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Abstract— Relative abundance of chemical elements allows for
classification of the Late Iron Age glass samples to one of the
three main chronological periods (LT C1, LT C2 and LT D1)
of glass artifacts. Predictive abilities of various classification
systems, including several rule-discovery methods, have been
compared in this paper. The results indicate the usefulness of
machine-learning methods in such applications. A hypothesis
stating that the glass surface corrosion has minor influence on the
results of chemical analysis has been confirmed by computational
intelligence methods.
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I. I NTRODUCTION.

Analysis of the archeological glass data has many aspects.
This paper is concerned with estimation of the chronology of
the artifacts studied, using spectroscopic analysis of the glass
composition. Possibility of dating artifacts using spectroscopic
analysis would be of great importance for archeology. Concen-
tration of many chemical compounds may be measured using
such methods, but only some of these components have high
influence on prediction of the age of glass artifacts. From
the machine learning perspective this means that rule-based
methods with selection of attributes will be more informative
than predictive statistical methods. This data presents an
interesting challenge, since it contains several samples from
the same object, confusing some classification methods that
relay on similarity of samples.

The glass composition has been measured usually in several
places: on the original surface of the artifact and on the broken
parts. Therefore in the original database several instances
correspond to a single glass object. A thin corrosion layer
always covers the surface of the archeological glass, and the
broken parts are usually cleaner or at least less corroded. It is
however not clear how much the surface corrosion influences
the results of the measurements. This are interesting questions
that, at least in respect to artifacts dating, could be answered
using a data-mining approach.

In the next section a description of the database is given.
In the third section the methodology underlying this study is
presented, and the results of a number of classifiers compared.
Last section concludes the paper.

II. T HE DESCRIPTION OF THEDATABASE

The archeological glass database has been obtained during
realization of an interdisciplinary project “Celtic Glass Char-
acterization”, under supervision of Prof. G. Trnka (Institute of
Prehistory, University of Vienna) and Prof. P. Wobrauschek
(Atomic Institute of the Austrian Universities in Vienna).
The measurements of chemical compound concentrations were
made using the Energy Dispersive X-ray Fluorescence Spec-
troscopy [1], [2]. Concentration of the following 26 com-
pounds have been measured:Na2O, MgO, Al2O3, SiO2, SO3,
K2O, CaO, TiO2, Cr2O3, MnO, Fe2O3, CoO, NiO, CuO, ZnO,
SeO3, Br2O7, Rb2O, SrO, ZrO2 MoO3, CdO, SnO2, Sb2O3,
BaO, andPbO.

The original database consists of the description of 555
glass samples. Those of them which are from unknown time
period, correspond to glass artifacts of uncertain chronology,
or archeologically do not belong to the rest of the data, have
been excluded from the database (see detailed description in
the next section). In order to prepare datasets for our computa-
tional studies we have excluded also from the original dataset
relatively small number of samples containing measurements
of additional decorations on glass. Those decorations are
usually made of a different kind of glass than the main body
of the glass artifact. Since chemical analysis has been made
for most glass samples in several areas of the glass, several
entries in the database may correspond to a single glass object.
Usually two measurements are made on the surface and one
on each of the two broken sides.

Three main chronological periods are of interest to arche-
ologists:

1) LT C1 - La Tene C1 period, 260 - 170 B.C.
2) LT C2 - La Tene C2 period, 170 - 110 B.C.
3) LT D1 - La Tene D1 period, 110 - 50 B.C.

For the prediction of the chronology of studied objects,
experiments on various subsets of the original data have
been performed. First experiment has been performed on
data containing both surface and broken part measurements.
The second and the third experiment has been performed
separately for data consisting of surface and of broken parts
measurements. This has been done to check if the place



of measurement is significant for chemical dating of glass
artifacts.

Experiments conducted with similarity based classification
methods using cross-validation tests give very high accuracies.
This is a general problem for data that contains repeated
samples from the same objects: since the most similar sample
comes from the same object, classification using the nearest
neighbor is perfect. This problem cannot be solved using
standard statistical techniques, such as bootstrap evaluation of
accuracy [7] instead of crossvalidation, since the probability
of finding samples from the same object in the training and
the test partitions will be high (and difficult to evaluate). The
only reasonable solution is to use the low-complexity models,
such as simple decision trees, logical rules or neural networks
with low number of hidden neurons and strong regularization.
Such models provide simple decision borders and should
not suffer significantly from this problem, although realistic
evaluation of the expected accuracy remains difficult due to
strong correlation of the samples.

