
 
 

 

  

Abstract—A significant part of medical data remains stored 
as unstructured texts. Semantic search requires introduction of 
markup tags. Medical concepts discovered in hospital discharge 
summaries are used to create several feature spaces. Experts 
use their background knowledge to categorize new documents, 
and knowing category of the document disambiguate words and 
acronyms. A model of document similarity to reference sources 
that captures some intuitions of an expert is introduced. Pa-
rameters of the model are evaluated using linear programming 
techniques. This approach is applied to categorization of the 
medical discharge summaries providing simpler and more accu-
rate model than alternative text categorization approaches. 

I. INTRODUCTION 

utomatic tools for conversion of unstructured medical 
texts into semantically-tagged documents are urgently 
needed because in medical domain errors may be dan-

gerous and costly, medical vocabularies are huge and a very 
large number of abbreviations and acronyms are used. Criti-
cal differences between General English and Medical Eng-
lish have been analyzed in a numbers of publications [1]. 
The Cincinnati Children’s Hospital Medical Center 
(CCHMC), a large pediatric academic medical center with 
over 700,000 pediatric patient encounters per year, has tera-
bytes of medical data, mostly in form of raw texts, stored in a 
complex, relational database integrating many electronic 
hospital services [2].  
 Our long-term goal is to create tools for automatic annota-
tion of unstructured medical texts, adding full information 
about all medical concepts, expanding acronyms and abbre-
viations and disambiguating all terms. Processing of medical 
texts requires three steps: 1) mapping strings of symbols to 
unique terms; 2) resolving ambiguities and mapping terms to 
concepts in the Unified Medical Language System (UMLS) 
Metathesaurus [3] that includes Semantic Network as one of 
the three UMLS Knowledge Sources, providing ontological 
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relations for the Metathesaurus concepts; and 3) creating a 
full semantic representation of the text, that facilitates under-
standing and answering questions about its content. These 3 
steps are all intimately connected and require the use of rec-
ognition, semantic and episodic memory [4].   
 Understanding texts is based on a prior knowledge that 
generates expectations of a few selected concepts, and inhi-
bition of many others, a process that statistical methods of 
natural language processing [5] approximates in a very crude 
way, because co-occurrence relations are only a poor reflec-
tion of structured knowledge stored in human memory. 
Medical expert reading text quickly forms a hypothesis about 
the particular subdomain the text may be assigned to, and 
interprets the text in the light of this knowledge, as well as 
the background knowledge derived from medical studies, 
textbooks and individual experience. This is especially true 
if relatively short texts are analyzed, such as patient’s Dis-
charge Summaries, containing brief medical history, current 
symptoms, diagnosis, treatment, medications, therapeutic 
response and outcome of hospitalization, are analyzed. Many 
medical concepts appear very rarely in Discharge Summa-
ries. Word Sense Disambiguation (WSD) or document cate-
gorization algorithms that are based only on the context rela-
tions but ignore the background medical knowledge are not 
useful here. Computational intelligence (CI) models based 
on cognitive inspirations should be quite useful in natural 
language processing and text mining problems. Although 
fuzzy techniques could be used for analysis of texts very 
large number of rules will be generated, therefore an alterna-
tive approach is proposed here.  
 The first step towards semantic annotation and disam-
biguation of medical Discharge Summaries requires discov-
ery of the document topic. In the simplest case topic is the 
main disease that has been treated; automatic assignment of 
billing codes requires more detailed topics. Categorization of 
such documents requires a method of evaluation of their 
similarities, but two documents from the same category may 
contain very few common concepts. In the next section ways 
of defining useful feature spaces for medical documents are 
discussed. Similarity measures that take into account a priori 
knowledge are then introduced and a model trying to capture 
expert intuition is discussed. Estimation of parameters of this 
model is done using linear programming techniques. Nu-
merical experiments with over 4500 discharge summaries 
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allow for comparison of this approach with traditional 
document categorization approaches. 

