are slightly worse (1-2 er-
rors) if features are selected and dimensionality reduced separately withing each
crossvalidation fold. This shows that although the data is separable it may not be
easy to find the best solution on the subset of such data.

In this case maximization of margin is a good guiding principle and dimension-
ality reduction is a very important factor, combining the activity of many genes into
a single profile. As the projection coefficients are linear the importance of each gene
in this profile may be easily evaluated. The data is very small and thus one should
not expect that all variability of the complex phenomenon has been captured in the
training set, therefore it is hard to claim that simple linear solutions should work
well also on large samples in this type of data, and they should be preferred in the
meta-learning process.

Features NBC kNN SSV SVML SVMG
PCA 1 98.57±4.51 98.57±4.51 (2) 95.71±6.90 (7/4) 98.57±4.51 (4) 98.57±4.51 (20)
PCA 2 98.57±4.51 98.57±4.51 (3) 95.81±5.16 (7/4) 97.14±6.02 (4) 97.14±6.02 (22)
MDS 1 92.85±7.52 91.78±7.10 (4) 91.78±14.87 (3/2) 91.78±9.78 (28) 91.78±7.10 (36)
MDS 2 98.57±4.51 97.32±5.66 (8) 95.71±6.90 (7/4) 97.32±5.66 (5) 98.75±3.95 (27)
FDA 1 100±0.00 100±0.00 (1) 100±0.00 (3/2) 100±0.00 (2) 100±0.00 (12)
FDA 2 100±0.00 100±0.00 (1) 100±0.00 (3/2) 100±0.00 (3) 100±0.00 (15)
SVM 1 100±0.00 100±0.00 (1) 100±0.00 (3/2) 100±0.00 (2) 100±0.00 (14)
SVM 2 100±0.00 100±0.00 (1) 100±0.00 (3/2) 100±0.00 (5) 100±0.00 (21)
QPC 1 100±0.00 100±0.00 (1) 100±0.00 (3/2) 100±0.00 (2) 100±0.00 (10)
QPC 2 100±0.00 100±0.00 (1) 100±0.00 (3/2) 100±0.00 (2) 100±0.00 (12)

ALL 78.28±13.55 98.57±4.51 (2) 90.00±9.64 (5/3) 98.57±4.51 (16) 98.57±4.51 (72)

Table 1.4 Average classification accuracy given by 10-fold crossvalidation test for Leukemia
dataset with reduced features.

30 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

−25 −20 −15 −10 −5 0 5 10 15 20
w

1

−20 −15 −10 −5 0 5 10 15 20

−15

−10

−5

0

5

10

15

w
1

w
2

−15 −10 −5 0 5 10 15
w

1

−10 −5 0 5 10

−12

−10

−8

−6

−4

−2

0

2

4

6

w
1

w
2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
w

1

−2 −1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

w
1

w
2

−3 −2 −1 0 1 2 3 4 5
w

1

−2 −1 0 1 2 3 4

−2

−1

0

1

2

3

w
1

w
2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
w

1

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

w
1

w
2

Fig. 1.3 Leukemia data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.

1 Optimal Support Features for Meta-learning. 31

1.4.4 Heart and Wisconsin

Heart disease dataset consisting of 270 samples, each described by 13 attributes,
150 cases labeled as “absence”, and 120 as “presence” of heart disease. Wisconsin
breast cancer dataset [115] contains samples describing results of biopsies on 699
patients, with 458 biopsies labeled as “benign”, and 241 as “malignant”. Feature 6
has 16 missing values, removing corresponding vectors leaves 683 examples. Both
datasets are rather typical examples of medical diagnostic data.

The information contained in the Cleveland Heart training data is not really suffi-
cient to make a perfect diagnosis data (Fig. 1.4). Best classification results are in this
case around 85%, and distributions seem to be similar to overlapping Gaussians. Al-
most all projections show comparable separation of a significant portion of the data,
although looking at probability distributions in one dimension SVM and FDA seem
to have a bit of an advantage. In such case strong regularization is advised to im-
prove generalization. For kNN this means that a rather large number of neighbors
should be used (in most cases 10, the maximum allowed here, was optimal), for
decision trees strong pruning (SSV after FDA has only a root node and two leaves),
while for SVM rather large value of C parameter and (for Gaussian kernels) large
dispersions. The best recommendation for this dataset is to apply the simplest classi-
fier – SSV or linear SVM on FDA projected data. Comparing this recommendation
with calculations presented in table 1.5 confirms that this is the best choice.