To alleviate the problem of unbiased accuracy estimation
each of the datasets has been divided into training and test
partition to assure that distinct samples that are almost iden-
tical und thus presumably come from the same glass object
have not been included in the same training partition. There are
approximately 4 samples per glass object. Still classification
accuracy of the algorithms trained through cross-validation in
case of the first experiment may be too high, because in both
the training and the test sets there are usually two samples
taken from a side and a surface of the same glass object. In
such situation training of the classification model becomes an
uncontrolled bootstrap process. In case of the second and third
experiment there is only one case belonging to a single glass
object but experiments conducted on this data still confuse
similarity based models - this time only at the testing phase
of the classification process.

We have several computational intelligence tools for this
study: the Waikato Environment for Knowledge Analysis
(WEKA) [4], the NETLAB software for Matlab environment
[3], the Similarity Based Learner system (SBL) [5], and the
Ghostminer data mining software [6]. The last two software
systems have been developed in our laboratories.

III. N UMERICAL EXPERIMENTS

In each subsection a distinct computational experiment on
differently partitioned data is described.

A. The First Experiment (Surface and Broken Side Data)

The first study has been performed on the data containing
measurements made on both original surface and the broken
parts. The sample distribution among classes for this experi-
ment is:

1) LT C1, 29.68% (84 cases),
2) LT C2, 33.57% (95 cases),
3) LT D1, 36.75% (104 cases).

The total number of cases is 283, with the base rate of 37%.
143 samples have been selected as the training partition and

the remaining 140 as test set. Table (I) summarizes the best
results obtained for this data.

TABLE I

RESULTS FOR THE SURFACE AND BROKEN SIDE DATA.

System Train % Test %
Naive Bayes (WEKA) 81.8 81.4
1-NN (SBL) 100.0 75.0
IncNet, 5 neurons (GM) 99.3 73.6
SSV - Tree (GM) 97.1 70.5± 2.9
MLP+ regulariz. (Netlab) 98.6 70.0
MLP backprop. (Netlab) 100.0 67.1
1R (WEKA) 74.1 66.4
SVM (GM) 99.3 63.6
C4.5 - Rules (WEKA) 91.6 62.1
C4.5 - Tree (WEKA) 97.9 55.7

There are no problems with distinguishing objects from
LT C1 period: only 3 test samples from this class were
assigned to other classes by Naive Bayes, and all were
correctly recognized by MLP with regularization (α = 0.1
used has speeded up convergence), achieving 100% sensitivity.
The second class has lowest sensitivity (67.4% for Naive
Bayes and only 21-31% for MLP), while the third class has
moderate 84% sensitivity for Naive Bayes and 88% for MLP.
Similar, although slightly more accurate results were obtained
using the IncNet incremental RBF-like network [10]. Visual
inspection of this dataset was done using the GhostMiner
multidimensional scaling software [6]. Fig. 1 shows that a
good separation of the LT C1 class from the other two may
be expected.

The similarity based methods may be especially misleading,
since in the training and test there are two cases belonging
to the same glass object. Therefore we have avoided more
sophisticated SBL methods, restricting optimization only to
metric and k. The cross-validation results on the training
partition are much better then on the test set probably because
of the uncontrolled bootstrap learning. Results of the SVM are
relatively poor although bias andC coefficient has been fully
optimized and various kernels tried [9]. The best results are
obtained with Naive Bayes classifier, but they may suffer from
the same problem as SBL.

1R decision tree gives very simple decision rules, based
on selection of a single attribute that allows for the best
classification, and defining the intervals where samples from
a single class are prevalent. The most informative attribute for
the prediction of the chronology of the glass found by the 1R
decision tree is the concentration ofMnO. The rules using this
one attribute are:

IF MnO < 2185.205 THEN C1
IF MnO ∈ [2185.205,9317.315) THEN C2
IF MnO ≥ 9317.315 THEN D1

These rules predict correctly 100 out of the 143 training
samples, and 93 out of 140 test samples.

Other attributes that were found to be important are concen-
tration of TiO2, Fe2O3, NiO, MnO, Sb2O3 andZnO for glass
from LT C1 period, concentration ofFe2O3, TiO2, NiO, and



Fig. 1. Glass data from the first experiment plotted in two MDS dimensions.
The LT C1 class is quite well separated from LT C2 and LT D1 classes.