II  FROM DOCUMENTS TO FEATURE SPACES 

 
 Medical texts differ from texts in general domain: they are 
usually not understood by the lay people, they are full of 
medical terms specific to a particular branch of medicine, 
frequently may violate grammar. Clinical texts are dictated 
or manually written, and thus contain frequent misspelling 
and typing errors, punctuation errors, large number of abbre-
viations and acronyms. Therefore the bag-of-words represen-
tation of such documents leads to very large feature spaces, 
many strongly correlated features (terms forming concepts), 
and extremely sparse representation. Unified Medical Lan-
guage System (UMLS) [3] developed by the US National 
Library of Medicine is a huge ontology of medical concepts 
that may be used to discover useful concepts.  
 Discharge summaries have been retrieved from the hospi-
tal database using customized SQL queries, taking into ac-
count privacy issues, disease synonyms, duplicate records 
and so forth. All queries were executed across two different 
tables describing patient’s discharge records and diagnosis. 
In this way a labeled set of documents has been created. 
Since patients were diagnosed with different diseases (which 
implies different symptoms, treatments, medications, etc.) 
each class should be characterized by unique and distinct 
vocabulary. This information may be used to find simple 
rules classification and in processing of discharge summaries 
for  which diagnosis is missing. 
 

Table I. Names of the diseases used in the study 
Disease name No. of  

records 
Average size  
in bytes 

Pneumonia 609 1451 

Asthma 865 1282 

Epilepsy 638 1598 

Anemia 544 2849 

Urinary tract infection (UTI) 298 1587 

Juvenile Rheumatoid Arthritis 
(JRA) 

41 1816 

Cystic fibrosis 283 1790 

Cerebral palsy 177 1597 

Otitis media 493 1420 

Gastroenteritis 586 1375 

 
 For experiments reported here documents that belong to 
10 distinct disease classes were selected. Except for the Ju-
venile Rheumatoid Arthritis (JRA) class that contained only 
41 documents all the other classes were among the most 
common in the database containing discharge records. In-
formation on the dataset created for these experiments, class 
distribution and the average length of documents in each 
class, is presented in Table I. Overall there are 4534 records 
with patients discharge summaries, with “asthma” being the 
majority class that covers 19.1%, defining the baseline for 
classification and outnumbering the smallest class about 15 

times. All documents are short, less than 3000 characters, 
with the average length below 200 characters. With this type 
of class disproportions purely statistical approaches are 
bound to fail and the need for a priori knowledge is quite 
clear. Many rare diseases in out database have only very few 
documents.  
 The name of the disease that should be used as the cate-
gory label plays a dual role: it is one of the features used to 
describe the document, and it is also the class label. For ex-
ample, documents from the “asthma” class frequently contain 
the name “asthma”, but they may also contain the names of 
other diseases. The frequency of appearance of each of the 
10 disease names in the documents may be taken as the class 
indicator, giving a more informed base rate distribution. Us-
ing this approach leaves 55.3% of documents unclassified 
(including impasses, i.e. cases with several identical highest 
frequencies), 34.6% correctly classified and 10.1% errors. 
 Construction of the feature space is of primary importance 
here. Four spaces have been considered here: based on refer-
ence knowledge or on the analyzed documents (native 
space); in each case individual words or semantic concepts 
may be used. The for spaces are called word-reference, se-
mantic-reference, word-native and semantic-native. 

A. Data Preprocessing 

At this stage each text is subject to several processing tech-
niques: exhaustive set of parsing rules are used to handle all 
punctuation issues, numbers, special characters (#,@,!) and 
internal separators that should be removed. 
 Typical methods for text dimensionality reduction include 
stemming to find unique form of words [6], and stop-word 
list of common English words to remove words that do not 
contribute to document categorization [7]. Several versions 
of a word-based space may be taken into account, depending 
on the procedures used. Here only the word space reduced 
with stop words and then stemmed is considered.  
 Medical concept discovery maps fragments of texts on 
medical ontologies, finding unique names, introducing fea-
tures that are more specific, capturing some semantics of the 
medical texts, and avoiding strongly correlated features 
(parts of multi-word concepts). MetaMap Transfer (MMTx) 
program package is a collection of lexical and semantic 
tools, designed and optimized for exploring biomedical text 
resources [8]; as a result text is annotated using UMLS 
Metathesaurus concepts. The UMLS system is a big source 
of concepts with many interpretations and meanings [2]. Un-
fortunately this mapping is usually not unique and suffers 
from word ambiguity and other problems. To avoid false-
positive mappings a very restrictive MMTx settings has been 
used during string matching. Concepts are assigned to a 
number of semantic types and in document categorization it 
is advantageous to focus attention on specific types (such as 
Antibiotics or Syndrome), ignoring more general types (such 
as Temporal or Qualitative Concepts). 
 Latent Semantic Indexing (LSI)  [9] is a well-known un-
supervised technique for feature space dimensionality reduc-
tion. New features are found by taking the principal compo-
nents (usually using Singular Value Decomposition), or 



 
 

 

weighted combinations of original features, corresponding to 
the highest variance in the document space. In medical 
document categorization a single specific occurrence of a 
concept may be an important indicator of the document cate-
gory, while the contribution of this concept to the principal 
components will be negligible. Features created by linear or 
non-linear combinations loose their semantics, while concept 
discovery enhances it. 