The character of the Wisconsin breast cancer dataset is similar to the Cleveland
Heart data, although separation of the two classes is much stronger (Fig. 1.5). Be-
nign cases show high similarity in the MDS mapping and in all considered here
linear projections, while malignant cases are much more diverse, perhaps indicat-
ing that several types of breast cancer are mixed together. It is quite likely that this
data contains several outliers and should really be separable, suggesting that wider
margins of classification should be used at the cost of a few errors. All methods
give here comparable results, although reduction of dimensionality to two dimen-
sions helps quite a bit to decrease the complexity of the data models. SVM is an
exception, achieving essentially the same accuracy and requiring similar number of
support vectors for the original and for the reduced data.

Again, the simplest classifier is quite sufficient here, SSV on FDA or QPC pro-
jections with a single threshold (a tree with just two leaves), or more complex (about
50 support vectors) SVM model with linear kernel on 2D data reduced by linear pro-
jection. One should not expect that much more information can be extracted from
this type of data.

1.4.5 Spambase

Spam dataset is derived from a collection of 4601 emails described by 57 attributes.
1813 of these emails are real spam and 2788 are work related and personal emails.
From Fig. 1.6 it is clear that MDS and PCA are not of much use in this prob-

32 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

−12 −10 −8 −6 −4 −2 0 2 4
w

1

−4 −2 0 2 4 6 8

−4

−2

0

2

4

6

w
1

w
2

−5 −4 −3 −2 −1 0 1 2 3 4
w

1

−5 −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

w
1

w
2

−3 −2 −1 0 1 2 3 4
w

1

−2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

w
1

w
2

−8 −6 −4 −2 0 2 4 6 8 10
w

1

−6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

w
1

w
2

−3 −2 −1 0 1 2 3 4
w

1

−4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

4

w
1

w
2

Fig. 1.4 Heart data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.

1 Optimal Support Features for Meta-learning. 33

−5 0 5 10
w

1

−4 −2 0 2 4 6 8

−4

−2

0

2

4

6

w
1

w
2

−4 −2 0 2 4 6 8
w

1

−2 −1 0 1 2 3 4 5 6 7

−2

−1

0

1

2

3

4

w
1

w
2

−3 −2 −1 0 1 2 3 4 5 6
w

1

−2 −1 0 1 2 3 4 5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

w
1

w
2

−15 −10 −5 0 5 10
w

1

−15 −10 −5 0 5

−15

−10

−5

0

5

w
1

w
2

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
w

1

−5 −4 −3 −2 −1 0 1 2 3

−1

0

1

2

3

4

5

6

w
1

w
2

Fig. 1.5 Wisconsin data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.

34 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

Features NBC kNN SSV SVML SVMG
PCA 1 80.74±6.24 75.92±9.44 (10) 79.25±10.64 (3/2) 81.11±8.08 (118) 80.00±9.43 (128)
PCA 2 78.88±10.91 80.74±8.51 (9) 79.62±7.03 (15/8) 82.96±7.02 (113) 80.00±9.99 (125)
MDS 1 75.55±6.80 72.96±7.62 (8) 77.40±6.16 (3/2) 77.03±7.15 (170) 73.70±8.27 (171)
MDS 2 80.74±9.36 80.37±8.19 (6) 81.11±4.76 (3/2) 82.96±6.09 (112) 82.59±7.20 (121)
FDA 1 85.18±9.07 84.81±5.64 (8) 84.07±6.77 (3/2) 85.18±4.61 (92) 85.18±4.61 (106)
FDA 2 84.07±8.01 82.96±6.34 (10) 83.70±6.34 (3/2) 84.81±5.36 (92) 84.81±6.16 (110)
SVM 1 85.92±6.93 82.59±7.81 (9) 83.33±7.25 (3/2) 85.55±5.36 (92) 85.18±4.61 (107)
SVM 2 83.70±5.57 82.96±7.44 (10) 84.81±6.63 (3/2) 85.55±7.69 (92) 84.07±7.20 (131)
QPC 1 81.48±6.53 81.85±8.80 (10) 82.22±5.46 (9/5) 82.59±8.73 (118) 82.59±10.33 (130)
QPC 2 84.44±7.96 85.55±4.76 (10) 83.33±7.25 (13/7) 85.92±5.46 (103) 85.18±4.93 (132)

ALL 72.22±4.70 79.62±11.61 (9) 81.48±4.61 (7/4) 84.44±5.17 (99) 82.22±5.17 (162)

Table 1.5 Average classification accuracy given by 10-fold crossvalidation test for Heart dataset
with reduced features.