PbO for glass from the LT C2 period andTiO2, Sb2O3, Fe2O3,
PbO, andZnO for glass of the LT D1 period. Simple selection
procedure (forward and backward wrapper approaches) for
Naive Bayes has identified four attributes,MnO, SrO, ZrO2

andPbO; two of these attributes do not contribute much, and
the results are significantly degraded. Genetic optimization of
the attribute set leads adds two more attributes,Sb2O3, and
Al2O3, but the test set results are still about 5% lower than
without attribute selection.

MnO has also been identified as the most important attribute
by the SSV decision tree [6], [8]. Since the tree is constructed
using internal 5-fold crossvalidation on the training set (the
number of folds has been optimized to reach the highest
accuracy on the training set) it is not deterministic, achieving
slightly more than 70%±2.9% on the test. The final trees use
only 9 features, have between 30-40 nodes, corresponding to
about 15 rules. The complexity increase over the 1R tree is
substantial, and the gain in accuracy on the training set large,
but the training results are only slightly better. We have also
used other models available in the WEKA package, but results
were usually significantly worse.

The best model may be selected using crossvalidation
calculation on the whole dataset.

B. The Second Experiment (Surface Data)

For the second experiment only samples with measurements
on the glass surface were selected. There are 129 such in-
stances in the database. The distribution of classes is:

1) LT C1, 26.36% (34 cases),
2) LT C2, 37.98% (49 cases),
3) LT D1, 35.66% (46 cases).

We divided them into 61-case training partition and took
the remaining 68 as the test partition. The splitting was made
in such a way that cases obtained from measurements on the
same glass object are separated. The table below summarizes
the best results obtained for this data.

The single-attribute rules obtained from 1R system on this
data are:

TABLE II

RESULTS FOR THE SURFACE MEASUREMENTS DATA.

System Training % Test %
1-NN (GM, norm, Manh) 100.0 94.1
1-NN (GM, normalized, Euclid) 100.0 89.7
MLP (16 neurons, WEKA) 100.0 86.8
IncNet (3 neurons, GM) 100.0 86.8
1-NN (GM, std, Euclid) 100.0 85.3
SVM (GM, Gauss kernel) 98.4 85.3
SSV Tree (GM, opt prune) 100.0 83.8
SSV Tree (GM, opt prune) 90.2 82.4
C4.5 - Rules (WEKA) 96.7 79.4
NaiveBayes + 8 attr sel (WEKA) 86.9 77.9
C4.5 - Tree (WEKA) 95.1 73.5
NaiveBayes (WEKA) 78.7 72.0
1R (WEKA) 72.1 63.2

IF MnO < 187.34 Then C1
IF MnO ≤ 9489.09 Then C2
IF MnO ∈ [3821.99,9489.09)∨MnO≥ 9489.09 Then D1

The bucket size for the 1R algorithm has been was taken
as 8, a value optimized using 5-fold crossvalidation on the
training set. These rules handle correctly 42 out of 61 training
samples and 43 out of 68 test instances. Principal component
analysis required 16 components to cover 95% of variance.
MLP results with these components, with feedforward wrapper
feature selection and without any selection are very similar,
correctly classifying 59 out of 68 test cases.

C4.5 decision tree has used 7 attributes, creating 17 nodes,
including 9 leaves. C4.5rule version provides independent
logical rules that obtain 79.4% accuracy on the test set. These
rules are listed below:

If ZrO2 > 296.1 Then C1 (16/0)
If Na2O ≤ 36472.22 Then C1 (2/0)
If Sb2O3> 2078.76 Then C2 (12/1)
If CdO = 0 & Na2O ≤ 27414.98 Then C2 (12/1)
If Na2O > 27414.98 & NiO ≤ 58.42 Then D1 (10/0)
If NiO > 48.45 & CdO = 0 & BaO = 0 & Br2O7 ≤ 53.6 &
Fe2O3 ≤ 12003.35 & ZnO ≤ 149.31 Then D1 (7/0)

Default class: LT D1 (2)
In parenthesis the number of covered cases is given followed

by a number of errors each rule makes. These rules predict
correctly 54 out of 68 test cases, using 10 features. Surpris-
ingly, MnO selected by 1R has not been used at all.MnO
is also selected at the top of SSV trees. Optimal SSV rules
(pruning degree is optimized using internal crossvalidation)
have slightly lower complexity, the tree has 11 nodes, includ-
ing 6 leaves, and gives slightly better accuracy than C4.5 on
the test set:
If MnO < 1668.47 & ZrO2 > 303.34 Then C1
If MnO < 1668.47 & ZrO2 < 303.34 & TiO2 < 76.235, or