B. Creation of the Feature Spaces 

 Two collections of texts are used: reference to capture a 
priori knowledge, and clinical, based on summary dis-
charges. For each collection two types of feature spaces have 
been created: word and semantic. In both cases feature val-
ues represent frequency of words or frequency of concepts, 
respectively. Since categorization is done only for the clini-
cal data features space created from this data is referred to as 
“native”, while the reference space is based on external (non-
native) source of data. Since it’s quite likely that reference 
text will contain words/concepts not found in the clinical 
data, after creating a reference space it is automatically nar-
rowed down to match the existing clinical words/concepts. 
The initial number of words that are good candidates for 
features in the reference space was 4008, the space has been 
finally limited to less than 2299 features using the stemming 
algorithm, stop-list and removing the features that appeared 
only once in all reference texts. Exactly the same text parsing 
algorithms applied to the collection of clinical data has been 
used to create word-native space. The number of candidate 
words is 30260, and even after the same reduction as used 
for the reference space still 13248 words remain (many 
proper names, spelling errors, alternative spellings, abbrevia-
tions, acronyms, etc).  
 Creation of semantic feature spaces requires more sophis-
ticated processing methods. Medical records contain many 
specific, unique and uncommon words, therefore extremely 
large feature space may easily be created. To reduce it key 
concepts in the collection of documents are identified and 
grouped by their semantic types. The ULMS Metathesaurus 
– a collection of lexical and semantic information about 
biomedical concepts, their various names, and relationships 
among them – includes more than one million concepts rep-
resented by more than 4 million strings. Each concept is as-
signed to one of the 135 semantic types. Only 26 of these 
semantic types were used (listed in the first column of Tab. 
III) because they are specific, medical concepts useful in 
document categorization. Thus using the UMLS ontology as 
a base all common words may be filtered out and non-
medical concepts excluded. 
 At first, the native semantic feature space has been cre-
ated. Each of the 4534 documents has been processed by the 
MMTx software [8] and the key concepts have been filtered, 
leaving only those that belong to one of the predefined se-
mantic types. The final number of features included in the 
native space based on concepts discovered in medical re-
cords was 7220 (this yields 7040 features since some of the 
UMLS concepts are assigned to more than one semantic 

type). These concepts appeared in medical records 195321 
times (Tab. III, column I-All). 
 Next, reference documents describing each of the 10 dis-
eases (Tab. II, see more on these texts below) have been pre-
processed, and medical concepts discovered using the 
MetaMap software and restricting the semantic types to those 
most specific from the medical point of view (Tab. III, col-
umn II). As a result 1097 unique concepts have been identi-
fied, appearing 4436 times in the reference texts. Each proto-
type of the disease may be represented in this feature space 
as a vector with components obtained from scaled frequen-
cies of a given concept in the reference document describing 
a given disease. This forms reference feature space with ref-
erence vectors that represent background knowledge for spe-
cific diseases. For each of the features (dimensions) in this 
space at least one reference vector has the corresponding 
component with non-zero value. This is not true for medical 
records, where only a subset of 807 unique features have 
non-zero components and thus as long as experiments are 
restricted to the selected texts there is no need to use the re-
maining 290 features (Tab. III, column III). Similarity be-
tween clinical and reference records may be computed in this 
space. Background knowledge contained in features that 
appear only in the reference space, but not in the limited 
selection of medical records taken for analysis, should be 
useful if new texts will be retrieved from the database. 
 Some features that are specific to a particular disease 
should be given more weight. This may be done using refer-
ences vectors that contain weights; for example, if only one 
disease mentions HIV virus the corresponding entry in the 
reference vector should be given a high weight. Scaling fac-
tors of this sort may be introduced at the later stage using 
“term weighting” or optimization of similarity functions, for 
example based on conditional probabilities. 
 Filtered reference space is relatively small, with 807 fea-
tures that correspond to important medical concepts discov-
ered in the reference texts. The texts given for analysis con-
tain many more unique concepts than found in the reference 
texts, in our case 7220. For example, only one vitamin has 
been mentioned in the reference texts, while 30 vitamins 
have been mentioned in the medical records (Tab. III). Nev-
ertheless, the filtered semantic-reference space with only 807 
dimensions (11.2 % of native features) covers over 80 thou-
sands concepts which account for 41.3 % of all concepts 
found in clinical data (Tab. III, the very last column). 
 