Features NBC kNN SSV SVML SVMG
PCA 1 97.36±2.27 96.92±1.61 (7) 97.07±1.68 (3/2) 96.78±2.46 (52) 97.36±2.15 (76)
PCA 2 96.18±2.95 96.34±2.69 (7) 97.36±1.92 (3/2) 96.92±2.33 (53) 97.22±2.22 (79)
MDS 1 96.63±1.95 95.60±1.84 (7) 97.07±1.83 (3/2) 95.60±2.59 (54) 95.74±2.45 (86)
MDS 2 95.16±1.70 96.48±2.60 (3) 96.19±2.51 (9/5) 96.92±2.43 (52) 96.63±2.58 (78)
FDA 1 97.07±0.97 97.35±1.93 (5) 96.92±2.34 (3/2) 97.21±1.88 (52) 97.65±1.86 (70)
FDA 2 95.46±1.89 96.77±1.51 (9) 96.93±1.86 (11/6) 96.77±2.65 (51) 97.07±2.06 (74)
SVM 1 95.90±1.64 97.22±1.98 (9) 97.22±1.99 (3/2) 97.22±1.26 (46) 96.93±1.73 (69)
SVM 2 97.21±1.89 97.36±3.51 (10) 97.22±1.73 (3/2) 96.92±2.88 (47) 96.92±3.28 (86)
QPC 1 96.33±3.12 97.22±1.74 (7) 96.91±2.01 (3/2) 96.34±2.78 (62) 97.07±1.82 (84)
QPC 2 97.21±2.44 96.62±1.84 (7) 96.33±2.32 (3/2) 96.62±1.40 (54) 96.33±1.87 (107)

ALL 95.46±2.77 96.34±2.52 (7) 95.60±3.30 (7/4) 96.63±2.68 (50) 96.63±2.59 (93)

Table 1.6 Average classification accuracy given by 10-fold crossvalidation test for Wisconsin
dataset with reduced features.

lem, at least in a low number of dimensions. In case of PCA the second dimension
helps a bit to separate data that belongs to different classes, but MDS is completely
lost. FDA, QPC and linear SVM in 1-dimensional space look very similar, however
adding second dimension shows some advantage of SVM. It is clear that in this case
low-dimensional visualization is not able to capture much information about data
distribution. Best results may be expected from large margin classifiers, linear SVM
gives 93.1±0.7% (C=1), and similar results from the Gaussian kernel SVM.

1.4.6 Ionosphere

Ionosphere dataset has 351 records, with different patterns of radar signals reflected
from the ionosphere, 224 patterns in Class 1 and 126 in Class 2. First feature is
binary, second is always zero, and the remaining 32 are continuous.

In this case (Fig. 1.7) MDS and all projections do not show much structure.
To illustrate the effect of kernel transformation original features are replaced by
Gaussian kernels with σ = 1, thus increasing the dimensionality of the space to
351. Now (Fig. 1.8) MDS shows focused cluster of signals from one class on the
background of the second class, and projection methods show quite clear separation,
with FDA showing surprisingly large separation. This shows that the data after the

1 Optimal Support Features for Meta-learning. 35

−20 −15 −10 −5 0 5 10 15 20
w

1

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

w
1

w
2

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
w

1

−0.05 0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

w
1

w
2

−4 −2 0 2 4 6
w

1

−4 −2 0 2 4 6 8 10
−5

−4

−3

−2

−1

0

1

2

w
1

w
2

−30 −25 −20 −15 −10 −5 0 5 10 15 20
w

1

−50 −40 −30 −20 −10 0 10 20 30 40
−40

−20

0

20

40

60

80

w
1

w
2

−6 −4 −2 0 2 4
w

1

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10
−12

−10

−8

−6

−4

−2

0

2

4

6

8

w
1

w
2

Fig. 1.6 Spambase data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.

36 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

kernel transformation became linearly separable. The FDA solution has been found
on the whole dataset, and it may not be possible to find such perfect solution in
crossvalidation even if transductive learning is used.

1.5 Discussion and conclusions

The holy grail of machine learning, computational intelligence, pattern recognition
and related fields is to create intelligent algorithms that will automatically config-
ure themselves and lead to discovery of all interesting models for arbitrary data.
All learning algorithms may be presented as sequences of transformations. Cur-
rent data mining systems contain many transformations that may be composed in
billions of ways, therefore it is impossible to test all promising combinations of
preprocessing, feature selection, learning algorithms, optimization procedures, and
post-processing. Meta-level knowledge is needed to automatize this process, help to
understand how efficient learning may proceed by search in the space of all trans-
formation.