MnO > 1668.47 & Sb2O3 > 986.19, or
MnO > 1668.47 & Sb2O3 < 986.19 & CaO < 79370 Then

C2
If MnO > 1668.47 & Sb2O3 < 986.19 & CaO > 79370, or

MnO < 1668.47 & ZrO2 < 303.34 & TiO2 > 76.235 Then



D1
Since crossvalidation training is used in SSV in some runs
a more complex solution, involving 12 rules that classify
the training cases 100% correctly, is found. The increase of
accuracy on the test set is rather small.

C. The Third Experiment (Broken Parts Data)

For the third experiment only samples with measurements
on the broken parts were selected. There are 154 such instances
in the database. The distribution of classes is:

1) C1, 32.47% (50 cases),
2) LT C2, 29.87% (46 cases),
3) LT D1, 37.66% (58 cases).

We divided them into 78-case training partition and took
the remaining 76 as the test partition. The splitting was made
in such a way that cases obtained from measurements on the
same glass object are separated. Table (II) summarizes the best
results obtained for this data.

TABLE III

RESULTS FOR THE BROKEN SIDE DATA.

System Training % Test %
1-NN Euclid (GM) 100 89.5
1-NN Manh (GM) 100 89.5
NaiveBayes (WEKA) 92.3 86.8
IncNet, 3 neurons (GM) 97.4 85.5
SVM, linear (GM) 94.9 81.6
MLP, 19 neurons (WEKA) 97.4 81.6
C4.5 - Rules (WEKA) 98.7 81.6
SSV, opt prune (GM) 84.6 77.6
C4.5 - Tree (WEKA) 93.6 77.6
1R (WEKA) 73.1 75.0

Good performance of the Naive Bayes should be noted
The simplest rules obtained from 1R system for bucket = 7
(optimized in 5-fold crossvalidation on the training set) are:

If MnO < 2134.61 Then C1
If MnO ∈ [2134.61,9078.525) Then C2
If MnO ≥ 9078.525 Then D1

These rules handle correctly 58 out of 78 training samples
and 57 out of 76 test instances. Similar rules were found by
the SSV tree with strong pruning.

The C4.5 decision tree produced 6 rules listed below:

If ZrO2 > 199.38 & CdO = 0 Then C1 (19/0)
If NiO ≤ 62.23 & CaO ≤ 114121.35 Then C1 (6/0)

If CuO ≤ 5105.37 & MnO > 2546.77 & ZnO ≤ 126.29 Then
C2 (15/0)

If SnO2 > 61.98 & Br2O7 ≤ 64.08 Then D1 (10/1)
If Sb2O3 ≤ 8246.11 & CuO ≤ 2042.19 & Al2O3 > 11525.69
Then D1 (20/0)
Default: C2 (8)

In the brackets the number of covered cases is given,
followed by a number of errors each rule makes. These rules
predict correctly 62 out of 76 test cases. SSV has also found
6 rules of similar complexity, although again usingMnO as
the ost important attribute.

IV. CONCLUSIONS ANDFURTHER WORK

Numerical studies conducted here indicate that computa-
tional intelligence methods can be used for prediction of the
membership of the glass samples of uncertain chronology to
one of the main chronological periods. The most interesting
result of this paper is however confirmation that place of the
measurement (original surface or broken part of glass) has no
influence on the results of analysis, and what follows predic-
tion of membership of the sample to one of the chronological
classes. This conclusion has been reached because the separate
test on the surface and on the broken side of glass artifacts
leads to similar classification accuracies by most classification
systems used.

In the original database there is a significant proportion of
the unlabeled samples. Assigning them to one of the chrono-
logical periods is of great importance for the archeologists.
Predictions for the unlabeled cases made by machine learning
systems should be confronted with archeological expertise.
Methods that use the unsupervised learning procedures may
help to improve the supervised classifiers, making such data
useful to create better models.

With a growing database of glass samples it should be
possible to create a rule based expert system, perhaps using
fuzzy rules for estimation of probability, to help in determin-
ing chronology of new glass artifact, for example found in
excavation sites. This paper is the first step towards such a
system.
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