Table II. Information about reference documents. 
Disease name Size (bytes) 
Pneumonia 23583 
Asthma 36720 
Epilepsy 19418 
Anemia 14282 
Urinary tract infection (UTI) 13430 
Juvenile Rheumatoid Arthritis (JRA) 27024 
Cystic fibrosis 7958 
Cerebral palsy 35348 
Otitis media 32416 
Gastroenteritis 9906 



 
 

 

C. Reference Data 

 The information contained in short texts, such as the 
summary discharges analyzed here, may by itself not be suf-
ficient for proper categorization. An expert reading such 
texts brings into this process rich background knowledge 
derived from textbooks and medical practice. This knowl-
edge is partially contained in disease definitions found in 
online dictionaries, textbooks and ontologies. A typical dis-
ease definition consists of the following sections: definition, 
cause; incidence, risk factors, symptoms, signs and tests, 
treatment, expectations (prognosis), complications. Texts 
taken from medical books are quite long and may contain 
many concepts that refer to rare situations that will not be 
commonly encountered, but still form a are very important 
part of expert’s knowledge. 
 This reference knowledge may be represented in many 
ways. For classifiers based on similarity or requiring numeri-
cal representation in a vector space concept-based feature 

space is quite appropriate. Each reference disease may be 
represented by a single vector, or by a number of vectors, 
with frequencies of concepts that may be expected, estimated 
using the reference knowledge sources. A single vector 
represents a general prototype of a disease, but most diseases 
have several variants, with slightly different combination of 
symptoms. For example, the text describing a given disease 
may mention that at least 3 of the 5 symptoms listed in the 
text should appear, therefore in the 5-dimensional subspace 
the reference vectors may contain non-zero frequencies for 
all 5 symptoms (1 vector), 4 out of 5 (4 vectors), or 3 out of 
5 (10 vectors), requiring altogether 15 vectors to represent 
all combinations. If there are several such groups of alterna-
tive concepts (causes, symptoms, treatments, complications 
etc) the number of references vectors will grow in a combi-
natorial way. Creation of such reference vectors may require 
deeper understanding of medical texts, and thus will be 
rather difficult to automatize. 

Table III. The dimensionality of different spaces (“unique” column) and the total number of such concepts found in data 
(“all” column). I - semantic-native, II - semantic-reference, III - filtered semantic-reference (final space). Last column pre-

sents the number of concepts found in the real data using space III. 
 

Semantic type I II III Data III 
 Unique All Unique All Unique All All 
Anatomical Structure 20 186 4 13 3 11 116 
Antibiotic 100 7664 16 95 16 95 3096 
Bacterium 98 1850 13 69 9 65 627 
Biologically Active Substance 148 6908 24 80 15 64 2052 
Biomedical or Dental Material 53 1192 5 8 5 8 57 
Body Location or Region 196 5298 18 93 17 91 3638 
Body Part, Organ, or Organ Component 633 8777 113 558 87 511 3879 
Body Space or Junction 84 478 4 81 3 51 49 
Body Substance 75 8881 27 152 21 145 2872 
Body System 20 907 10 71 6 55 166 
Clinical Attribute 63 840 8 23 7 21 244 
Clinical Drug 88 271 2 2 0 0 0 
Diagnostic Procedure 236 10599 47 126 35 108 6870 
Disease or Syndrome 1378 20132 248 1415 174 1293 12027 
Enzyme 74 1928 6 16 5 15 504 
Finding 1094 29770 126 325 89 283 7212 
Hormone 60 1891 7 54 6 52 998 
Laboratory or Test Result 143 1824 13 36 7 23 581 
Laboratory Procedure 250 8113 41 86 29 58 3179 
Organ or Tissue Function 108 3542 27 61 17 36 734 
Pharmacologic Substance 903 24214 134 278 90 212 6030 
Physiologic Function 40 4273 11 76 8 73 3041 
Sign or Symptom 573 22518 116 522 99 500 15621 
Therapeutic or Preventive Procedure 736 22254 68 148 53 129 6829 
Virus 17 485 8 47 5 42 260 
Vitamin 30 526 1 1 1 1 20 
Total 7220 195321 1097 4436 807 3942 80702 
 



 
 

 