The main focus of this paper has been on generation of transformations, catego-
rization of types of features using geometrical perspective, creation of new features,
learning from other data models by feature transfer, understanding what kind of data
distributions are created in the extended features space, and finding decision algo-
rithms with proper bias for such data. Systematic explorations of features of grow-
ing complexity enables discovery of simple models that more sophisticated learning
systems will miss. Feature constructors described here go beyond linear combina-
tions provided by PCA or ICA algorithms. In particular, kernel-based features offer
an attractive alternative to current kernel-based SVM approaches, offering multires-
olution and adaptive regularization possibilities. Several new types of features have
been introduced, and their role analyzed from geometrical perspective. Mixing dif-
ferent kernels and using different types of features gives much more flexibility to
create decision borders or approximate probability densities. Adding specific sup-
port features facilitates knowledge discovery. Good generalization is achieved by
searching for large pure clusters of vectors that may be uncovered by specific in-
formation filters. Homogeneous algorithms create small clusters that are not reli-
able, but with many different filters the same vectors may be mapped in many ways
to large clusters. This approach significantly extends our previous similarity-based
framework [21] putting even higher demands on organization of intelligent search
mechanism in the space of all possible transformations (see [103] and this volume).

Constructing diverse information filters leads to interesting views on the data,
showing non-linear structures in the data that – if noticed – may be easy to handle
with specific transformations. Systems that actively sample data, trying to “see it”
through their filters, are more flexible than classifiers working in fixed input spaces.
Once sufficient information is generated reliable categorization of data structures
may be achieved. Although the final goal of learning is to discover interesting mod-
els of data, more attention should be paid to the intermediate representations, the

1 Optimal Support Features for Meta-learning. 37

−6 −4 −2 0 2 4 6
w

1

−6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

w
1

w
2

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
w

1

−0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

w
1

w
2

−1.5 −1 −0.5 0 0.5 1 1.5 2
w

1

−1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

w
1

w
2

−10 −8 −6 −4 −2 0 2 4
w

1

−12 −10 −8 −6 −4 −2 0 2 4
−6

−4

−2

0

2

4

6

w
1

w
2

−3 −2 −1 0 1 2
w

1

−4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

w
1

w
2

Fig. 1.7 Ionosphere data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.

38 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
w

1

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

w
1

w 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
w

1

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3

w
1

w 2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
w

1

−1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

w
1

w 2

−2 −1 0 1 2 3
w

1

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

w
1

w 2

−3 −2 −1 0 1 2 3
w

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

w
1

w 2

Fig. 1.8 Ionosphere data set in the kernel space, from top to bottom: MDS, PCA, FDA, SVM and
QPC.

image of data after transformation. Instead of hiding information in kernels and so-
phisticated optimization techniques features based on kernels and projection tech-

1 Optimal Support Features for Meta-learning. 39

niques make this explicit. Finding useful views on the data by constructing proper
information filters is the best way to practical applications that automatically create
all interesting data models for a given data. Objects may have diverse and com-
plex structures, and different categories may be identified in different feature spaces
derived by such filters and transformations. Once the structure of data image that
emerges in the enhanced space is recognized, it may then be handled by a decision
module specializing in handling specific type of nonlinearity. Instead of linear sep-
arability much easier intermediate goal is set, to create clear non-linear data image
of a specific type.

Some benchmark problems have been found rather trivial, and have been solved
with a single binary feature, one constrained nominal feature, or one new feature
constructed as a projection on a line connecting means of two classes. Analysis of
images, multimedia streams or biosequences will require even more sophisticated
ways of constructing higher-order features. Thus meta-learning package should have
general mechanisms controlling search, based on understanding of the type of trans-
formations that may be useful for specific data, principles of knowledge transfer and
goals of learning that go beyond separability of data, and modules with transforma-
tions specific for each field.

Neurocognitive informatics draws inspirations from neurobiological processes
responsible for learning and forms a good basis for meta-learning ideas. So far only
a few general inspirations have been used in computational intelligence, like for ex-
ample threshold neurons organized in networks that perform parallel distributed pro-
cessing. Even with our limited understanding of the brain many more inspirations
may be drawn and used in practical learning and object recognition algorithms. Par-
allel interacting streams of complementary information with hierarchical organiza-
tion [6] may be linked to multiple information filters that generate new higher-order
features. Accumulating noisy stimulus information from multiple parallel streams
until reliable response is made [7] may be linked to confidence level of classifiers
based on information from multiple features of different type. Kernel methods may
be relevant for category learning in biological systems [116], although in standard
formulations of SVMs it is not at all obvious. Explicit use of kernel features under-
stood as similarity estimation to objects categorized using high-order features may
correspond to various functions of microcircuits that are present in cortical mini-
columns, extending the simple liquid state machine picture [5]. With great diversity
of microcircuits a lot of information is generated, and relevant chunks are used as
features by simple Hebbian learning of weights in the output layer. In such model
plasticity of the basic feature detectors receiving the incoming signals may be quite
low, yet fast correlation-based learning is still possible.

References

[1] Walker, S.: A brief history of connectionism and its psychological impli-
cations. In Clark, A., Lutz, R., eds.: Connectionism in Context. Springer-

40 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

Verlag, Berlin (1992) 123–144
[2] Anderson, J.A., Rosenfeld, E.: Neurocomputing - foundations of research.

MIT Press, Cambridge, MA (1988)
[3] Gerstner, W., Kistler, W.: Spiking Neuron Models. Single Neurons, Popula-

tions, Plasticity. Cambridge University Press (2002)
[4] Maass, W., Markram, H.: Theory of the computational function of micro-

circuit dynamics. In Grillner, S., Graybiel, A.M., eds.: Microcircuits. The
Interface between Neurons and Global Brain Function. MIT Press (2006)
371–392

[5] Maass, W., Natschläger, T., Markram, H.: Real-time computing without sta-
ble states: A new framework for neural computation based on perturbations.
Neural Computation 14 (2002) 2531–2560

[6] Grossberg, S.: The complementary brain: Unifying brain dynamics and mod-
ularity. Trends in Cognitive Sciences 4 (2000) 233–246

[7] Smith, P.L., Ratcliff, R.: Psychology and neurobiology of simple decisions.
Trends in Neurosciences 27 (2004) 161–168

[8] Jaeger, H., Maass, W., Principe, J.: Introduction to the special issue on echo
state networks and liquid state machines. Neural Networks 20 (2007) 287–
289

[9] Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in
Machine Learning 2 (2009) 1–127

[10] Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief
nets. Neural Computation 18 (2006) 381–414

[11] Schölkopf, B., Smola, A.: Learning with Kernels. Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA
(2001)

[12] Schapire, R., Singer, Y.: Improved boosting algorithms using confidence-
rated predictions. Machine Learning 37 (1999) 297–336

[13] Kuncheva, L.: Combining Pattern Classifiers. Methods and Algorithms. J.
Wiley & Sons, New York (2004)

[14] Duch, W., Itert, L.: Competent undemocratic committees. In Rutkowski, L.,
Kacprzyk, J., eds.: Neural Networks and Soft Computing. Physica Verlag,
Springer (2002) 412–417

[15] Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Appli-
cations to Data Mining. Cognitive Technologies. Springer (January 2009)

[16] Newell, A.: Unified theories of cognition. Harvard Univ. Press, Cambridge,
MA (1990)

[17] Duda, R.O., Hart, P.E., Stork, D.: Patter Classification. J. Wiley & Sons, New
York (2001)

[18] Vilalta, R., Giraud-Carrier, C.G., Brazdil, P., Soares, C.: Using meta-learning
to support data mining. International Journal of Computer Science and Ap-
plications 1(1) (2004) 31–45

[19] Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine learning, neural and
statistical classification. Elis Horwood, London (1994)

1 Optimal Support Features for Meta-learning. 41

[20] Duch, W., Grudziński, K.: Meta-learning: searching in the model space. In:
Proceedings of the International Conference on Neural Information Process-
ing, Shanghai (2001) 235–240

[21] Duch, W., Grudziński, K.: Meta-learning via search combined with param-
eter optimization. In Rutkowski, L., Kacprzyk, J., eds.: Advances in Soft
Computing. Physica Verlag, Springer, New York (2002) 13–22

[22] Giraud-Carrier, C., Vilalta, R., Brazdil, P.: Introduction to the special issue
on meta-learning. Machine Learning 54 (2004) 197–194

[23] Sutton, C., McCullum, A.: An introduction to conditional random fields
(2010)

[24] Duch, W., Matykiewicz, P., Pestian, J.: Neurolinguistic approach to natu-
ral language processing with applications to medical text analysis. Neural
Networks 21(10) (2008) 1500–1510

[25] Pedrycz, W.: Knowledge-Based Clustering: From Data to Information Gran-
ules. Wiley-Interscience (2005)

[26] (ed), R.M., ed.: Multistrategy Learning. Kluwer Academic Publishers (1993)
[27] Duch, W., Jankowski, N.: Survey of neural transfer functions. Neural Com-

puting Surveys 2 (1999) 163–213
[28] Duch, W., Jankowski, N.: Transfer functions: hidden possibilities for better

neural networks. In: 9th European Symposium on Artificial Neural Networks,
Brusells, Belgium, De-facto publications (2001) 81–94

[29] Jankowski, N., Duch, W.: Optimal transfer function neural networks. In:
9th European Symposium on Artificial Neural Networks, Bruges, Belgium,
De-facto publications (2001) 101–106

[30] Duch, W., Adamczak, R., Diercksen, G.: Constructive density estimation net-
work based on several different separable transfer functions. In: 9th European
Symposium on Artificial Neural Networks, Bruges, Belgium (Apr 2001)

[31] Duch, W., Gra̧bczewski, K.: Heterogeneous adaptive systems. In: IEEE
World Congress on Computational Intelligence. IEEE Press, Honolulu (May
2002) 524–529