 Naive approach to background knowledge includes all 
concepts that appear in reference knowledge sources for a 
given disease, resulting in a single prototype vector that is 
rather different from any real case, where only a subset of 
symptoms or treatments appear. This is quite evident if 
documents from a given class are compared with the refer-
ence vectors created in this way. Proper scaling of similarity 
between reference vectors and document vectors may allevi-
ate this situation, therefore this method will be used in com-
bination with similarity-based methods as the most straight-
forward approach to incorporation of a priori knowledge 
into a similarity-based classifier system. 
 The reference texts were taken from MedicineNet [10], 
Children’s Hospital Boston. Child Health A to Z [11], and 
the MedlinePlus: Medical Encyclopedia [12]. The size of 
these texts for each of the diseases is presented in Tab. II. 
More detailed description of the disease could result in a 
larger number of useful features.  

II. MODEL OF SIMILARITY 

 
 In principle vector representation of documents is not nec-
essary if a method that could estimate similarity Sij=S(Di,Dj) 
directly from text comparison could be devised. In practice 
direct evaluation of similarity is not possible and numerical 
representations based on term frequency are used as the start-
ing point. In the most common approach documents Di of 
length lj=|Di| are composed of terms (words or collocations).  

A. Term weighting 

 Term frequencies tf for term i = 1 ... n in document Dj are 
calculated for all documents that should be compared. Term 
frequencies are then transformed to obtain features such that 
in the feature space simple metric relations between vectors 
representing documents should reflect their similarity. This 
transformation should avoid giving too much weight to fea-
tures that appear with high frequency, and to long documents 
that tend to have more non-zero frequencies and higher fre-
quencies. There are many ad-hoc ways to introduce such 
weights. For example, for non-zero term frequencies [5]: 
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 Words that appear in all documents may have high fre-
quency, but carry little information that could be used for 
document categorization. Uniqueness of each feature is in-
versely proportional to the number of documents this feature 
appears in; if the term i appears in dfi out of N documents the 
final weighting is: 
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 This is usually called tf x idf weighting scheme. If the term 
i appears in all documents it does not contribute and sij=0 for 
all j. The tf x idf weighting scheme may take some variants. 
For example, in the Smart system [13] term frequencies are 
rescaled to [0.5,1], using s = 0.5(1 +tf/maxtf), and in the In-

query system by s=0.4+0.6tf/maxtf) [14], but these weight-
ings favor long documents. To avoid it normalization of the 
tf x idf scaled vectors is used as the final feature vectors Xj, 
that is all vectors (sij,... sn,j) are divided by their length to 
obtain Xj. 
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 This normalization tends to favor shorter documents. 
More sophisticated normalization method has been intro-
duced in the information retrieval to counter this effect 
[5][13], but unbiased normalizations have not yet been 
found. In document categorization we are interested in dis-
tribution of a given term among different categories, there-
fore instead of the log(N/dfi) factor the logarithm of ratio 
log(K/cfi) of the number of classes K to the number of classes 
cfi term i may be found is used. 

B. Evaluation  of document similarity  

 Euclidean or other simple distance measures do not cap-
ture intuitive estimation of document similarity. Prior to the 
examination of a document the probability that it belongs to 
category C should be equal to the a priori probability p(C). 
The background knowledge of an expert about the reference 
documents from class Ci may be represented using term fre-
quencies Ri(xj) for the term xj. These frequencies are col-
lected in the reference vector Ri. 
 Proposition 1: the initial distance for an unknown docu-
ment D to the reference vectors Ri should be proportional to 
doi=|D−Ri|~1/p(Ci)−1. For rare classes this distance is large, 
for a very probable class p(Ci)≈1 it approaches 0. If the 
document does not contain any useful information it is close 
to the majority class. If term xj has zero frequency in refer-
ence documents as well as in the document D the distance 
d(D,Ri) is not changed from its current value (initially doi). 
 Proposition 2: if the term xj appears in Ri with frequency 
Ri(xj) but does not appear in D the distance d(D,Ri) should 
increase by �i(xj) = aRi(xj), where a is an adaptive constant. 
If a term appears frequently in reference documents from 
class Ci but does not appear in the document our belief that 
the document D is of the class Ci should decrease, thus the 
distance should increase. 
 Proposition 3: if a term xj does not appear in Ri but it has 
non-zero frequency D(xj) in the document the distance 
d(D,Ri) should increase by �i(xj)=bD(xj). 
 Proposition 4: if a term xj appears in both vectors and fre-
quency Ri(xj)>D(xj)>0 the distance d(D,Ri) should decrease 
by �i(xj)=−cD(xj). 
 Proposition 5: if a term xj appears in both vectors and fre-
quency D(xj)>Ri(xj)>0 the distance d(D,Ri) should decrease 
by �i(xj)=−eRi(xj). 
 Other contributions to distance could be considered but 
these propositions seem t capture some intuitive properties of 
document similarity; if a term appears in both vectors than 
the distance is decreased by a constant times the smaller term 
frequency. For small term frequencies this situation may 
happen by pure chance, therefore smaller of the two frequen-



 
 

 

cies is taken. If both frequencies are large this is a strong 
indication and should lead to a significant decrease of the 
current distance estimation. 
 