[32] Gra̧bczewski, K., Duch, W.: Heterogenous forests of decision trees. Springer
Lecture Notes in Computer Science 2415 (2002) 504–509

[33] Wieczorek, T., Blachnik, M., Duch, W.: Influence of probability estimation
parameters on stability of accuracy in prototype rules using heterogeneous
distance functions. Artificial Intelligence Studies 2 (2005) 71–78

[34] Wieczorek, T., Blachnik, M., Duch, W.: Heterogeneous distance functions
for prototype rules: influence of parameters on probability estimation. Inter-
national Journal of Artificial Intelligence Studies 1 (2006)

[35] Ullman, S.: High-level vision: Object recognition and visual cognition. MIT
Press: Cambridge, MA (1996)

[36] Haykin, S.: Neural Networks - A Comprehensive Foundation. Maxwell
MacMillian Int., New York (1994)

[37] Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Ma-
chines and other Kernel-Based Learning Methods. Cambridge University
Press (2000)

42 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

[38] Duch, W.: Similarity based methods: a general framework for classification,
approximation and association. Control and Cybernetics 29 (2000) 937–968

[39] Duch, W., Adamczak, R., Diercksen, G.: Classification, association and pat-
tern completion using neural similarity based methods. Applied Mathematics
and Computer Science 10 (2000) 101–120

[40] Sonnenburg, S., G.Raetsch, C.Schaefer, B.Schoelkopf: Large scale multiple
kernel learning. Journal of Machine Learning Research 7 (2006) 1531–1565

[41] Duch, W., Adamczak, R., Gra̧bczewski, K.: A new methodology of extrac-
tion, optimization and application of crisp and fuzzy logical rules. IEEE
Transactions on Neural Networks 12 (2001) 277–306

[42] Duch, W., Setiono, R., Zurada, J.: Computational intelligence methods for
understanding of data. Proceedings of the IEEE 92(5) (2004) 771–805

[43] Duch, W.: Towards comprehensive foundations of computational intelli-
gence. In Duch, W., Mandziuk, J., eds.: Challenges for Computational In-
telligence. Volume 63. Springer (2007) 261–316

[44] Baggenstoss, P.: The pdf projection theorem and the class-specific method.
IEEE Transactions on Signal Processing 51 (2003) 672–668

[45] Bengio, Y., Delalleau, O., Roux, N.L.: The curse of highly variable func-
tions for local kernel machines. Advances in Neural Information Processing
Systems 18 (2006) 107–114

[46] Bengio, Y., Monperrus, M., Larochelle, H.: Non-local estimation of manifold
structure. Neural Computation 18 (2006) 2509–2528

[47] Duch, W.: k-separability. Lecture Notes in Computer Science 4131 (2006)
188–197

[48] Kosko, B.: Neural Networks and Fuzzy Systems. Prentice Hall International
(1992)

[49] Duch, W.: Filter methods. In Guyon, I., Gunn, S., Nikravesh, M., Zadeh,
L., eds.: Feature extraction, foundations and applications. Physica Verlag,
Springer, Berlin, Heidelberg, New York (2006) 89–118

[50] Duch, W., Adamczak, R., Hayashi, Y.: Eliminators and classifiers. In Lee,
S.Y., ed.: 7th International Conference on Neural Information Processing
(ICONIP), Dae-jong, Korea (2000) 1029–1034

[51] Holte, R.: Very simple classification rules perform well on most commonly
used datasets. Machine Learning 11 (1993) 63–91

[52] Grochowski, M., Duch, W.: Projection Pursuit Constructive Neural Networks
Based on Quality of Projected Clusters. Lecture Notes in Computer Science
5164 (2008) 754–762

[53] Jordan, M., T.J. Sejnowski, E.: Graphical Models. Foundations of Neural
Computation. MIT Press (2001)

[54] Jones, C., Sibson, R.: What is projection pursuit. Journal of the Royal Sta-
tistical Society A 150 (1987) 1–36

[55] Friedman, J.: Exploratory projection pursuit. Journal of the American Statis-
tical Association 82 (1987) 249–266

[56] Webb, A.: Statistical Pattern Recognition. J. Wiley & Sons (2002)

1 Optimal Support Features for Meta-learning. 43

[57] T. Hastie, R.T., Friedman, J.: The Elements of Statistical Learning. Springer-
Verlag (2001)

[58] Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wi-
ley & Sons, New York, NY (2001)

[59] Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. Learn-
ing Algorithms and Applications. J. Wiley & Sons, New York (2002)

[60] Pȩkalska, E., Duin, R.: The dissimilarity representation for pattern recogni-
tion: foundations and applications. World Scientific (2005)

[61] Gra̧bczewski, K., Duch, W.: The separability of split value criterion. In:
Proceedings of the 5th Conf. on Neural Networks and Soft Computing, Za-
kopane, Poland, Polish Neural Network Society (2000) 201–208

[62] Torkkola, K.: Feature extraction by non-parametric mutual information max-
imization. Journal of Machine Learning Research 3 (2003) 1415–1438

[63] Tebbens, J., Schlesinger, P.: Improving implementation of linear discriminant
analysis for the small sample size problem. Computational Statistics & Data
Analysis 52 (2007) 423–437

[64] Gorsuch, R.: Factor Analysis. Erlbaum, Hillsdale, NJ (1983)
[65] Gifi, A.: Nonlinear Multivariate Analysis. Wiley, Boston (1990)
[66] Srivastava, A., Liu, X.: Tools for application-driven linear dimension reduc-

tion. Neurocomputing 67 (2005) 136–160
[67] Kordos, M., Duch, W.: Variable Step Search MLP Training Method. Interna-

tional Journal of Information Technology and Intelligent Computing 1 (2006)
45–56

[68] Bengio, Y., Delalleau, O., Roux, N.L.: The curse of dimensionality for lo-
cal kernel machines. Technical Report Technical Report 1258, Dṕartement
d’informatique et recherche opérationnelle, Université de Montréal (2005)

[69] Tsang, I.W., Kwok, J.T., Cheung., P.M.: Core vector machines: Fast svm
training on very large data sets. Journal of Machine Learning Research 6
(2005) 363–392

[70] Chapelle, O.: Training a support vector machine in the primal. Neural Com-
putation 19 (2007) 1155–1178

[71] Tipping, M.E.: Sparse Bayesian Learning and the Relevance Vector Machine.
Journal of Machine Learning Research 1 (2001) 211–244

[72] Lee, Y., Mangasarian, O.L.: Ssvm: A smooth support vector machine for
classification. Computational Optimization and Applications 20 (2001) 5–22

[73] Maszczyk, T., Duch, W.: Support feature machines: Support vectors are
not enough. In: World Congress on Computational Intelligence, IEEE Press
(2010) 3852–3859

[74] Pao, Y.: Adaptive Pattern Recognition and Neural Networks. Addison-
Wesley, Reading, MA (1989)

[75] A. Sierra, J.A. Macias, F.C.: Evolution of functional link networks. IEEE
Transactions on Evolutionary Computation 5 (2001) 54–65

[76] Leung, H., Haykin, S.: Detection and estimation using an adaptive rational
function filters. IEEE Transactions on Signal Processing 12 (1994) 3365–
3376

44 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

[77] Duch, W., Adamczak, R., Diercksen, G.H.F.: Neural networks in non-
euclidean spaces. Neural Processing Letters 10 (1999) 201–210

[78] Duch, W., Adamczak, R., Diercksen, G.H.F.: Distance-based multilayer per-
ceptrons. In Mohammadian, M., ed.: International Conference on Computa-
tional Intelligence for Modelling Control and Automation, Amsterdam, The
Netherlands, IOS Press (1999) 75–80

[79] Duch, W., Diercksen, G.H.F.: Feature space mapping as a universal adaptive
system. Computer Physics Communications 87 (1995) 341–371

[80] Cox, T., Cox, M.: Multidimensional Scaling, 2nd Ed. Chapman and Hall
(2001)

[81] Thompson, R.: The Brain. The Neuroscience Primer. W.H. Freeman and Co,
New York (1993)

[82] Breiman, L.: Bias-variance, regularization, instability and stabilization. In
Bishop, C.M., ed.: Neural Networks and Machine Learning. Springer-Verlag
(1998) 27–56

[83] Avnimelech, R., Intrator, N.: Boosted mixture of experts: An ensemble learn-
ing scheme. Neural Computation 11 (1999) 483–497

[84] Bauer, E., Kohavi, R.: An empirical comparison of voting classification algo-
rithms: bagging, boosting and variants. Machine learning 36 (1999) 105–142

[85] Maclin, R.: Boosting classifiers regionally. In: Proc. 15th National Confer-
ence on Artificial Intelligence, Madison, WI. (1998) 700–705

[86] Duch, W., Itert, L.: Committees of undemocratic competent models. In
Rutkowski, L., Kacprzyk, J., eds.: Proc. of Int. Conf. on Artificial Neural
Networks (ICANN), Istanbul. (2003) 33–36

[87] Giacinto, G., Roli, F.: Dynamic classifier selection based on multiple classi-
fier behaviour. Pattern Recognition 34 (2001) 179–181

[88] Bakker, B., Heskes, T.: Task clustering and gating for bayesian multitask
learning. Journal of Machine Learning Research 4 (2003) 83–99