 Additional measure of term specificity is given by class-
conditional probability p(xj|Ci). If a given term appears only 
in documents from the Ci class obviously it should be more 
important than if it appears with small probability for all 
classes. What with the intuition about terms that never ap-
pear in some classes (negative correlation)? They should 
increase the distance, and they do in Propositions 2 and 3, 
although only for zero frequencies. 
 Proposition 6. The final probability that a document D 
belongs to class Ci, including the contribution of all terms xj, 
should be proportional to:  
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      Here �i(xj) depends on 4 non-negative adaptive parame-
ters a, b, c, and e that may be specific for each class, and the 
distance depends on the d0i that may also be treated as an 
adaptive parameter; the slope λ is an additional parameter, 
giving 6 adaptive parameters per class. These parameters 
may be similar in each class and thus instead of optimizing 
them independently for each class one set of 6 parameter 
may be found. Weighted term contributions may sum to a 
negative number, giving small values after filtering through 
�(.) function. 
 Probabilities are estimated after normalization: 
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This approach seems to capture most human intuitions when 
texts are analyzed using background knowledge. Parameters 
a−e may be estimated jointly for all classes or separately for 
each class using linear programming techniques. 

III. LINEAR PROGRAMMING 

 
 In the linear programming [15] optimization goal is for-
mulated by the linear problem (LP) with constraints: 
 min{CTX:  AX ≥ B; C,X∈Rn, B∈Rm} 
 where A is a n x m matrix, B and C are known vectors and 
X is a vector of variables to be estimated. The expression 
CTX is the objective function and inequalities AX>b are 
called the constraints.  In practice it may be impossible to 
satisfy all the constraints (such LP problems are called infea-
sible). One way to search for a “maximally feasible solution” 
is to intro����������������������� 
�� ���
���� �������lity. Using 
slack variables the modified system of inequalities can be 
rewritten as: 
 ������ �!TX:  A"� �#���$�%&��!"∈Rn, B∈Rm} 
 LP problems are solvable in polynomial time using inte-
rior point based methods [16]. Another popular class of algo-
rithms for LP is based on the simplex algorithm [15]. To 
calculate coefficients a−e in our similarity measures PCx 

��'���
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����(���meters has been used [17]. The condi-
tion 
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maximizes Eq. 4, that is the similarity measure between 
documents and reference vectors. However there are many 
classes in data and obviously the right class should be pro-
moted and the incorrect ones penalized. This can be 
achieved by adding several constraints (7): 

0 0( | ) ( ) ( | ) ( )k j k k j i j i i j
j j

d p x C x d p x C x+ Δ ≤ + Δ∑ ∑  

where k indicates the desired class and k≠i. For each single 
training vector K−1 constraints were created (K is number of 
classes). The above inequality can be rewritten in a typical 
constraint form (8): 

( ) ( ) ( ) ( ) 0 0| |j k k j j i i j i k
j

p x C x p x C x d d⎡ ⎤Δ − Δ ≤ −⎣ ⎦∑
 Two different cases have been considered: one set of pa-
rameters for all classes (I) and separate set for each class (II). 
 
Case I.  If parameters a, b, c, e are class independent a single 
constraint takes the form: 
 )a�*�+b�*�,c�*�-e  ≤ d0i–d0k            (9) 
 where )�+�,�����- coefficients depend on p(xj|Ci) and �i 
calculated according to the propositions 1-6. These condi-
tions can be presented in a matrix form using A matrix  with 
dimensionality 4./K –1).N by 4.   
 
Case II.  Parameters a, b, c, e are now K dimensional vectors 
and a single constraint has K times more components: 
 
 )Ta�*�+Tb�*�,Tc�*�-Te > d0k–d0i          (10) 
 
 where  )Ta = a1)1 + a2)2 + ... + aK)K       (11) 
����
��������'��������+Tb�,Tc�-Te. 

 
 Satisfying all K–1 inequalities (9) or (10) for one docu-
ment D guarantees that its similarity measure (4) is maximal 
for the correct class. This provides the correct classification 
of document D (considered to be “clean”). Since each single 
constraint always links only two classes at a time, 4(K–2) 
parameters are always equal to 0 in these inequalities. 

IV. RESULTS OF NUMERICAL EXPERIMENTS 

 
 The performance of different classifiers has been evalu-
ated on different versions of transformed data including the 
most common and widely used text smoothing methods. 
Since the dimensionality of the problem is significant, the 
feature/class correlation has been computed and analyzed. 
Other results reported here include classification accuracies 
with and without the reference vectors. Finally, results of the 
method based on linear programming optimization proposed 
here are reported. All calculations except the nearest-



 
 

 

neighbor-based classification with prototypes were carried 
out using stratified 10-fold crossvalidation. 
 Experiments with feature ranking based on Pearson’s lin-
ear correlation coefficients (CC) have been performed to 
estimate feature/class correlations. There are many weakly 
correlated features but in experiments with the kNN classi-
fier using semantic space and one class against all other dis-
crimination it was found that a CC threshold as small as 0.05 
dramatically decreases accuracy, from over 95% on all fea-
tures to below 50%. Similar results are obtained with various 
feature spaces and classifiers. Therefore even weakly corre-
lated features cannot be disregarded in classification prob-
lems without significant loss of accuracy. 
 

A. Results without the reference vectors 

 A few well known classification methods have been used 
to estimate the background or reference accuracy – the accu-
racy which could be obtained without additional reference 
knowledge (Table IV). Results are presented only for the tf-
normalized semantic space, as other results are not better. As 
rule-based data understanding is quite important in this case 
two decision trees have been used: C 4.5 [18] and SSV Trees 
[19] as implemented in the Ghostminer package [20]. In ad-
dition k-nearest neighbor (kNN) and SVM methods have 
been used (also using the Ghostminer package) for compari-
son as the reference knowledge is presented in form of proto-
type vectors, one per class. kNN showed much better train-
ing results than decision trees, and also significantly better 
test results than decision trees, although overall these results 
are still rather poor.  
 
Table IV. Classification accuracy (in %) using 10-CV for tf-
normalized semantic feature space data. 
 

 kNN SSV C4.5 
Train 93.7 47.4 27.9 

Test 48.9 39.5 34.9 

 
Table V. Best 10-CV test accuracies across different data 
normalizations. M0: tf, M1:binarized, M2: tfsij = , M3: sij= 

1 + log(tf), M4: sij= (1+log(tfij))log(N/dfi), M5: Eq (3)  
 

 M0 M1 M2 M3 M4 M5 
kNN 48.9 50.2 51.0 51.4 49.5 49.5 
SSV 39.5 40.6 31.0 39.5 39.5 42.3 
SVM 59.3 60.4 60.9 60.5 59.8 60.0 

 

B. Results with the reference vectors  

 The reference knowledge from medical textbooks has 
been presented in the form of prototype vectors, one per 
class. This leads to a greatly simplified nearest neighbor 
method, as distances to only 10 reference vectors have to be 
checked and the most similar vector selected. Two distance 
functions have been considered, Euclidean and cosine dis-
similarity measure. All data becomes now the test data as the 

documents to be classified have not been used to create the 
reference model.  
 Independently of the feature space and data normalization 
methods the Euclidean distance leads to a very poor per-
formance (6-15% of accuracy) since the majority of vectors 
are assigned to the class 7 (Cystic fibrosis) as the reference 
vector representing this class is the shortest (Table II). The 
simplest tf normalization gives over 60% accuracy with co-
sine distance, a significant improvement over kNN with 
much simpler model.  
 
Table VI. Accuracies (in %) across different data normaliza-
tions using only reference vectors. M0-M5, as in Tab. V.  
 

kNN M0 M1 M2 M3 M4 M5 
Euclidean 6.2 6.2 6.2 6.3 15.0 6.2 
cosine  60.1 58.9 56.7 56.8 56.5 43.8 

 

C. Optimized similarity function  

 The approach described in Sec. II and III has been used to 
optimize the coefficients a, b, c, e, that should capture intui-
tive evaluation of document similarity. Two cases have been 
studied, with common parameters for all classes, or separate 
parameters for each class. In this case linear programming on 
the training crossvalidation partition has been used to opti-
mize these parameters and similarity to all K=10 reference 
vectors calculated to classify the test data. The � parameter 
for both results were set to 0.01. For higher values of � the 
great increase in the number of near impasses could be no-
ticed since for number of vectors probabilities Eq. (5) for 
different classes were close to 1. 
 Case I: For each 10-CV step on average about 95% of all 
constraints were satisfied, however the number of vectors for 
which correct unique class could be assigned was much 
lower (~ 61%), giving classification accuracy of 61.1% 
 Case II: With 92% of satisfied constraints the number of 
“clean” vectors was approximately 10% higher than in the 
Case I. The final 10-CV accuracy reached 71.6%. This is 
quite significant improvement comparing to all other results 
on this data. In all calculations reported here variance of the 
test results was below 2%.  