[89] Smyth, P., Wolpert, D.: Linearly combining density estimators via stacking.
Machine Learning 36 (1999) 59–83

[90] Wolpert, D.: Stacked generalization. Neural Networks 5 (1992) 241–259
[91] Schwenker, F., Kestler, H., Palm, G.: Three learning phases for radial-basis-

function networks. Neural Networks 14 (2001) 439–458
[92] Duch, W., Maszczyk, T.: Almost random projection machine. Lecture Notes

in Computer Science 5768 (2009) 789–798
[93] Rutkowski, L.: Flexible Neuro-Fuzzy Systems. Kluwer Academic (2004)
[94] Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear

embedding. Science 290(5500) (2000) 2323–2326
[95] Kégl, B., Krzyzak, A.: Piecewise linear skeletonization using principal

curves. IEEE Transactions on Pattern Analysis and Machine Intelligence
24 (2002) 59–74

[96] Shoujue, W., Jiangliang, L.: Geometrical learning, descriptive geometry, and
biomimetic pattern recognition. Neurocomputing 67 (2005) 9–28

1 Optimal Support Features for Meta-learning. 45

[97] Huang, G., Chen, L., Siew, C.: Universal approximation using incremental
constructive feedforward networks with random hidden nodes. IEEE Trans-
actions on Neural Networks 17 (2006) 879–892

[98] Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic
Publishers (1999)

[99] Maszczyk, T., Duch, W.: Support vector machines for visualization and di-
mensionality reduction. Lecture Notes in Computer Science 5163 (2008)
346–356

[100] Maszczyk, T., Grochowski, M., Duch, W. In: Discovering Data Structures
using Meta-learning, Visualization and Constructive Neural Networks. Vol-
ume 262 of Advances in Machine Learning II. Springer Series: Studies in
Computational Intelligence , Vol. 262 (2010) 467–484

[101] Grochowski, M., Duch, W.: Learning highly non-separable Boolean func-
tions using Constructive Feedforward Neural Network. Lecture Notes in
Computer Science 4668 (2007) 180–189

[102] Grabczewski, K., Jankowski, N.: Versatile and efficient meta-learning archi-
tecture: Knowledge representation and management in computational intelli-
gence. In: IEEE Symposium on Computational Intelligence in Data Mining,
IEEE Press. (2007) 51–58

[103] Grabczewski, K., Jankowski, N.: Meta-learning with machine generators and
complexity controlled exploration. Lecture Notes in Artificial Intelligence
5097 (2008) 545–555

[104] Abu-Mostafa, Y.: Learning from hints in neural networks. Journal of Com-
plexity 6 (1989) 192–198

[105] Thrun, S.: Is learning the n-th thing any easier than learning the first? In
Touretzky, D.S., Mozer, M.C., Hasselmo, M.E., eds.: Advances in Neural
Information Processing Systems. Volume 8., The MIT Press (1996) 640–646

[106] Caruana, R., Pratt, L., Thrun, S.: Multitask learning. Machine Learning 28
(1997) 41

[107] Wu, P., Dietterich, T.G.: Improving svm accuracy by training on auxiliary
data sources. In: ICML. (2004)

[108] III, H.D., Marcu, D.: Domain adaptation for statistical classifiers. Journal of
Artificial Intelligence Research 26 (2006) 101–126

[109] Raina, R., Ng, A.Y., Koller, D.: Constructing informative priors using transfer
learning. In: In Proceedings of the 23rd International Conference on Machine
Learning. (2006) 713–720

[110] Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning:
Transfer learning from unlabeled data. In: ICML ’07: Proceedings of the
24th International Conference on Machine learning. (2007)

[111] Dai, W., Jin, O., Xue, G.R., Yang, Q., Yu, Y.: Eigentransfer: a unified frame-
work for transfer learning. In: ICML. (2009) 25

[112] Duch, W., Maszczyk, T.: Universal learning machines. Lecture Notes in
Computer Science 5864 (2009) 206–215

[113] Golub, T.: Molecular classification of cancer: Class discovery and class pre-
diction by gene expression monitoring. Science 286 (1999) 531–537

46 Włodzisław Duch, Tomasz Maszczyk, Marek Grochowski

[114] Asuncion, A., Newman, D.: UCI machine learning repository.
http://www.ics.uci.edu/∼mlearn/MLRepository.html (2007)

[115] Wolberg, W.H., Mangasarian, O.: Multisurface method of pattern separa-
tion for medical diagnosis applied to breast cytology. In: Proceedings of the
National Academy of Sciences. Volume 87., U.S.A. (1990) 9193–9196

[116] Jäkel, F., Schölkopf, B., Wichmann, F.A.: Does cognitive science need ker-
nels? Trends in Cognitive Sciences 13(9) (2009) 381–388