V. CONCLUSION 

 
 Full annotation of unstructured documents that may facili-
tate semantic analysis of texts is a great challenge. Assigning 
documents to specific categories that will assist in disam-
biguation of terms and concepts should be treated as the first 
step towards this goal. Medical texts are rather specific, con-
taining very large number of unique concepts. Direct stan-
dard approach to the document classification, based on vec-
tor representation using the tf x idf weighting scheme leads to 
quite poor results using the nearest neighbor and decision 
trees approaches. This is primarily a deficiency of the naive 
document representation, but also lack of a priori knowledge 
needed for categorization of these documents. Many useful 



 
 

 

tools were created to help in medical document analysis: 
spelling tools, large ontologies such as the UMLS [3] and 
software for mapping text to concepts. They are obviously 
helpful to capture some semantics by discovering concepts 
that may be used in construction of the feature space. It is 
clear that knowledge contained in medical records, such as 
discharge summaries analyzed here, is by itself not sufficient 
to categorize them with high accuracy. Therefore reference 
texts have been introduced, systematically describing each 
disease documents can be classified to. These texts were 
analyzed using the MetaMap software to discover concepts 
that belong to many semantic types. From the classification 
point of view 26 of these semantic types have been selected, 
describing specific medical entities. 
 The use of a priori knowledge in computational intelli-
gence is an important topic that may be approached from 
different perspectives [21][22]. Fuzzy rule-based systems for 
text mining are quite difficult to create because the number 
of concepts that one has to consider is huge and thus the 
complexity of the whole system is going to be large. Re-
cently we have shown that fuzzy rules may be derived di-
rectly from prototype-based rules [23]. Similarity-based 
methods may therefore be useful not only in predictive 
methods [24] but also in data understanding. In the discharge 
summary categorization highest accuracies were obtained 
using the nearest neighbor method, giving additional justifi-
cation to focus on prototypes rather than fuzzy rules. The 
simplest knowledge representation, in form of a single refer-
ence vector per class, has been used, with the reference space 
build on the set of concepts derived from the reference texts 
for each disease. Some of these concepts never appear in our 
database of medical records, but may still be useful if new 
documents will be given for analysis. A new approach to the 
evaluation of similarity of documents that refers to the back-
ground knowledge and captures some human intuitions has 
been introduced. As a result a simple model with a few pa-
rameters optimized using linear programming has been cre-
ated, giving surprisingly large increase of accuracy compared 
to the kNN, decision trees or SVM classifiers. 
 Finding the simplest decomposition of medical records 
into classes using either sets of logical rules or minimum 
number of prototypes, is an interesting challenge. This is 
only the first step towards the full semantic annotation of 
these documents. Although much remains to be done before 
unstructured medical documents and general web documents 
will be fully and reliable annotated in an automatic way a 
priori knowledge certainly will be very important. Increasing 
the number of reference vectors in each class could be done 
if a detailed textbook description of all subtypes of a given 
disease was available. This is probably the knowledge that 
medical doctors gain through the years of practice and fre-
quently it is never verbalized. In fact prototype-based ap-
proach may be treated as a crude approximation to the activ-
ity of neural cell assemblies in the brain of a medical expert 
who thinks about a particular disease. Creating better ap-
proximations to this process is a great challenge for CI. A 
fascinating possibility suggested by our results is to use data 
mining techniques to discover major subtypes of disease that 

could improve categorization of classifiers but also help in 
the training of young medical doctors by presenting optimal 
sets of cases for their study. Textbook knowledge is fre-
quently not sufficient (for example, there are many new 
drugs mentioned in our documents that have not been men-
tioned in the textbooks), and thus some reference vectors 
derived from clusterization of the actual data should also be 
added as prototypes. With sufficient amount of documents 
optimization of individual feature weights could also be at-
tempted. We are investigating these and other possibilities 
for further improvement of medical document categorization.  
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